1
|
Hinton AO, Vue Z, Scudese E, Neikirk K, Kirabo A, Montano M. Mitochondrial heterogeneity and crosstalk in aging: Time for a paradigm shift? Aging Cell 2024; 23:e14296. [PMID: 39188058 PMCID: PMC11464123 DOI: 10.1111/acel.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
The hallmarks of aging have been influential in guiding the biology of aging research, with more recent and growing recognition of the interdependence of these hallmarks on age-related health outcomes. However, a current challenge is personalizing aging trajectories to promote healthy aging, given the diversity of genotypes and lived experience. We suggest that incorporating heterogeneity-including intrinsic (e.g., genetic and structural) and extrinsic (e.g., environmental and exposome) factors and their interdependence of hallmarks-may move the dial. This editorial perspective will focus on one hallmark, namely mitochondrial dysfunction, to exemplify how consideration of heterogeneity and interdependence or crosstalk may reveal new perspectives and opportunities for personalizing aging research. To this end, we highlight heterogeneity within mitochondria as a model.
Collapse
Affiliation(s)
- Antentor O. Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Estevão Scudese
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Immunology and InflammationVanderbilt Institute for InfectionNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Monty Montano
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. The interplay of maternal and offspring obesogenic diets: the impact on offspring metabolism and muscle mitochondria in an outbred mouse model. Front Physiol 2024; 15:1354327. [PMID: 38585221 PMCID: PMC10995298 DOI: 10.3389/fphys.2024.1354327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C » C and C » OB) and OB-born offspring fed C or OB diets (OB » C and OB » OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.
Collapse
Affiliation(s)
- Inne Xhonneux
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ben Meulders
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Silke Andries
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Jiang M, Wang L, Sheng H. Mitochondria in depression: The dysfunction of mitochondrial energy metabolism and quality control systems. CNS Neurosci Ther 2024; 30:e14576. [PMID: 38334212 PMCID: PMC10853899 DOI: 10.1111/cns.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Depression is the most disabling neuropsychiatric disorder, causing difficulties in daily life activities and social interactions. The exact mechanisms of depression remain largely unclear. However, some studies have shown that mitochondrial dysfunction would play a crucial role in the occurrence and development of depression. AIMS To summarize the known knowledge about the role of mitochondrial dysfunction in the pathogenesis of depression. METHODS We review the recent literature, including 105 articles, to summarize the mitochondrial energy metabolism and quality control systems in the occurrence and development of depression. Some antidepressants which may exert their effects by improving mitochondrial function are also discussed. RESULTS Impaired brain energy metabolism and (or) damaged mitochondrial quality control systems have been reported not only in depression patients but in animal models of depression. Although the classical antidepressants have not been specially designed to target mitochondria, the evidence suggests that many antidepressants may exert their effects by improving mitochondrial function. CONCLUSIONS This brief review focuses on the findings that implicate mitochondrial dysfunction and the quality control systems as important etiological factors in the context of depressive disorders. It will help us to understand the various concepts of mitochondrial dysfunction in the pathogenesis of depression, and to explore novel and more targeted therapeutic approaches for depression.
Collapse
Affiliation(s)
- Mengruo Jiang
- College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Liyuan Wang
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Hui Sheng
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Rodriguez-Zas SL, Southey NL, Rund L, Antonson AM, Nowak RA, Johnson RW. Prenatal and postnatal challenges affect the hypothalamic molecular pathways that regulate hormonal levels. PLoS One 2023; 18:e0292952. [PMID: 37851674 PMCID: PMC10584192 DOI: 10.1371/journal.pone.0292952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing. Significant differential expression (FDR-adjusted p value < 0.05) was detected in the profile of 222 genes. Genes involved in the Gene Ontology biological process of regulation of hormone levels tended to be over-expressed in individuals exposed to both challenges relative to individuals exposed to either one challenge, and most of these genes were over-expressed in MIA females relative to males across nursing levels. Differentially expressed genes included Fshb, Ttr, Agrp, Gata3, Foxa2, Tfap2b, Gh1, En2, Cga, Msx1, and Npy. The study also found that prenatal and postnatal challenges, as well as sex, impacted the regulation of neurotransmitter activity and immune effector processes in the hypothalamus. In particular, the olfactory transduction pathway genes were over-expressed in weaned MIA males, and several transcription factors were potentially found to target the differentially expressed genes. Overall, these results highlight how multiple environmental challenges can interact and affect the molecular mechanisms of the hypothalamus, including hormonal, immune response, and neurotransmitter processes.
Collapse
Affiliation(s)
- Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicole L. Southey
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
6
|
Collender P, Bozack AK, Veazie S, Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, Riddell C, Eskenazi B, Holland N, Deardorff J, Cardenas A. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin Epigenetics 2023; 15:162. [PMID: 37845746 PMCID: PMC10577922 DOI: 10.1186/s13148-023-01581-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Šidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.
