1
|
Saglam-Metiner P, Yanasik S, Odabasi YC, Modamio J, Negwer M, Biray-Avci C, Guler A, Erturk A, Yildirim E, Yesil-Celiktas O. ICU patient-on-a-chip emulating orchestration of mast cells and cerebral organoids in neuroinflammation. Commun Biol 2024; 7:1627. [PMID: 39639082 PMCID: PMC11621364 DOI: 10.1038/s42003-024-07313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Propofol and midazolam are the current standard of care for prolonged sedation in Intensive Care Units (ICUs). However, the effects and mechanism of these sedatives in brain tissue are unclear. Herein, the development of an ICU patient-on-a-chip platform to elucidate those effects is reported. The humanized neural tissue compartment combines mast cells differentiated from human induced pluripotent stem cells (hiPSCs) with cerebral organoids in a three-dimensional (3D) matrix, which is covered with a membrane populated with human cerebral microvascular endothelial cells (hCMEC/D3) that separates the tissue chamber from the vascular lumen, where sedatives were infused for four days to evaluate neurotoxicity and cell-mediated immune responses. Subsequent to propofol administration, gene expressions of CD40 and TNF-α in mast cells, AIF1 in microglia and GFAP/S100B/OLIG2/MBP in macroglia were elevated, as well as NOS2, CD80, CD40, CD68, IL6 and TNF-α mediated proinflammation is noted in cerebral organoids, which resulted in higher expressions of GJB1, GABA-A and NMDAR1 in the tissue construct of the platform. Besides, midazolam administration stimulated expression of CD40 and CD203c+ reactivated mast cell proliferation and compromised BBB permeability and decreased TEER values with higher barrier disruption, whereas increased populations of CD11b+ microglia, higher expressions of GFAP/DLG4/GJB1 and GABA-A-/NMDAR1- identities, as well as glutamate related neurotoxicity and IL1B, IFNG, IFNA1, IL6 genes mediated proinflammation, resulting in increased apoptotic zones are observed in cerebral organoids. These results suggest that different sedatives cause variations in cell type activation that modulate different pathways related to neuroinflammation and neurotoxicity in the ICU patient-on-chip platform.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Yusuf Caglar Odabasi
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Jennifer Modamio
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ayse Guler
- Department of Neuroscience, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- ODTÜ MEMS Center, Ankara, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
- ODTÜ MEMS Center, Ankara, Türkiye.
| |
Collapse
|
2
|
Kahveci B, Polatli E, Bastanlar Y, Guven S. OrganoLabeler: A Quick and Accurate Annotation Tool for Organoid Images. ACS OMEGA 2024; 9:46117-46128. [PMID: 39583683 PMCID: PMC11579745 DOI: 10.1021/acsomega.4c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Organoids are self-assembled 3D cellular structures that resemble organs structurally and functionally, providing in vitro platforms for molecular and therapeutic studies. Generation of organoids from human cells often requires long and costly procedures with arguably low efficiency. Prediction and selection of cellular aggregates that result in healthy and functional organoids can be achieved by using artificial intelligence-based tools. Transforming images of 3D cellular constructs into digitally processable data sets for training deep learning models requires labeling of morphological boundaries, which often is performed manually. Here, we report an application named OrganoLabeler, which can create large image-based data sets in a consistent, reliable, fast, and user-friendly manner. OrganoLabeler can create segmented versions of images with combinations of contrast adjusting, K-means clustering, CLAHE, binary, and Otsu thresholding methods. We created embryoid body and brain organoid data sets, of which segmented images were manually created by human researchers and compared with OrganoLabeler. Validation is performed by training U-Net models, which are deep learning models specialized in image segmentation. U-Net models, which are trained with images segmented by OrganoLabeler, achieved similar or better segmentation accuracies than the ones trained with manually labeled reference images. OrganoLabeler can replace manual labeling, providing faster and more accurate results for organoid research free of charge.
