1
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
2
|
V U P, T I M, K K M. An integrative analysis to identify pancancer epigenetic biomarkers. Comput Biol Chem 2024; 113:108260. [PMID: 39467487 DOI: 10.1016/j.compbiolchem.2024.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Integrating and analyzing the pancancer data collected from different experiments is crucial for gaining insights into the common mechanisms in the molecular level underlying the development and progression of cancers. Epigenetic study of the pancancer data can provide promising results in biomarker discovery. The genes that are epigenetically dysregulated in different cancers are powerful biomarkers for drug-related studies. This paper identifies the genes having altered expression due to aberrant methylation patterns using differential analysis of TCGA pancancer data of 12 different cancers. We identified a comprehensive set of 115 epigenetic biomarker genes out of which 106 genes having pancancer properties. The correlation analysis, gene set enrichment, protein-protein interaction analysis, pancancer characteristics analysis, and diagnostic modeling were performed on these biomarkers to illustrate the power of this signature and found to be important in different molecular operations related to cancer. An accuracy of 97.56% was obtained on TCGA pancancer gene expression dataset for predicting the binary class tumor or normal. The source code and dataset of this work are available at https://github.com/panchamisuneeth/EpiPanCan.git.
Collapse
Affiliation(s)
- Panchami V U
- Adi Shankara Institute of Engineering and Technology, Ernakulam, 683574, Kerala, India; Government Engineering College Thrissur, 680009, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India.
| | - Manish T I
- SCMS School of Engineering and Technology, Ernakulam, 683576, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India
| | - Manesh K K
- Government Engineering College Thrissur, 680009, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India
| |
Collapse
|
3
|
Merz S, Senée V, Philippi A, Oswald F, Shaigan M, Führer M, Drewes C, Allgöwer C, Öllinger R, Heni M, Boland A, Deleuze JF, Birkhofer F, Gusmao EG, Wagner M, Hohwieler M, Breunig M, Rad R, Siebert R, Messerer DAC, Costa IG, Alvarez F, Julier C, Kleger A, Heller S. A ONECUT1 regulatory, non-coding region in pancreatic development and diabetes. Cell Rep 2024; 43:114853. [PMID: 39427318 DOI: 10.1016/j.celrep.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.
Collapse
Affiliation(s)
- Sarah Merz
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Valérie Senée
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Anne Philippi
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Franz Oswald
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Mina Shaigan
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Chantal Allgöwer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Franziska Birkhofer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Eduardo G Gusmao
- Centre of Informatics, Federal University of Pernambuco, Recife, Brazil
| | - Martin Wagner
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany; Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Fernando Alvarez
- Division of Gastroenterology, Hepatology & Nutrition, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Cécile Julier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Core Facility Organoids, Ulm University, Ulm, Germany.
| | - Sandra Heller
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
4
|
Leclerc E, Pachkov M, Morisseau L, Tokito F, Legallais C, Jellali R, Nishikawa M, Abderrahmani A, Sakai Y. Investigation of the motif activity of transcription regulators in pancreatic β-like cell subpopulations differentiated from human induced pluripotent stem cells. Mol Omics 2024. [PMID: 39494575 DOI: 10.1039/d4mo00082j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pancreatic β-cells are composed of different subtypes that play a key role in the control of insulin secretion and thereby control glucose homeostasis. In vitro differentiation of human induced pluripotent stem cells (hiPSCs) into 3D spheroids leads to the generation of β-cell subtypes and thus to the development of islet-like structures. Using this cutting-edge cell model, the aim of the study was to decipher the signaling signature that underlines β-cell subtypes, with a focus on the search for the activity of motifs of important transcription regulators (TRs). The investigation was performed using data from previous single-cell sequencing analysis introduced into the integrated system for motif activity response analysis (ISMARA) of transcription regulators. We extracted the matrix of important TRs activated in the β-cell subpopulation and bi-hormonal-like β-cells. Based on these TRs and their targets, we built specific regulatory networks for main cell subpopulations. Our data confirmed the transcriptomic heterogeneity of the β-cell subtype lineage and suggested a mechanism that could account for the differentiation of β-cell subtypes during pancreas development. We do believe that our findings could be instrumental for understanding the mechanisms that affect the balance of β-cell subtypes, leading to impaired insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Eric Leclerc
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Mikhail Pachkov
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Lisa Morisseau
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cecile Legallais
