1
|
Cerván-Martín M, Higueras-Serrano I, González-Muñoz S, Guzmán-Jiménez A, Chaves-Urbano B, Palomino-Morales RJ, Poo-López A, Fernández-Vega-Cueto L, Merayo-Lloves J, Alcalde I, Bossini-Castillo L, Carmona FD. Comprehensive Evaluation of the Genetic Basis of Keratoconus: New Perspectives for Clinical Translation. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39436372 PMCID: PMC11500050 DOI: 10.1167/iovs.65.12.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Keratoconus (KC) is a corneal disorder with complex etiology, apparently involving both genetic and environmental factors, characterized by progressive thinning and protrusion of the cornea. We aimed to identify novel genetic regions associated with KC susceptibility, elucidate relevant genes for disease development, and explore the translational implications for therapeutic intervention and risk assessment. Methods We conducted a genome-wide association study (GWAS) that integrated previously published data with newly generated genotyping data from an independent European cohort. To evaluate the clinical translation of our results, we performed functional annotation, gene prioritization, polygenic risk score (PRS), and drug repositioning analyses. Results We identified two novel genetic loci associated with KC, with rs2806689 and rs807037 emerging as lead variants (P = 1.71E-08, odds ratio [OR] = 0.88; P = 1.93E-08, OR = 1.16, respectively). Most importantly, we identified 315 candidate genes influenced by confirmed KC-associated variants. Among these, MINK1 was found to play a pivotal role in KC pathogenesis through the WNT signaling pathway. Moreover, we developed a PRS model that successfully differentiated KC patients from controls (P = 7.61E-16; area under the curve = 0.713). This model has the potential to identify individuals at high risk for developing KC, which could be instrumental in early diagnosis and management. Additionally, our drug repositioning analysis identified acetylcysteine as a potential treatment option for KC, opening up new avenues for therapeutic intervention. Conclusions Our study provides valuable insights into the genetic and molecular basis of KC, offering new targets for therapy and highlighting the clinical utility of PRS models in predicting disease risk.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Blas Chaves-Urbano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Computational Oncology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Arancha Poo-López
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Luis Fernández-Vega-Cueto
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Lombardo M, Camellin U, Gioia R, Serrao S, Scorcia V, Roszkowska AM, Lombardo G, Bertelli M, Medori MC, Alunni Fegatelli D, Vestri A, Mencucci R, Schiano Lomoriello D. Targeted next-generation sequencing analysis in Italian patients with keratoconus. Eye (Lond) 2024; 38:2610-2618. [PMID: 38684849 PMCID: PMC11383948 DOI: 10.1038/s41433-024-03090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE To report variants in 26 candidate genes and describe the clinical features of Italian patients with keratoconus (KC). SUBJECTS/METHODS Sixty-four patients with a confirmed diagnosis of KC were enrolled in this genetic association study. Patients were classified into two study groups according to whether they had a confirmed diagnosis of progressive or stable KC. A purpose-developed Next Generation Sequencing (NGS) panel was used to identify and analyse the coding exons and flanking exon/intron boundaries of 26 genes known to be associated with KC and corneal dystrophies. Interpretation of the pathogenic significance of variants was performed using in silico predictive algorithms. RESULT The targeted NGS research identified a total of 167 allelic variants of 22 genes in the study population; twenty-four patients had stable keratoconus (n. 54 variants) and forty patients had progressive disease (n. 113 variants). We identified genetic variants of certain pathogenic significance in five patients with progressive KC; in addition, eight novel genetic variants were found in eight patients with progressive KC. Mutations of FLG, LOXHD1, ZNF469, and DOCK9 genes were twice more frequently identified in patients with progressive than stable disease. Filaggrin gene variants were found in 49 patients (76% of total), of whom 32 patients (80% of progressive KC group) had progressive disease. CONCLUSIONS Targeted NGS research provided new insights into the causative effect of candidate genes in the clinical phenotype of keratoconus. Filaggrin mutations were found to represent a genetic risk factor for development of progressive disease in Italy.
Collapse
Affiliation(s)
- Marco Lombardo
- Studio Italiano di Oftalmologia, Via Livenza 3, 00198, Rome, Italy.
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy.
| | - Umberto Camellin
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Raffaella Gioia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Sebastiano Serrao
- Studio Italiano di Oftalmologia, Via Livenza 3, 00198, Rome, Italy
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Maria Roszkowska
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
- Ophthalmology Department, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University, Krakow, Poland
| | - Giuseppe Lombardo
- Vision Engineering Italy srl, Via Livenza 3, 00198, Rome, Italy
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | | | - Maria Chiara Medori
- MAGI's Lab srl, Via Maioliche 57, 38068, Rovereto, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and infectious diseases, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Annarita Vestri
- Department of Public Health and infectious diseases, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Rita Mencucci
- Ophthalmology Clinic, AOU Careggi, University of Florence, Largo Brambilla 3, 50134, Firenze, Italy
| | | |
Collapse
|
3
|
Katsimpris A, Baumeister SE, Baurecht H, Tatham AJ, Nolde M. Central corneal thickness and the risk of primary open-angle glaucoma: a Mendelian randomisation mediation analysis. Br J Ophthalmol 2024:bjo-2023-324996. [PMID: 39117358 DOI: 10.1136/bjo-2023-324996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/12/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The association of central corneal thickness (CCT) with primary open-angle glaucoma (POAG) remains uncertain. Although several observational studies assessing this relationship have reported an inverse association between CCT and POAG, this could be the result of collider bias. In this study, we leveraged human genetic data to assess through Mendelian randomisation (MR) the effect of CCT on POAG risk and whether this effect is mediated by intraocular pressure (IOP) changes. METHODS We used 24 single-nucleotide polymorphisms (SNPs) associated with CCT (p value<5×10-8) from a genome-wide association study (GWAS) (N=17 803) provided by the International Glaucoma Genetics Consortium and 53 SNPs associated with IOP (p value<5×10-8) from a GWAS of the UK Biobank (UKBB) (N=97 653). We related these instruments to POAG using a GWAS meta-analysis of 8283 POAG cases and 753 827 controls from UKBB and FinnGen. RESULTS MR analysis suggested a positive association between CCT and POAG (OR of POAG per 50 µm increase in CCT: 1.38; 95% CI: 1.18 to 1.61; p value<0.01). MR mediation analysis showed that 28.4% of the total effect of CCT on POAG risk was mediated through changes in IOP. The primary results were consistent with estimates of pleiotropy-robust MR methods. CONCLUSION Contrary to most observational studies, our results showed that a higher CCT is associated with an increased risk of POAG.