Collapse
Affiliation(s)
- Phillip Collender
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA
| | - Stephanie Veazie
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lars Van Der Laan
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Kogut
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Corinne Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Rosenbaum S, Kuzawa CW. The promise of great apes as model organisms for understanding the downstream consequences of early life experiences. Neurosci Biobehav Rev 2023; 152:105240. [PMID: 37211151 DOI: 10.1016/j.neubiorev.2023.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Early life experiences have a significant influence on adult health and aging processes in humans. Despite widespread interest in the evolutionary roots of this phenomenon, very little research on this topic has been conducted in humans' closest living relatives, the great apes. The longitudinal data sets that are now available on wild and captive great ape populations hold great promise to clarify the nature, evolutionary function, and mechanisms underlying these connections in species which share key human life history characteristics. Here, we explain features of great ape life history and socioecologies that make them of particular interest for this topic, as well as those that may limit their utility as comparative models; outline the ways in which available data are complementary to and extend the kinds of data that are available for humans; and review what is currently known about the connections among early life experiences, social behavior, and adult physiology and biological fitness in our closest living relatives. We conclude by highlighting key next steps for this emerging area of research.
Collapse
Affiliation(s)
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| |
Collapse
|
8
|
Chen KJ, Yoshimura R, Edmundo CA, Truong TM, Civelli O, Alachkar A, Abbott GW. Behavioral and neuro-functional consequences of eliminating the KCNQ3 GABA binding site in mice. Front Mol Neurosci 2023; 16:1192628. [PMID: 37305551 PMCID: PMC10248464 DOI: 10.3389/fnmol.2023.1192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Voltage-gated potassium (Kv) channels formed by α subunits KCNQ2-5 are important in regulating neuronal excitability. We previously found that GABA directly binds to and activates channels containing KCNQ3, challenging the traditional understanding of inhibitory neurotransmission. To investigate the functional significance and behavioral role of this direct interaction, mice with a mutated KCNQ3 GABA binding site (Kcnq3-W266L) were generated and subjected to behavioral studies. Kcnq3-W266L mice exhibited distinctive behavioral phenotypes, of which reduced nociceptive and stress responses were profound and sex-specific. In female Kcnq3-W266L mice, the phenotype was shifted towards more nociceptive effects, while in male Kcnq3-W266L mice, it was shifted towards the stress response. In addition, female Kcnq3-W266L mice exhibited lower motor activity and reduced working spatial memory. The neuronal activity in the lateral habenula and visual cortex was altered in the female Kcnq3-W266L mice, suggesting that GABAergic activation of KCNQ3 in these regions may play a role in the regulation of the responses. Given the known overlap between the nociceptive and stress brain circuits, our data provide new insights into a sex-dependent role of KCNQ3 in regulating neural circuits involved in nociception and stress, via its GABA binding site. These findings identify new targets for effective treatments for neurological and psychiatric conditions such as pain and anxiety.
Collapse
Affiliation(s)
- Kiki J. Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ryan Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Clarissa Adriana Edmundo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Tri Minh Truong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, United States
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Alhassen W, Alhassen S, Chen J, Monfared RV, Alachkar A. Cilia in the Striatum Mediate Timing-Dependent Functions. Mol Neurobiol 2023; 60:545-565. [PMID: 36322337 PMCID: PMC9849326 DOI: 10.1007/s12035-022-03095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environmental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor response. To understand cilia's role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia in the acquisition and brief storage of information, including learning new motor skills, but not in long-term consolidation of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the "time perception/judgment deficit." Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifestations overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric disorders, as related to deficits in timing perception.
Collapse
Affiliation(s)
- Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Jiaqi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA ,UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697 USA ,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
10
|
Uccellini O, Benlodi A, Caroppo E, Cena L, Esposito G, Fernandez I, Ghazanfar M, Imbasciati A, Longo F, Mazza M, Marano G, Nacinovich R, Pignatto A, Rolnick A, Trivelli M, Spada E, Vanzini C. 1000 Days: The "WeCare Generation" Program-The Ultimate Model for Improving Human Mental Health and Economics: The Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16741. [PMID: 36554625 PMCID: PMC9779238 DOI: 10.3390/ijerph192416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The COVID-19 pandemic stressed the necessity of a new resilience of the human population and health system. The "WeCare Generation" program is a new proposal of territorial intervention, with a new paradigm, on the diseases of the human body and mind. BACKGROUND In recent decades, the independent strands of investigation on brain plasticity and early trauma consequences have demonstrated that traumatic experiences in the period from pregnancy to the age of 3 years have an enormous impact on an individual's future development, and both physical and mental health. Research shows that adverse child experiences (ACEs) are associated with a strong risk of conditions such as: harmful alcohol use, smoking, illicit drug use, high body-mass index, depression, anxiety, interpersonal violence, cancer, type 2 diabetes, cardiovascular diseases, stroke respiratory diseases and, as a consequence, to a high financial cost in Italy and also across Europe (1-9% GDP) and the USA (total annual costs estimated to be USD 581 billion in Europe and USD 748 billion in North America). All this suggests that an early intervention on that traumatized-slice of population leads to multiplied savings. METHODS A multi-center, randomized, controlled trial was designed. The parents of the future neonatal population (from pregnancy to delivery) with trauma will be enrolled, and randomized to treatment, or control arm. The article describes in detail how the primary outpoint (cost to the national health system), and some secondary outpoints, will be collected. DISCUSSION An overall rate of return on investment (ROI) statistically significant 13.0% per annum with an associated benefit/cost ratio (BCR) of 6.3 is expected as the primary outcome of the "WeCare Generation" program. Our proposed model predicts a new medical paradigm aiming to empower new generations, with a strong return on economy and health.