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Rachid Jellali
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Yasuyuki Sakai
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR screening uncovers a long-range enhancer for ONECUT1 in pancreatic differentiation and links a diabetes risk variant. Cell Rep 2024; 43:114640. [PMID: 39163202 PMCID: PMC11406439 DOI: 10.1016/j.celrep.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
Affiliation(s)
- Samuel Joseph Kaplan
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wilfred Wong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qianzi Li
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiahui Zhao
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanti Leslie-Iyer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Kazakov
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Chen PC, Ning Y, Li H, Su JG, Shen JB, Feng QC, Jiang SH, Shi PD, Guo RS. Targeting ONECUT3 blocks glycolytic metabolism and potentiates anti-PD-1 therapy in pancreatic cancer. Cell Oncol (Dordr) 2024; 47:81-96. [PMID: 37606818 DOI: 10.1007/s13402-023-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming. METHODS Immunohistochemistry and Western blotting are applied to determine the expression pattern of ONECUT3 and its clinical relevance in pancreatic ductal adenocarcinoma (PDAC). Knockdown and overexpression strategies are employed to determine the in vitro and in vivo functions of ONECUT3. Chromatin immunoprecipitation, luciferase reporter assay, and gene set enrichment analysis are used to decipher the molecular mechanisms. RESULTS The glycolytic metabolism is inversely associated with T-cell infiltration in PDAC. ONECUT3 is identified as a key regulator for PDAC glycolysis and CD8+ T-cell infiltration. Genetic silencing of ONECUT3 inhibits cell proliferation, promotes cell apoptosis, and reduces glycolytic metabolism as evidenced by glucose uptake, lactate production, and extracellular acidification rate. Opposite effects of ONECUT3 are observed in overexpression studies. ONECUT3 enhances aerobic glycolysis via transcriptional regulation of PDK1. Targeting ONECUT3 effectively suppresses tumor growth, increases CD8+ T-cell infiltration, and potentiates anti-PD-1 therapy in PDAC. Pharmacological inhibition of PDK1 also shows a synergistic effect with anti-PD-1 therapy. In clinical setting, ONECUT3 is closely associated with PDK1 expression and T-cell infiltration in PDAC and acts as an independent prognostic factor. CONCLUSIONS Our study reveals a previous unprecedented regulatory role of ONECUT3 in PDAC glycolysis and provides in vivo evidence that increased glycolysis is linked to an immunosuppressive microenvironment. Moreover, targeting ONECUT3-PDK1 axis may serve as a promising therapeutic approach for the treatment of PDAC.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Yong Ning
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jin-Gen Su
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Jiang-Bo Shen
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Qing-Chun Feng
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Pei-Dong Shi
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China.
| | - Run-Sheng Guo
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China.
| |
Collapse
|
7
|
Cuesta-Gomez N, Verhoeff K, Dadheech N, Pawlick R, Marfil-Garza B, Razavy H, Shapiro AMJ. AT7867 promotes pancreatic progenitor differentiation of human iPSCs. Stem Cell Reports 2023; 18:2084-2095. [PMID: 37922913 PMCID: PMC10679659 DOI: 10.1016/j.stemcr.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Generation of pure pancreatic progenitor (PP) cells is critical for clinical translation of stem cell-derived islets. Herein, we performed PP differentiation with and without AKT/P70 inhibitor AT7867 and characterized the resulting cells at protein and transcript level in vitro and in vivo upon transplantation into diabetic mice. AT7867 treatment increased the percentage of PDX1+NKX6.1+ (-AT7867: 50.9% [IQR 48.9%-53.8%]; +AT7867: 90.8% [IQR 88.9%-93.7%]; p = 0.0021) and PDX1+GP2+ PP cells (-AT7867: 39.22% [IQR 36.7%-44.1%]; +AT7867: 90.0% [IQR 88.2%-93.6%]; p = 0.0021). Transcriptionally, AT7867 treatment significantly upregulated PDX1 (p = 0.0001), NKX6.1 (p = 0.0005), and GP2 (p = 0.002) expression compared with controls, while off-target markers PODXL (p < 0.0001) and TBX2 (p < 0.0001) were significantly downregulated. Transplantation of AT7867-treated PPs resulted in faster hyperglycemia reversal in diabetic mice compared with controls (time and group: p < 0.0001). Overall, our data show that AT7867 enhances PP cell differentiation leading to accelerated diabetes reversal.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada; Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada; Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada; Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada; CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | - Haide Razavy
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, AB, Canada; Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Dashti M, Nizam R, John SE, Melhem M, Channanath A, Alkandari H, Thanaraj TA, Al-Mulla F. ONECUT1 variants beyond type 1 and type 2 diabetes: exploring clinical diversity and epigenetic associations in Arab cohorts. Front Genet 2023; 14:1254833. [PMID: 37941991 PMCID: PMC10628528 DOI: 10.3389/fgene.2023.1254833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