Collapse
Affiliation(s)
- Andreas Katsimpris
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Edinburgh, UK
| | | | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Andrew J Tatham
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Edinburgh, UK
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Akoto T, Hadvina R, Jones S, Cai J, Yu H, McCord H, Jin CXJ, Estes AJ, Gan L, Kuo A, Smith SB, Liu Y. Identification of Keratoconus-Related Phenotypes in Three Ppip5k2 Mouse Models. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38869368 PMCID: PMC11178121 DOI: 10.1167/iovs.65.6.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
Purpose It is necessary to establish a mouse model of keratoconus (KC) for research and therapy. We aimed to determine corneal phenotypes in 3 Ppip5k2 mouse models. Methods Central corneal thickness (CCT) was determined using spectral domain optical coherence tomography (SD-OCT) in Ppip5k2+/K^ (n = 41 eyes), Ppip5k2K^/K^ (n = 17 eyes) and 2 knock-in mice, Ppip5k2S419A/+ (n = 54 eyes) and Ppip5k2S419A/S419A (n = 18 eyes), and Ppip5k2D843S/+ (n = 42 eyes) and Ppip5k2D843S/D843S (n = 44 eyes) at 3 and 6 months. Pachymetry maps were generated using the Mouse Corneal Analysis Program (MCAP) to process OCT images. Slit lamp biomicroscopy was used to determine any corneal abnormalities, and, last, hematoxylin and eosin (H&E) staining using corneal sections from these animals was used to examine morphological changes. Results CCT significantly decreased from 3 to 6 months in the Ppip5k2+/K^ and Ppip5k2K^/K^ mice compared to their littermate controls. OCT-based pachymetry maps revealed abnormally localized thinning in all three models compared to their wild-type (WT) controls. Slit lamp examinations revealed corneal abnormalities in the form of bullous keratopathy, stromal edema, stromal scarring, deep corneal neovascularization, and opacities in the heterozygous/homozygous mice of the three models in comparison with their controls. Corneal histological abnormalities, such as epithelial thickening and stromal layer damage, were observed in the heterozygous/homozygous mice of the three models in comparison with the WT controls. Conclusions We have identified phenotypic and histological changes in the corneas of three mouse lines that could be relevant in the development of animal models of KC.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Rachel Hadvina
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Skyler Jones
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Hongfang Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Hayden McCord
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Charles X. J. Jin
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- James and Jean Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Lin Gan
- James and Jean Culver Vision Discovery Institute, Augusta, Georgia, United States
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anthony Kuo
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- James and Jean Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- James and Jean Culver Vision Discovery Institute, Augusta, Georgia, United States
| |
Collapse
|
5
|
Gorman BR, Francis M, Nealon CL, Halladay CW, Duro N, Markianos K, Genovese G, Hysi PG, Choquet H, Afshari NA, Li YJ, Gaziano JM, Hung AM, Wu WC, Greenberg PB, Pyarajan S, Lass JH, Peachey NS, Iyengar SK. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol 2024; 7:418. [PMID: 38582945 PMCID: PMC10998918 DOI: 10.1038/s42003-024-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Nalvi Duro
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Hospital Institute of Child Health, King's College London, London, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Natalie A Afshari
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI, USA
| | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lass
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
6
|
Seo JH, Lee Y. Causal Associations of Glaucoma and Age-Related Macular Degeneration with Cataract: A Bidirectional Two-Sample Mendelian Randomisation Study. Genes (Basel) 2024; 15:413. [PMID: 38674349 PMCID: PMC11049509 DOI: 10.3390/genes15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Common age-related eye disorders include glaucoma, cataract, and age-related macular degeneration (AMD); however, little is known about their relationship with age. This study investigated the potential causal relationship between glaucoma and AMD with cataract using genetic data from multi-ethnic populations. Single-nucleotide polymorphisms (SNPs) associated with exposure to cataract were selected as instrumental variables (IVs) from genome-wide association studies using meta-analysis data from BioBank Japan and UK Biobank. A bidirectional two-sample Mendelian randomisation (MR) study was conducted to assess the causal estimates using inverse variance weighted, MR-Egger, and MR pleiotropy residual sum and outlier tests. SNPs with (p < 5.0 × 10-8) were selected as IVs for cataract, primary open-angle glaucoma, and AMD. We found no causal effects of cataract on glaucoma or AMD (all p > 0.05). Furthermore, there were no causal effects of AMD on cataract (odds ratio [OR] = 1.02, p = 0.400). However, glaucoma had a substantial causal effect on cataract (OR = 1.14, p = 0.020). Our study found no evidence for a causal relationship of cataract on glaucoma or AMD and a casual effect of AMD on cataract. Nonetheless, glaucoma demonstrates a causal link with cataract formation, indicating the need for future investigations of age-related eye diseases.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Li J, Zhang BN, Jhanji V, Wang X, Li D, Du X. Parental Corneal Tomographic and Biomechanical Characteristics of Patients With Keratoconus. Am J Ophthalmol 2023; 256:146-155. [PMID: 37567431 DOI: 10.1016/j.ajo.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