Collapse
Affiliation(s)
| | - Andrea Benlodi
- Clinical Psychology Unit Carlo Poma Hospital, ASST Mantova, 46100 Mantua, Italy
| | - Emanuele Caroppo
- Department of Mental Health, Local Health Authority Roma 2, 00159 Rome, Italy
| | - Loredana Cena
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38122 Trent, Italy
| | | | - Maria Ghazanfar
- Maternal and Child Department, ASST Brianza, 20871 Vimercate, Italy
| | - Antonio Imbasciati
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Francesco Longo
- Cergas Center for Research on Health and Social Care Management, SDA Bocconi University, 20136 Milan, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Renata Nacinovich
- Child and Adolescent Neuropsichiatry, ASST Monza, NeuroMI—Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
| | - Antonio Pignatto
- Department of Psychology, IUSTO—Salesian University Institute Torino Rebaudengo, 10155 Turin, Italy
| | - Arthur Rolnick
- Department of Economics, Humphrey School of Public Affairs, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Trivelli
- General and Economic Direction, ASST Brianza, 20871 Vimercate, Italy
| | | | - Cinzia Vanzini
- Training Sector Management, ASST Brianza, 20871 Vimercate, Italy
| |
Collapse
|
11
|
Samad M, Agostinelli F, Sato T, Shimaji K, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res 2022; 50:W183-W190. [PMID: 35657089 PMCID: PMC9252794 DOI: 10.1093/nar/gkac419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Circadian rhythms are a foundational aspect of biology. These rhythms are found at the molecular level in every cell of every living organism and they play a fundamental role in homeostasis and a variety of physiological processes. As a result, biomedical research of circadian rhythms continues to expand at a rapid pace. To support this research, CircadiOmics (http://circadiomics.igb.uci.edu/) is the largest annotated repository and analytic web server for high-throughput omic (e.g. transcriptomic, metabolomic, proteomic) circadian time series experimental data. CircadiOmics contains over 290 experiments and over 100 million individual measurements, across >20 unique tissues/organs, and 11 different species. Users are able to visualize and mine these datasets by deriving and comparing periodicity statistics for oscillating molecular species including: period, amplitude, phase, P-value and q-value. These statistics are obtained from BIO_CYCLE and JTK_CYCLE and are intuitively aggregated and displayed for comparison. CircadiOmics is the most up-to-date and cutting-edge web portal for searching and analyzing circadian omic data and is used by researchers around the world.
Collapse
Affiliation(s)
- Muntaha Samad
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| | - Forest Agostinelli
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| |
Collapse
|
12
|
Katrinli S, Maihofer AX, Wani AH, Pfeiffer JR, Ketema E, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Kessler RC, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Logue MW, Nievergelt CM, Smith AK, Uddin M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol Psychiatry 2022; 27:1720-1728. [PMID: 34992238 PMCID: PMC9106882 DOI: 10.1038/s41380-021-01398-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Epigenetic factors modify the effects of environmental factors on biological outcomes. Identification of epigenetic changes that associate with PTSD is therefore a crucial step in deciphering mechanisms of risk and resilience. In this study, our goal is to identify epigenetic signatures associated with PTSD symptom severity (PTSS) and changes in PTSS over time, using whole blood DNA methylation (DNAm) data (MethylationEPIC BeadChip) of military personnel prior to and following combat deployment. A total of 429 subjects (858 samples across 2 time points) from three male military cohorts were included in the analyses. We conducted two different meta-analyses to answer two different scientific questions: one to identify a DNAm profile of PTSS using a random effects model including both time points for each subject, and the other to identify a DNAm profile of change in PTSS conditioned on pre-deployment DNAm. Four CpGs near four genes (F2R, CNPY2, BAIAP2L1, and TBXAS1) and 88 differentially methylated regions (DMRs) were associated with PTSS. Change in PTSS after deployment was associated with 15 DMRs, of those 2 DMRs near OTUD5 and ELF4 were also associated with PTSS. Notably, three PTSS-associated CpGs near F2R, BAIAP2L1 and TBXAS1 also showed nominal evidence of association with change in PTSS. This study, which identifies PTSD-associated changes in genes involved in oxidative stress and immune system, provides novel evidence that epigenetic differences are associated with PTSS.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, The Netherlands
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Eric Vermetten
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, ZA, Leiden, The Netherlands
- Research Center, Netherlands Defense Department, UT, AA Utrecht, The Netherlands
- Arq Psychotrauma Expert Group, XE, Diemen, The Netherlands
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|