ONECUT1 gene, encoding hepatocyte nuclear factor 6, is involved in pancreas and liver development. ONECUT1 mutations impair the function of pancreatic β-cells and control a transcriptional/epigenetic machinery regulating endocrine development. Homozygous nonsense and missense mutations at ONECUT1_p.E231 and a homozygous frameshift mutation at ONECUT1_p.M289 were reported in neonatal diabetes individuals of French, Turkish, and Indian ethnicity, respectively. Additionally, heterozygous variants were observed in Northern European T2D patients, and Italian patients with neonatal diabetes and early-/late-onset T2D. Examining diverse populations, such as Arabs known for consanguinity, can generalize the ONECUT1 involvement in diabetes. Upon screening the cohorts of Kuwaiti T1D and MODY families, and of Kuwaiti and Qatari T2D individuals, we observed two homozygous variants-the deleterious missense rs202151356_p.H33Q in one MODY, one T1D, and two T2D individuals, and the synonymous rs61735385_p.P94P in two T2D individuals. Heterozygous variants were also observed. Examination of GTEx, NephQTL, mQTLdb and HaploReg highlighted the rs61735385_p.P94P variant as eQTL influencing the tissue-specific expression of ONECUT1, as mQTL influencing methylation at CpG sites in and around ONECUT1 with the nearest site at 677-bases 3' to rs61735385_p.P94P; as overlapping predicted binding sites for NF-kappaB and EBF on ONECUT1. DNA methylation profiles of peripheral blood from 19 MODY-X patients versus eight healthy individuals revealed significant hypomethylation at two CpG sites-one located 617-bases 3' to the p.P94P variant and 8,102 bases away from transcription start; and the other located 14,999 bases away from transcription start. Our study generalizes the association of ONECUT1 with clinical diversity in diabetes.
Collapse
Affiliation(s)
- Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Motasem Melhem
- Department of Specialized Services Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hessa Alkandari
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
9
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
10
|
Arkenberg MR, Ueda Y, Hashino E, Lin CC. Photo-click hydrogels for 3D in situ differentiation of pancreatic progenitors from induced pluripotent stem cells. Stem Cell Res Ther 2023; 14:223. [PMID: 37649117 PMCID: PMC10469883 DOI: 10.1186/s13287-023-03457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSC) can be differentiated to cells in all three germ layers, as well as cells in the extraembryonic tissues. Efforts in iPSC differentiation into pancreatic progenitors in vitro have largely been focused on optimizing soluble growth cues in conventional two-dimensional (2D) culture, whereas the impact of three-dimensional (3D) matrix properties on the morphogenesis of iPSC remains elusive. METHODS In this work, we employ gelatin-based thiol-norbornene photo-click hydrogels for in situ 3D differentiation of human iPSCs into pancreatic progenitors (PP). Molecular analysis and single-cell RNA-sequencing were utilized to elucidate on the distinct identities of subpopulations within the 2D and 3D differentiated cells. RESULTS We found that, while established soluble cues led to predominately PP cells in 2D culture, differentiation of iPSCs using the same soluble factors led to prominent branching morphogenesis, ductal network formation, and generation of diverse endoderm populations. Through single-cell RNA-sequencing, we found that 3D differentiation resulted in enrichments of pan-endodermal cells and ductal cells. We further noted the emergence of a group of extraembryonic cells in 3D, which was absent in 2D differentiation. The unexpected emergence of extraembryonic cells in 3D was found to be associated with enrichment of Wnt and BMP signaling pathways, which may have contributed to the emergence of diverse cell populations. The expressions of PP signature genes PDX1 and NKX6.1 were restored through inhibition of Wnt signaling at the beginning of the posterior foregut stage. CONCLUSIONS To our knowledge, this work established the first 3D hydrogel system for in situ differentiation of human iPSCs into PPs.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. SL220K, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Ito R, Kimura A, Hirose Y, Hatano Y, Mima A, Mae SI, Keidai Y, Nakamura T, Fujikura J, Nishi Y, Ohta A, Toyoda T, Inagaki N, Osafune K. Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Sci Rep 2023; 13:8659. [PMID: 37248264 DOI: 10.1038/s41598-023-35875-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
For pluripotent stem cell (PSC)-based regenerative therapy against diabetes, the differentiation efficiency to pancreatic lineage cells needs to be improved based on the mechanistic understanding of pancreatic differentiation. Here, we aimed to elucidate the molecular mechanisms underlying pancreatic endoderm differentiation by searching for factors that regulate a crucial pancreatic endoderm marker gene, NKX6.1. Unbiasedly screening an siRNA knockdown library, we identified a candidate transcription factor, HHEX. HHEX knockdown suppressed the expression of another pancreatic endoderm marker gene, PTF1A, as well as NKX6.1, independently of PDX1, a known regulator of NKX6.1 expression. In contrast, the overexpression of HHEX upregulated the expressions of NKX6.1 and PTF1A. RNA-seq analysis showed decreased expressions of several genes related to pancreatic development, such as NKX6.1, PTF1A, ONECUT1 and ONECUT3, in HHEX knockdown pancreatic endoderm. These results suggest that HHEX plays a key role in pancreatic endoderm differentiation.