PURPOSE To investigate the hereditability of corneal tomographic and biomechanical parameters in keratoconus (KC). DESIGN Prospective cohort study. METHODS This study was conducted at Qingdao Eye Hospital of Shandong First Medical University in Qingdao, China. Forty-four patients with KC and their biological parents (n = 88) were recruited as the study group. The control group consisted of 84 healthy adults with matched age and gender. Both eyes of each participant underwent clinical examinations, and 1 eye was selected for statistical analysis. Exclusion criteria were as follows: individuals with glaucoma, ocular surgery, systemic diseases known to affect the eyes, or poor cooperation during examination. Subjects were asked to discontinue soft contact lens (CL) wear for 2 weeks and rigid gas permeable CL wear for 4 weeks before ocular examination. All participants underwent a comprehensive assessment including Pentacam Scheimpflug tomography, Corvis ST, visual acuity, refraction examination, axial length, and slitlamp examination for both eyes. Individuals presenting with KC manifestations in at least 1 eye were classified as having KC. A total of 9 Pentacam indices including keratometry in the flat/steep meridian (K1/K2), maximal keratometry (Kmax), thinnest point pachymetry (TP), and maximum/average Ambrósio relational thickness (ARTmax/ARTave), anterior and posterior surfaces elevation of the cornea (Ef/Eb) and total deviation value (Final D), and 21 biomechanical indices were collected. Associations of these factors with KC were evaluated using multiple comparison and binary logistics regression analyses. RESULTS Two parents (2.27%) from 2 different families were diagnosed with KC. Parents of patients with KC had thinner corneas with altered corneal biomechanical parameters compared with healthy controls (P < .05). The combined tomographic and biomechanical index demonstrated the highest discriminatory power (area under the receiver operating characteristic curve 0.785) and strong specificity (84.5%). Parental corneal tomographic and biomechanical index, Corvis biomechanical index, and TP were identified as the major influential factors for KC in their offspring by logistic regression analysis, with a 73.3% accuracy in identifying offspring with KC. CONCLUSIONS Parental corneal tomographic and biomechanical properties of patients with KC suggest a possible predisposition to KC. A combination of tomography and corneal biomechanics can be helpful in predicting the incidence rate of KC in the offspring of patients with subclinical KC.
Collapse
Affiliation(s)
- Jie Li
- From Eye Institute of Shandong First Medical University (J.L., B.N.Z., X.W., D.L., X.D.), Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China; State Key Laboratory Cultivation Base (J.L., B.N.Z., X.W., D.L., X.D.), Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, Shandong, China; School of Ophthalmology (J.L., B.N.Z., X.W., D.L., X.D.), Shandong First Medical University, Qingdao, Shandong, China
| | - Bi Ning Zhang
- From Eye Institute of Shandong First Medical University (J.L., B.N.Z., X.W., D.L., X.D.), Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China; State Key Laboratory Cultivation Base (J.L., B.N.Z., X.W., D.L., X.D.), Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, Shandong, China; School of Ophthalmology (J.L., B.N.Z., X.W., D.L., X.D.), Shandong First Medical University, Qingdao, Shandong, China
| | - Vishal Jhanji
- Department of Ophthalmology (V.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaochuan Wang
- From Eye Institute of Shandong First Medical University (J.L., B.N.Z., X.W., D.L., X.D.), Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China; State Key Laboratory Cultivation Base (J.L., B.N.Z., X.W., D.L., X.D.), Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, Shandong, China; School of Ophthalmology (J.L., B.N.Z., X.W., D.L., X.D.), Shandong First Medical University, Qingdao, Shandong, China
| | - Dewei Li
- From Eye Institute of Shandong First Medical University (J.L., B.N.Z., X.W., D.L., X.D.), Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China; State Key Laboratory Cultivation Base (J.L., B.N.Z., X.W., D.L., X.D.), Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, Shandong, China; School of Ophthalmology (J.L., B.N.Z., X.W., D.L., X.D.), Shandong First Medical University, Qingdao, Shandong, China
| | - Xianli Du
- From Eye Institute of Shandong First Medical University (J.L., B.N.Z., X.W., D.L., X.D.), Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, China; State Key Laboratory Cultivation Base (J.L., B.N.Z., X.W., D.L., X.D.), Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, Shandong, China; School of Ophthalmology (J.L., B.N.Z., X.W., D.L., X.D.), Shandong First Medical University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Jiang X, Boutin T, Vitart V. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening. Front Genet 2023; 14:1171217. [PMID: 37621707 PMCID: PMC10445647 DOI: 10.3389/fgene.2023.1171217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background: Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. Methods: 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. Results and discussion: 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.
Collapse
Affiliation(s)
- Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genetics and Molecular Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Cousins HC, Cousins CC, Valluru G, Altman RB, Liu Y, Pasquale LR, Ahmad S. Genetic Correlations Among Corneal Biophysical Parameters and Anthropometric Traits. Transl Vis Sci Technol 2023; 12:8. [PMID: 37561511 PMCID: PMC10424803 DOI: 10.1167/tvst.12.8.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose The genetic architecture of corneal dysfunction remains poorly understood. Epidemiological and clinical evidence suggests a relationship between corneal structural features and anthropometric measures. We used global and local genetic similarity analysis to identify genomic features that may underlie structural corneal dysfunction. Methods We assembled genome-wide association study summary statistics for corneal features (central corneal thickness, corneal hysteresis [CH], corneal resistance factor [CRF], and the 3 mm index of keratometry) and anthropometric traits (body mass index, weight, and height) in Europeans. We calculated global genetic correlations (rg) between traits using linkage disequilibrium (LD) score regression and local genetic covariance using ρ-HESS, which partitions the genome and performs regression with LD regions. Finally, we identified genes located within regions of significant genetic covariance and analyzed patterns of tissue expression and pathway enrichment. Results Global LD score regression revealed significant negative correlations between height and both CH (rg = -0.12; P = 2.0 × 10-7) and CRF (rg = -0.11; P = 6.9 × 10-7). Local analysis revealed 68 genomic regions exhibiting significant local genetic covariance between CRF and height, containing 2874 unique genes. Pathway analysis of genes in regions with significant local rg revealed enrichment among signaling pathways with known keratoconus associations, including cadherin and Wnt signaling, as well as enrichment of genes modulated by copper and zinc ions. Conclusions Corneal biophysical parameters and height share a common genomic architecture, which may facilitate identification of disease-associated genes and therapies for corneal ectasias. Translational Relevance Local genetic covariance analysis enables the identification of associated genes and therapeutic targets for corneal ectatic disease.