Collapse
Affiliation(s)
- Burak Kahveci
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Elifsu Polatli
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Yalin Bastanlar
- Department
of Computer Engineering, Izmir Institute
of Technology, Izmir 35430, Türkiye
| | - Sinan Guven
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
- Faculty
of
Medicine, Medical Biology and Genetics Department, Dokuz Eylul University, Izmir 35340, Türkiye
| |
Collapse
|
3
|
Shrestha S, Acharya P, Kang SY, Vanga MG, Lekkala VKR, Liu J, Yang Y, Joshi P, Lee MY. Regenerative human liver organoids (HLOs) in a pillar/perfusion plate for hepatotoxicity assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586638. [PMID: 38586058 PMCID: PMC10996672 DOI: 10.1101/2024.03.25.586638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Human liver organoids (HLOs) differentiated from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs) can recapitulate the structure and function of human fetal liver tissues, thus being considered as a promising tissue model for liver diseases and predictive compound screening. However, the adoption of HLOs in drug discovery faces several technical challenges, which include the lengthy differentiation process with multiple culture media leading to batch-to-batch variation, short-term maintenance of hepatic functions post-maturation, low assay throughput due to Matrigel dissociation and HLO transfer to a microtiter well plate, and insufficient maturity levels compared to primary hepatocytes. To address these issues, expandable HLOs (Exp-HLOs) derived from human iPSCs were generated by optimizing differentiation protocols, which were rapidly printed on a 144-pillar plate with sidewalls and slits (144PillarPlate) and dynamically cultured for up to 20 days into differentiated HLOs (Diff-HLOs) in a 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for in situ organoid culture and analysis. The dynamically cultured Diff-HLOs exhibited greater maturity and reproducibility than those cultured statically, especially after a 10-day differentiation period. In addition, Diff-HLOs in the pillar/perfusion plate were tested with acetaminophen and troglitazone for 3 days to assess drug-induced liver injury (DILI) and then incubated in an expansion medium for 10 days to evaluate liver recovery from DILI. The assessment of liver regeneration post-injury is critical to understanding the mechanism of recovery and determining the threshold drug concentration beyond which there will be a sharp decrease in the liver's regenerative capacity. We envision that bioprinted Diff-HLOs in the pillar/perfusion plate could be used for high-throughput screening (HTS) of hepatotoxic compounds due to the short-term differentiation of passage-able Exp-HLOs, stable hepatic function post-maturation, high reproducibility, and high throughput with capability of in situ organoid culture, testing, staining, imaging, and analysis.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | | | | | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| |
Collapse
|
4
|
Goksel O, Sipahi MI, Yanasik S, Saglam-Metiner P, Benzer S, Sabour-Takanlou L, Sabour-Takanlou M, Biray-Avci C, Yesil-Celiktas O. Comprehensive analysis of resilience of human airway epithelial barrier against short-term PM2.5 inorganic dust exposure using in vitro microfluidic chip and ex vivo human airway models. Allergy 2024; 79:2953-2965. [PMID: 38868934 DOI: 10.1111/all.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVE The updated World Health Organization (WHO) air quality guideline recommends an annual mean concentration of fine particulate matter (PM2.5) not exceeding 5 or 15 μg/m3 in the short-term (24 h) for no more than 3-4 days annually. However, more than 90% of the global population is currently exposed to daily concentrations surpassing these limits, especially during extreme weather conditions and due to transboundary dust transport influenced by climate change. Herein, the effect of respirable METHODS Silica particles at an average size of 1 μm, referred to as RESULTS In the AEB-on-a-chip platform, short-term exposure to 800 μg/mL PM2.5 disrupted AEB integrity via increasing barrier permeability, decreasing cell adhesion-barrier markers such as ZO-1, Vinculin, ACE2, and CD31, impaired cell viability and increased the expression levels of proinflammatory markers; IFNs, IL-6, IL-1s, TNF-α, CD68, CD80, and Inos, mostly under dynamic conditions. Besides, decreased tissue viability, impaired tissue integrity via decreasing of Vinculin, ACE2, β-catenin, and E-cadherin, and also proinflammatory response with elevated CD68, IL-1α, IL-6, IFN-Ɣ, Inos, and CD80 markers, were observed after PM2.5 exposure in ex vivo tissue. CONCLUSION The duration and concentration of PM2.5 that can be exposed during extreme weather conditions and natural events aligns with our exposure model (0-800 μg/mL 72 h). At this level of exposure, the resilience of the epithelial barrier is demonstrated by both AEB-on-a-chip platform emulating dynamic forces in the body and ex vivo bronchial biopsy slices. Lung-on-a-chip models will serve as reliable exposure models in this context.