Collapse
Affiliation(s)
- Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yurie Hirose
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
12
|
Ogi DA, Jin S. Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine. Cells 2023; 12:1442. [PMID: 37408278 DOI: 10.3390/cells12101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.
Collapse
Affiliation(s)
- Derek A Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
13
|
Arkenberg MR, Ueda Y, Hashino E, Lin CC. Photo-click hydrogels for 3D in situ differentiation of pancreatic progenitors from induced pluripotent stem cells. RESEARCH SQUARE 2023:rs.3.rs-2557598. [PMID: 37163050 PMCID: PMC10168467 DOI: 10.21203/rs.3.rs-2557598/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Induced pluripotent stem cells (iPSC) can be differentiated to cells in all three germ layers, as well as cells in the extraembryonic tissues. Efforts in iPSC differentiation into pancreatic progenitors in vitro have largely been focused on optimizing soluble growth cues in conventional two-dimensional (2D) culture, whereas the impact of three-dimensional (3D) matrix properties on the morphogenesis of iPSC remains elusive. Methods In this work, we employ gelatin-based thiol-norbornene photo-click hydrogels for in situ 3D differentiation of human iPSCs into pancreatic progenitors (PP). Molecular analysis and single cell RNA-sequencing were utilized to elucidate on the distinct identities of subpopulations within the 2D and 3D differentiated cells. Results We found that, while established soluble cues led to predominately PP cells in 2D culture, differentiation of iPSCs using the same soluble factors led to prominent branching morphogenesis, ductal network formation, and generation of diverse endoderm populations. Through single-cell RNA-sequencing, we found that 3D differentiation resulted in enrichments of pan-endodermal cells and ductal cells. We further noted the emergence of a group of extraembryonic cells in 3D, which was absent in 2D differentiation. The unexpected emergence of extraembryonic cells in 3D was found to be associated with enrichment of Wnt and BMP signaling pathways, which may have contributed to the emergence of diverse cell populations. The expressions of PP signature genes PDX1 and NKX6.1 were restored through inhibition of Wnt signaling at the beginning of the posterior foregut stage. Conclusions To our knowledge, this work established the first 3D hydrogel system for in situ differentiation of human iPSCs into PPs. Ongoing work focuses on enhancing pancreatic differentiation efficiency through modulating physicochemical properties of the iPSC-laden matrices.
Collapse
|
14
|
Melzer MK, Schirge S, Gout J, Arnold F, Srinivasan D, Burtscher I, Allgöwer C, Mulaw M, Zengerling F, Günes C, Lickert H, Christoffels VM, Liebau S, Wagner M, Seufferlein T, Bolenz C, Moon AM, Perkhofer L, Kleger A. TBX3 is dynamically expressed in pancreatic organogenesis and fine-tunes regeneration. BMC Biol 2023; 21:55. [PMID: 36941669 PMCID: PMC10029195 DOI: 10.1186/s12915-023-01553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Clinic of Urology, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Johann Gout
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Frank Arnold
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Dharini Srinivasan
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Chantal Allgöwer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Medhanie Mulaw
- Unit for Single-cell Genomics, Ulm University, 89081, Ulm, Germany
| | | | - Cagatay Günes
- Clinic of Urology, Ulm University Hospital, Ulm, 89081, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Chair of b-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675, München, Germany
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Martin Wagner
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
| | - Thomas Seufferlein
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
| | | | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics (adjunct), University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
| | - Lukas Perkhofer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Alexander Kleger
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany.
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany.