Collapse
Affiliation(s)
- Henry C. Cousins
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Clara C. Cousins
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Girish Valluru
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russ B. Altman
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Louis R. Pasquale
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumayya Ahmad
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Peachey N, Gorman B, Francis M, Nealon C, Halladay C, Duro N, Markianos K, Genovese G, Hysi P, Choquet H, Afshari N, Li YJ, Gaziano JM, Hung A, Wu WC, Greenberg P, Pyarajan S, Lass J, Iyengar S. Multi-ancestry GWAS of Fuchs corneal dystrophy highlights roles of laminins, collagen, and endothelial cell regulation. RESEARCH SQUARE 2023:rs.3.rs-2762003. [PMID: 37205546 PMCID: PMC10187421 DOI: 10.21203/rs.3.rs-2762003/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular pathophysiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program (MVP) and meta-analyzed with the previous largest FECD GWAS, finding twelve significant loci (eight novel). We further confirmed the TCF4 locus in admixed African and Hispanic/Latino ancestries, and found an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and co-localization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California
| | | | | | | | | | | | | | - Saiju Pyarajan
- Center for Data and Computational Sciences, Veterans Affairs Boston Healthcare System
| | - Jonathan Lass
- Case Western Reserve University and University Hospitals Case Medical Center
| | | |
Collapse
|
12
|
Sharma R, Sharma A. Population stratification strategies in artificial intelligence-based glaucoma monitoring, "corneal anthropology" to bridge gap between genetics and clinics? Indian J Ophthalmol 2023; 71:2304-2306. [PMID: 37202987 PMCID: PMC10391406 DOI: 10.4103/ijo.ijo_3061_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Rajan Sharma
- Research Associate, Dr. Ashok Sharma's Cornea Centre, Chandigarh, India
| | - Ashok Sharma
- Senior Cornea Consultant and Medical Director, Dr. Ashok Sharma's Cornea Centre, Chandigarh, India
| |
Collapse
|
13
|
Causal Association between Iritis or Uveitis and Glaucoma: A Two-Sample Mendelian Randomisation Study. Genes (Basel) 2023; 14:genes14030642. [PMID: 36980914 PMCID: PMC10048342 DOI: 10.3390/genes14030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Recent studies have suggested an association between iritis or uveitis and glaucoma. This study investigated the causal relationship between glaucoma and iritis and uveitis as exposures in a multi-ethnic population. Single-nucleotide polymorphisms associated with exposures to iritis and uveitis from the genome-wide association study (GWAS) data of Biobank Japan (BBJ) and the meta-analysis data from BBJ and UK Biobank (UKB) were used as instrumental variables (IVs). The GWAS dataset for glaucoma was extracted from the meta-analysis data (n = 240,302) of Genetic Epidemiology Research in Adult Health and Aging and UKB. The casual estimates were assessed with a two-sample Mendelian randomisation (MR) test using the inverse-variance-weighted (IVW) method, weighted median method, MR–Egger method, and MR-Pleiotropy Residual Sum and Outlier test. The IVW method revealed a significant causal association between iritis and glaucoma using IVs (p < 5.0 × 10−8) from the East Asian population (n = 2) (odds ratio [OR] = 1.01, p = 0.017), a significant association between iritis exposures (p < 5.0 × 10−8) in the multi-ethnic population (n = 11) (OR = 1.04, p = 0.001), and a significant causal association between uveitis exposures (n = 10 with p < 5.0 × 10−8) and glaucoma in the multi-ethnic population (OR = 1.04, p = 0.001). Iritis and uveitis had causal effects on glaucoma risk based on IVs from the multi-ethnic population. These findings imply that the current classifications of uveitic glaucoma and open-angle glaucoma overlap, indicating the need for further investigating these complex relationships.
Collapse
|
14
|
Fowler S, Wang T, Munro D, Kumar A, Chitre AS, Hollingsworth TJ, Garcia Martinez A, St. Pierre CL, Bimschleger H, Gao J, Cheng R, Mohammadi P, Chen H, Palmer AA, Polesskaya O, Jablonski MM. Genome-wide association study finds multiple loci associated with intraocular pressure in HS rats. Front Genet 2023; 13:1029058. [PMID: 36793389 PMCID: PMC9922724 DOI: 10.3389/fgene.2022.1029058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Elevated intraocular pressure (IOP) is influenced by environmental and genetic factors. Increased IOP is a major risk factor for most types of glaucoma, including primary open angle glaucoma (POAG). Investigating the genetic basis of IOP may lead to a better understanding of the molecular mechanisms of POAG. The goal of this study was to identify genetic loci involved in regulating IOP using outbred heterogeneous stock (HS) rats. HS rats are a multigenerational outbred population derived from eight inbred strains that have been fully sequenced. This population is ideal for a genome-wide association study (GWAS) owing to the accumulated recombinations among well-defined haplotypes, the relatively high allele frequencies, the accessibility to a large collection of tissue samples, and the large allelic effect size compared to human studies. Both male and female HS rats (N = 1,812) were used in the study. Genotyping-by-sequencing was used to obtain ∼3.5 million single nucleotide polymorphisms (SNP) from each individual. SNP heritability for IOP in HS rats was 0.32, which agrees with other studies. We performed a GWAS for the IOP phenotype using a linear mixed model and used permutation to determine a genome-wide significance threshold. We identified three genome-wide significant loci for IOP on chromosomes 1, 5, and 16. Next, we sequenced the mRNA of 51 whole eye samples to find cis-eQTLs to aid in identification of candidate genes. We report 5 candidate genes within those loci: Tyr, Ctsc, Plekhf2, Ndufaf6 and Angpt2. Tyr, Ndufaf6 and Angpt2 genes have been previously implicated by human GWAS of IOP-related conditions. Ctsc and Plekhf2 genes represent novel findings that may provide new insight into the molecular basis of IOP. This study highlights the efficacy of HS rats for investigating the genetics of elevated IOP and identifying potential candidate genes for future functional testing.
Collapse
Affiliation(s)
- Samuel Fowler
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, California, United states
| | - Aman Kumar
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - T. J. Hollingsworth
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Celine L. St. Pierre
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, California, United states
- Scripps Research Translational Institute, Scripps Research, San Diego, California, United states
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
- Institute for Genomic Medicine, University of California, San Diego, San Diego, California, United states
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Monica M. Jablonski
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| |
Collapse
|
15
|
Jaskiewicz K, Maleszka-Kurpiel M, Michalski A, Ploski R, Rydzanicz M, Gajecka M. Non-allergic eye rubbing is a major behavioral risk factor for keratoconus. PLoS One 2023; 18:e0284454. [PMID: 37053215 PMCID: PMC10101517 DOI: 10.1371/journal.pone.0284454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Since the environmental, behavioral, and socioeconomic factors in the etiology of keratoconus (KTCN) remain poorly understood, we characterized them as features influencing KTCN phenotype, and especially affecting the corneal epithelium (CE). In this case-control study, 118 KTCN patients and 73 controls were clinically examined and the Questionnaire covering the aforementioned aspects was completed and then statistically elaborated. Selected KTCN-specific findings were correlated with the outcomes of the RNA-seq assessment of the CE samples. Male sex, eye rubbing, time of using a computer after work, and dust in the working environment, were the substantial KTCN risk factors identified in multivariate analysis, with ORs of 8.66, 7.36, 2.35, and 5.25, respectively. Analyses for genes whose expression in the CE was correlated with the eye rubbing manner showed the enrichment in apoptosis (TP53, BCL2L1), chaperon-related (TLN1, CTDSP2, SRPRA), unfolded protein response (NFYA, TLN1, CTDSP2, SRPRA), cell adhesion (TGFBI, PTPN1, PDPK1), and cellular stress (TFDP1, SRPRA, CAPZB) pathways. Genes whose expression was extrapolated to the allergy status didn't contribute to IgE-related or other inflammatory pathways. Presented findings support the hypothesis of chronic mechanical corneal trauma in KTCN. Eye-rubbing causes CE damage and triggers cellular stress which through its influence on cell apoptosis, migration, and adhesion affects the KTCN phenotype.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland
- Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Michalski
- Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Li J, Li C, Huang Y, Guan P, Huang D, Yu H, Yang X, Liu L. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. J Transl Med 2022; 20:621. [PMID: 36572895 PMCID: PMC9793675 DOI: 10.1186/s12967-022-03822-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Ophthalmic epidemiology is concerned with the prevalence, distribution and other factors relating to human eye disease. While observational studies cannot avoid confounding factors from interventions, human eye composition and structure are unique, thus, eye disease pathogenesis, which greatly impairs quality of life and visual health, remains to be fully explored. Notwithstanding, inheritance has had a vital role in ophthalmic disease. Mendelian randomization (MR) is an emerging method that uses genetic variations as instrumental variables (IVs) to avoid confounders and reverse causality issues; it reveals causal relationships between exposure and a range of eyes disorders. Thus far, many MR studies have identified potentially causal associations between lifestyles or biological exposures and eye diseases, thus providing opportunities for further mechanistic research, and interventional development. However, MR results/data must be interpreted based on comprehensive evidence, whereas MR applications in ophthalmic epidemiology have some limitations worth exploring. Here, we review key principles, assumptions and MR methods, summarise contemporary evidence from MR studies on eye disease and provide new ideas uncovering aetiology in ophthalmology.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Cong Li
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Yu Huang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China ,grid.413405.70000 0004 1808 0686Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peng Guan
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Desheng Huang
- grid.412449.e0000 0000 9678 1884Department of Mathematics, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning China
| | - Honghua Yu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Xiaohong Yang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Lei Liu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| |
Collapse
|
17
|
Khawaja AP, Jansonius NM. Potential for Collider Bias in Studies Examining the Association of Central Corneal Thickness With Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 36322067 PMCID: PMC9639680 DOI: 10.1167/iovs.63.12.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose Central corneal thickness (CCT) may be biologically related to glaucoma or observed as associated with glaucoma simply due to its effect on intraocular pressure (IOP) measurement. We aimed to determine if the previously reported CCT-glaucoma associations, in which the analyses were adjusted for IOP or participants were selected on IOP, could be explained by collider bias. Methods We simulated datasets mimicking a longitudinal population-based study (Los Angeles Latino Eye Study) and a trial (Ocular Hypertension Treatment Study) such that: (i) CCT was not truly associated with glaucoma, (ii) CCT and true IOP both contribute to measured IOP, and (iii) true IOP contributes to glaucoma risk. We then tested whether an association between CCT and glaucoma could be spuriously induced simply by adjusting for or selecting on measured IOP. Results A thinner CCT was significantly associated with higher glaucoma incidence in the simulated longitudinal population-based study when adjusted for measured IOP, but not crudely (unadjusted). A thinner CCT was crudely associated with glaucoma incidence in the simulated trial in which the participants were selected for high measured IOP. Effect sizes in the simulations were similar to those observed in the original studies. Conclusions Our findings question whether CCT is biologically associated with glaucoma and suggest that current evidence may be due to collider bias. This indicates that CCT alone cannot be used as a factor to identify people at high risk of glaucoma in the general population. Using CCT in combination with IOP may be superior to using IOP alone.