- Core Facility Organoids, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
15
|
Li Z, Kuo CC, Ticconi F, Shaigan M, Gehrmann J, Gusmao EG, Allhoff M, Manolov M, Zenke M, Costa IG. RGT: a toolbox for the integrative analysis of high throughput regulatory genomics data. BMC Bioinformatics 2023; 24:79. [PMID: 36879236 PMCID: PMC9990262 DOI: 10.1186/s12859-023-05184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Massive amounts of data are produced by combining next-generation sequencing with complex biochemistry techniques to characterize regulatory genomics profiles, such as protein-DNA interaction and chromatin accessibility. Interpretation of such high-throughput data typically requires different computation methods. However, existing tools are usually developed for a specific task, which makes it challenging to analyze the data in an integrative manner. RESULTS We here describe the Regulatory Genomics Toolbox (RGT), a computational library for the integrative analysis of regulatory genomics data. RGT provides different functionalities to handle genomic signals and regions. Based on that, we developed several tools to perform distinct downstream analyses, including the prediction of transcription factor binding sites using ATAC-seq data, identification of differential peaks from ChIP-seq data, and detection of triple helix mediated RNA and DNA interactions, visualization, and finding an association between distinct regulatory factors. CONCLUSION We present here RGT; a framework to facilitate the customization of computational methods to analyze genomic data for specific regulatory genomics problems. RGT is a comprehensive and flexible Python package for analyzing high throughput regulatory genomics data and is available at: https://github.com/CostaLab/reg-gen . The documentation is available at: https://reg-gen.readthedocs.io.
Collapse
Affiliation(s)
- Zhijian Li
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabio Ticconi
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Mina Shaigan
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Eduardo Gade Gusmao
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Manuel Allhoff
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Martin Manolov
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| |
Collapse
|
16
|
Lin G, Lin L, Lin H, Chen W, Chen L, Chen X, Chen S, Lin Q, Xu Y, Zeng Y. KCNK3 inhibits proliferation and glucose metabolism of lung adenocarcinoma via activation of AMPK-TXNIP pathway. Cell Death Dis 2022; 8:360. [PMID: 35963847 PMCID: PMC9376064 DOI: 10.1038/s41420-022-01152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a primary histological subtype of lung cancer with increased morbidity and mortality. K+ channels have been revealed to be involved in carcinogenesis in various malignant tumors. However, TWIK-related acid-sensitive potassium channel 1 (TASK-1, also called KCNK3), a genetic member of K2P channels, remains an enigma in lung adenocarcinoma (LUAD). Herein, we investigated the pathological process of KCNK3 in proliferation and glucose metabolism of LUAD. The expressions of KCNK3 in LUAD tissues and corresponding adjacent tissues were identified by RNA sequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry. Gain and loss-of-function assays were performed to estimate the role of KCNK3 in proliferation and glucose metabolism of LUAD. Additionally, energy metabolites of LUAD cells were identified by targeted metabolomics analysis. The expressions of metabolic molecules and active biomarkers associated with AMPK-TXNIP signaling pathway were detected via western blot and immunofluorescence. KCNK3 was significantly downregulated in LUAD tissues and correlated with patients' poor prognosis. Overexpression of KCNK3 largely regulated the process of oncogenesis and glycometabolism in LUAD in vitro and in vivo. Mechanistic studies found that KCNK3-mediated differential metabolites were mainly enriched in AMPK signaling pathway. Furthermore, rescue experiments demonstrated that KCNK3 suppressed proliferation and glucose metabolism via activation of the AMPK-TXNIP pathway in LUAD cells. In summary, our research highlighted an emerging role of KCNK3 in the proliferative activity and glycometabolism of LUAD, suggesting that KCNK3 may be an optimal predictor for prognosis and a potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| |
Collapse
|
17
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
18
|
Functional Genomic Screening in Human Pluripotent Stem Cells Reveals New Roadblocks in Early Pancreatic Endoderm Formation. Cells 2022; 11:cells11030582. [PMID: 35159392 PMCID: PMC8834018 DOI: 10.3390/cells11030582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Human pluripotent stem cells, with their ability to proliferate indefinitely and to differentiate into virtually all cell types of the human body, provide a novel resource to study human development and to implement relevant disease models. Here, we employed a human pancreatic differentiation platform complemented with an shRNA screen in human pluripotent stem cells (PSCs) to identify potential drivers of early endoderm and pancreatic development. Deep sequencing followed by abundancy ranking pinpointed six top hit genes potentially associated with either improved or impaired endodermal differentiation, which were selected for functional validation in CRISPR-Cas9 mediated knockout (KO) lines. Upon endoderm differentiation (DE), particularly the loss of SLC22A1 and DSC2 led to impaired differentiation efficiency into CXCR4/KIT-positive DE cells. qPCR analysis also revealed changes in differentiation markers CXCR4, FOXA2, SOX17, and GATA6. Further differentiation of PSCs to the pancreatic progenitor (PP) stage resulted in a decreased proportion of PDX1/NKX6-1-positive cells in SLC22A1 KO lines, and in DSC2 KO lines when differentiated under specific culture conditions. Taken together, our study reveals novel genes with potential roles in early endodermal development.
Collapse
|
19
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|