Collapse
Affiliation(s)
- Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
ANGPTL7, a therapeutic target for increased intraocular pressure and glaucoma. Commun Biol 2022; 5:1051. [PMID: 36192519 PMCID: PMC9529959 DOI: 10.1038/s42003-022-03932-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk. We report the identification and functional characterization of rare coding variants (including loss-of-function variants) in ANGPTL7 associated with reduction in IOP and glaucoma protection. We validated the human genetics findings in mice by establishing that Angptl7 knockout mice have lower (~2 mmHg) basal IOP compared to wild-type, with a trend towards lower IOP also in heterozygotes. Conversely, increasing murine Angptl7 levels via injection into mouse eyes increases the IOP. We also show that acute Angptl7 silencing in adult mice lowers the IOP (~2-4 mmHg), reproducing the observations in knockout mice. Collectively, our data suggest that ANGPTL7 is important for IOP homeostasis and is amenable to therapeutic modulation to help maintain a healthy IOP that can prevent onset or slow the progression of glaucoma.
Collapse
|
19
|
Swierkowska J, Karolak JA, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Decreased Levels of DNA Methylation in the PCDHA Gene Cluster as a Risk Factor for Early-Onset High Myopia in Young Children. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 36036911 PMCID: PMC9434983 DOI: 10.1167/iovs.63.9.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose High myopia (HM), an eye disorder with at least –6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels. Methods The DNA methylation pattern was studied based on the genome-wide methylation data of 18 Polish children with HM paired with 18 controls. Genes overlapping CG dinucleotides with decreased methylation level in HM cases were assessed by enrichment analyses. From those, genes with CG dinucleotides in promoter regions were further evaluated based on exome sequencing (ES) data of 16 patients with HM from unrelated Polish families, Sanger sequencing data of the studied children, and the RNA sequencing data of human retinal ARPE-19 cells. Results The CG dinucleotide with the most decreased methylation level in cases was identified in a promoter region of PCDHA10 that overlaps intronic regions of PCDHA1–9 of the PCDHA gene cluster in myopia 5q31 locus. Also, two single nucleotide variants, rs200661444, detected in our ES, and rs246073, previously found as associated with a refractive error in a genome-wide association study, were revealed within this gene cluster. Additionally, genes previously linked to ocular phenotypes, myopia-related traits, or loci, including ADAM20, ZFAND6, ETS1, ABHD13, SBSPON, SORBS2, LMOD3, ATXN1, and FARP2, were found to have decreased methylation. Conclusions Alterations in the methylation pattern of specific CG dinucleotides may be associated with early-onset HM, so this could be used to develop noninvasive biomarkers of HM in children and adolescents.
Collapse
Affiliation(s)
| | - Justyna A Karolak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
21
|
He W, Han X, Ong JS, Hewitt AW, Mackey DA, Gharahkhani P, MacGregor S. Association of Novel Loci With Keratoconus Susceptibility in a Multitrait Genome-Wide Association Study of the UK Biobank Database and Canadian Longitudinal Study on Aging. JAMA Ophthalmol 2022; 140:568-576. [PMID: 35446358 PMCID: PMC9026225 DOI: 10.1001/jamaophthalmol.2022.0891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Keratoconus can be a debilitating corneal ectasia in which the cornea thins, bulges, and steepens into a conical shape. Early features of keratoconus include myopia and irregular astigmatism, which affect vision and can be treated with contact lenses, collagen cross-linking, or, in advanced cases, corneal transplant. Recent estimates of the prevalence of keratoconus based on results of Scheimpflug imaging in young adults are as high as 1.2%. However, obtaining very large keratoconus data sets for a genome-wide association study (GWAS) is problematic because few population studies include Scheimpflug imaging and because severe keratoconus is relatively rare. Objective To identify novel keratoconus loci using corneal resistance factor (CRF) and central corneal thickness (CCT). Design, Setting, and Participants This multitrait GWAS used European ancestry CRF data from UK Biobank (UKB) (n = 105 427) and the Canadian Longitudinal Study on Aging (CLSA) (n = 18 307) and European ancestry CCT data from the International Glaucoma Genetics Consortium (IGGC) (n = 17 803). The CRF and CCT variants in published keratoconus data sets (4669 cases and 116 547 controls) were compared. The data set from UKB was compiled March 24, 2020; data were released from the CLSA in July 2020; and IGGC data were available from May 1, 2018. Main Outcomes and Measures Association of CRF and CCT variants with keratoconus risk. Results The GWAS included 4 cohorts: 105 427 UKB European ancestry (56 134 women [53.2%] and 49 293 men [46.7%]; mean [SD] age, 57 [8] years), 5029 UKB South Asian ancestry (2368 women [47.1%] and 2661 men [52.9%]; mean [SD] age, 54 [8] years), 902 UKB East Asian ancestry (622 women [68.9%] and 280 men [31.0%]; mean [SD] age, 53 [8] years), and 18 307 CLSA European ancestry (9260 women [50.6%] and 9047 men [49.4%]; mean [SD] age, 63 [10] years) participants. A total of 369 CRF and 233 CCT loci were identified, including 36 novel CRF loci and 114 novel CCT loci. Twenty-nine CRF loci and 24 CCT loci were associated with keratoconus. Polygenic risk scores (PRS) were constructed using CRF- and CCT-associated variants and published keratoconus variants. The PRS result showed that adding a CRF- or CCT-based PRS to the keratoconus PRS from previously published variants improved the prediction area under the receiver operating characteristic curve (from 0.705 to 0.756 for CRF and from 0.715 to 0.755 for CCT). Conclusions and Relevance These findings support the use of multitrait modeling of corneal parameters in a relatively large data set to identify new keratoconus risk loci and enhance polygenic risk score models.
Collapse
Affiliation(s)
- Weixiong He
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
22
|
Novel Mutations Identified in the Chinese Han Population with Keratoconus by Next-Generation Sequencing. J Ophthalmol 2022; 2022:9991910. [PMID: 35186329 PMCID: PMC8853779 DOI: 10.1155/2022/9991910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Aim. To identify novel mutations in keratoconus (KC) susceptibility genes in the Chinese Han population. Methods. A total of fifty-two patients with primary KC were recruited. Blood samples were collected, and genomic DNA was isolated from peripheral blood leukocytes. The entire coding region, intron-exon junctions, and promoter regions of sixteen known KC susceptibility genes were screened with next-generation sequencing technology. All identified variants were further confirmed using the Sanger sequencing technology. The Sorting Intolerant from Tolerant (SIFT), MutationTaster, and PolyPhen 2 programs were used to predict the effect of amino acid substitution on protein. Results. After removing twelve known SNPs (single nucleotide polymorphisms) and three variants predicted to be harmless, nine novel mutations were identified in eight of the fifty-two patients, including c.455C > T:p.P152L in FNDC3B; c.3636_3637del:p.R1212fs in COL4A4; c.5015G > T:p.R1672L, c.3798dupA:p.P1267fs, and c.28G > A:p.A10T in MPDZ; c.1940C > T:p.P647L in DOCK9; c.127_128insGGC:p.Q43delinsRQ in POLG; c.3019G > A:p.V1007I in IPO5; and c.624 + 7− > A in TGFBI. All nine mutations in the patients with KC were heterozygote. Conclusion. This study enlarged the gene profile of KC and should be further confirmed by well-powered, genome-wide association studies (GWAS) of Han Chinese patients.
Collapse
|
23
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
24
|
Yang Z, Yang J, Liu D, Yu W. Mendelian randomization analysis identified genes pleiotropically associated with central corneal thickness. BMC Genomics 2021; 22:517. [PMID: 34233613 PMCID: PMC8263012 DOI: 10.1186/s12864-021-07860-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To prioritize genes that were pleiotropically or potentially causally associated with central corneal thickness (CCT). METHODS We applied the summary data-based Mendelian randomization (SMR) method integrating summarized data of genome-wide association study (GWAS) on CCT and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with CCT. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analyses were done for participants of European and East Asian ancestries, separately. RESULTS We identified multiple genes showing pleiotropic association with CCT in the participants of European ancestry. CLIC3 (ILMN_1796423; PSMR = 4.15 × 10- 12), PTGDS (ILMN_1664464; PSMR = 6.88 × 10- 9) and C9orf142 (ILMN_1761138; PSMR = 8.09 × 10- 9) were the top three genes using the CAGE eQTL data, and RP11-458F8.4 (ENSG00000273142.1; PSMR = 5.89 × 10- 9), LCNL1 (ENSG00000214402.6; PSMR = 5.67 × 10- 8), and PTGDS (ENSG00000107317.7; PSMR = 1.92 × 10- 7) were the top three genes using the GTEx eQTL data. No genes showed significantly pleiotropic association with CCT in the participants of East Asian ancestry after correction for multiple testing. CONCLUSION We identified several genes pleiotropically associated with CCT, some of which represented novel genes influencing CCT. Our findings provided important leads to a better understanding of the genetic factors influencing CCT, and revealed potential therapeutic targets for the treatment of primary open-angle glaucoma and keratoconus.
Collapse
Affiliation(s)
- Zhikun Yang
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Hardcastle AJ, Liskova P, Bykhovskaya Y, McComish BJ, Davidson AE, Inglehearn CF, Li X, Choquet H, Habeeb M, Lucas SEM, Sahebjada S, Pontikos N, Lopez KER, Khawaja AP, Ali M, Dudakova L, Skalicka P, Van Dooren BTH, Geerards AJM, Haudum CW, Faro VL, Tenen A, Simcoe MJ, Patasova K, Yarrand D, Yin J, Siddiqui S, Rice A, Farraj LA, Chen YDI, Rahi JS, Krauss RM, Theusch E, Charlesworth JC, Szczotka-Flynn L, Toomes C, Meester-Smoor MA, Richardson AJ, Mitchell PA, Taylor KD, Melles RB, Aldave AJ, Mills RA, Cao K, Chan E, Daniell MD, Wang JJ, Rotter JI, Hewitt AW, MacGregor S, Klaver CCW, Ramdas WD, Craig JE, Iyengar SK, O'Brart D, Jorgenson E, Baird PN, Rabinowitz YS, Burdon KP, Hammond CJ, Tuft SJ, Hysi PG. A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Commun Biol 2021; 4:266. [PMID: 33649486 PMCID: PMC7921564 DOI: 10.1038/s42003-021-01784-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease.
Collapse
Affiliation(s)
- Alison J Hardcastle
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK.
| | - Petra Liskova
- UCL Institute of Ophthalmology, London, UK
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yelena Bykhovskaya
- The Cornea Eye Institute, Beverly Hills, CA, USA
- Department of Surgery and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bennet J McComish
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mahmoud Habeeb
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Sionne E M Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Srujana Sahebjada
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | | | | | - Anthony P Khawaja
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart T H Van Dooren
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Amphia Hospital, Breda, The Netherlands
| | | | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Valeria Lo Faro
- Department of Ophthalmology, University Medical Center Groningen (UMCG), Groningen, the Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Abi Tenen
- Vision Eye Institute, Melbourne, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
- Melbourne Stem Cell Centre, Melbourne, VIC, 3800, Australia
| | - Mark J Simcoe
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Darioush Yarrand
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Salina Siddiqui
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Ophthalmology, St James's University Hospital, Leeds, UK
| | - Aine Rice
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Layal Abi Farraj
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jugnoo S Rahi
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | | | | | - Jac C Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Andrea J Richardson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Paul A Mitchell
- Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald B Melles
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Anthony J Aldave
- The Jules Stein Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Ke Cao
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Elsie Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Mark D Daniell
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Jie Jin Wang
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Vision Eye Institute, Melbourne, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
- Melbourne Stem Cell Centre, Melbourne, VIC, 3800, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Jamie E Craig
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Sudha K Iyengar
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH, USA
| | - David O'Brart
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- St Thomas Hospital, Guy's and St. Thomas NHS Trust, London, London, UK
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Paul N Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Yaron S Rabinowitz
- The Cornea Eye Institute, Beverly Hills, CA, USA
- Department of Surgery and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Chris J Hammond
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- St Thomas Hospital, Guy's and St. Thomas NHS Trust, London, London, UK
| | - Stephen J Tuft
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK.
| | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK.
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK.
| |
Collapse
|
26
|
Veerappa AM. Cascade of interactions between candidate genes reveals convergent mechanisms in keratoconus disease pathogenesis. Ophthalmic Genet 2021; 42:114-131. [PMID: 33554698 DOI: 10.1080/13816810.2020.1868013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Keratoconus is a progressive thinning, steepening and distortion of the cornea which can lead to loss of vision if left untreated. Keratoconus has a complex multifactorial etiology, with genetic and environmental components contributing to the disease pathophysiology. Studies have observed high concordance between monozygotic twins, discordance between dizygotic twins, and high familial segregation indicating the presence of a very strong genetic component in the pathogenesis of keratoconus. The use of genome-wide linkage studies on families and twins, genome-wide association studies (GWAS) on case-controls, next-generation sequencing (NGS)-based genomic screens on both familial and non-familial cohorts have led to the identification of keratoconus candidate genes with much greater success and increased resproducibility of genetic findings. This review focuses on candidate genes identified till date and attempts to understand their role in biological processes underlying keratoconus pathogenesis. In addition, using these genes I propose molecular pathways that could contribute to keratoconus pathogenesis. The pathways identified the presence of direct cross-talk between known candidate genes of keratoconus and remarkably, 28 known candidate genes have a direct relationship among themselves that involves direct protein-protein binding, regulatory activities such as activation and inhibition, chaperone, transcriptional activation/co-activation, and enzyme catalysis. This review attempts to describe these relationships and cross-talks in the context of keratoconus pathogenesis.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Department of Ophthalmology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Bykhovskaya Y, Rabinowitz YS. Update on the genetics of keratoconus. Exp Eye Res 2020; 202:108398. [PMID: 33316263 DOI: 10.1016/j.exer.2020.108398] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
In the past few years we have seen a great acceleration of discoveries in the field of keratoconus including new treatments, diagnostic tools, genomic and molecular determinants of disease risk. Recent genome-wide association studies (GWAS) of keratoconus cases and population wide studies of variation in central corneal thickness and in corneal biomechanical properties confirmed already identified genes and found many new susceptibility variants and biological pathways. Recent findings in genetic determinants of familial keratoconus revealed functionally important variants and established first mouse model of keratoconus. Latest transcriptomic and expression studies started assessing novel non-coding RNA targets in addition to identifying tissue specific effects of coding genes. First genomic insights into better prediction of treatment outcomes are bringing the advent of genomic medicine into keratoconus clinical practice.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Cornea Genetic Eye Institute, Department of Surgery and Board of the Governors Regenerative Medicine Institute, Beverly Hills, Cedars-Sinai, Los Angeles, CA, United States.
| | - Yaron S Rabinowitz
- Cornea Genetic Eye Institute, Department of Surgery and Board of the Governors Regenerative Medicine Institute, Beverly Hills, Cedars-Sinai, Los Angeles, CA, United States
| |
Collapse
|
28
|
Jiang X, Dellepiane N, Pairo-Castineira E, Boutin T, Kumar Y, Bickmore WA, Vitart V. Fine-mapping and cell-specific enrichment at corneal resistance factor loci prioritize candidate causal regulatory variants. Commun Biol 2020; 3:762. [PMID: 33311554 PMCID: PMC7732848 DOI: 10.1038/s42003-020-01497-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Corneal resistance factor (CRF) is altered during corneal diseases progression. Genome-wide-association studies (GWAS) indicated potential CRF and disease genetics overlap. Here, we characterise 135 CRF loci following GWAS in 76029 UK Biobank participants. Enrichment of extra-cellular matrix gene-sets, genetic correlation with corneal thickness (70% (SE = 5%)), reported keratoconus risk variants at 13 loci, all support relevance to corneal stroma biology. Fine-mapping identifies a subset of 55 highly likely causal variants, 91% of which are non-coding. Genomic features enrichments, using all associated variants, also indicate prominent regulatory causal role. We newly established open chromatin landscapes in two widely-used human cornea immortalised cell lines using ATAC-seq. Variants associated with CRF were significantly enriched in regulatory regions from the corneal stroma-derived cell line and enrichment increases to over 5 fold for variants prioritised by fine-mapping-including at GAS7, SMAD3 and COL6A1 loci. Our analysis generates many hypotheses for future functional validation of aetiological mechanisms.
Collapse
Affiliation(s)
- Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Nefeli Dellepiane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Erola Pairo-Castineira
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH42XU, UK.
| |
Collapse
|