Collapse
Affiliation(s)
- Ozlem Goksel
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Laboratory of Occupational & Environmental Respiratory Diseases and Asthma, Faculty of Medicine, Ege University, Izmir, Turkey
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| | - Meryem Irem Sipahi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Sema Benzer
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
5
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. Biofabrication 2024; 17:10.1088/1758-5090/ad867e. [PMID: 39444222 PMCID: PMC11542746 DOI: 10.1088/1758-5090/ad867e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventionalin vitrocell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid did not induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
6
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
7
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
8
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
10
|
Tongkrajang N, Kobpornchai P, Dubey P, Chaisri U, Kulkeaw K. Modelling amoebic brain infection caused by Balamuthia mandrillaris using a human cerebral organoid. PLoS Negl Trop Dis 2024; 18:e0012274. [PMID: 38900784 PMCID: PMC11218984 DOI: 10.1371/journal.pntd.0012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.
Collapse
Affiliation(s)
- Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Porntida Kobpornchai
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pratima Dubey
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Urai Chaisri
- Department of Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Picchio V, Gaetani R, Chimenti I. Recent Advances in 3D Cultures. Int J Mol Sci 2024; 25:4189. [PMID: 38673773 PMCID: PMC11049866 DOI: 10.3390/ijms25084189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Methods and protocols for creating complex 3D cell culture systems have been rapidly advancing in the past decade from the perspective of biomaterials [...].
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Angio Cardio Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy;
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
13
|
Reynolds DE, Sun Y, Wang X, Vallapureddy P, Lim J, Pan M, Fernandez Del Castillo A, Carlson JCT, Sellmyer MA, Nasrallah M, Binder Z, O'Rourke DM, Ming G, Song H, Ko J. Live Organoid Cyclic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309289. [PMID: 38326078 PMCID: PMC11005682 DOI: 10.1002/advs.202309289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.
Collapse
Affiliation(s)
- David E. Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yusha Sun
- Department of NeuroscienceMahoney Institute for NeurosciencesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xin Wang
- Department of NeuroscienceMahoney Institute for NeurosciencesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Phoebe Vallapureddy
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jianhua Lim
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Menghan Pan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Andres Fernandez Del Castillo
- Department of Biochemistry & Molecular BiophysicsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jonathan C. T. Carlson
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Mark A. Sellmyer
- Department of RadiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - MacLean Nasrallah
- GBM Translational Center of ExcellenceAbramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Zev Binder
- GBM Translational Center of ExcellenceAbramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for Cellular ImmunotherapiesUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Donald M. O'Rourke
- GBM Translational Center of ExcellenceAbramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for Cellular ImmunotherapiesUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Guo‐li Ming
- Department of NeuroscienceMahoney Institute for NeurosciencesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of PsychiatryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Hongjun Song
- Department of NeuroscienceMahoney Institute for NeurosciencesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- GBM Translational Center of ExcellenceAbramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of PsychiatryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- The Epigenetics InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
14
|
Acharya P, Choi NY, Shrestha S, Jeong S, Lee MY. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024; 121:489-506. [PMID: 38013504 PMCID: PMC10842775 DOI: 10.1002/bit.28606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
15
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
16
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
17
|
Irmak-Yazicioglu MB, Arslan A. Navigating the Intersection of Technology and Depression Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:401-426. [PMID: 39261440 DOI: 10.1007/978-981-97-4402-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter primarily focuses on the progress in depression precision medicine with specific emphasis on the integrative approaches that include artificial intelligence and other data, tools, and technologies. After the description of the concept of precision medicine and a comparative introduction to depression precision medicine with cancer and epilepsy, new avenues of depression precision medicine derived from integrated artificial intelligence and other sources will be presented. Additionally, less advanced areas, such as comorbidity between depression and cancer, will be examined.
Collapse
Affiliation(s)
| | - Ayla Arslan
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Türkiye.
| |
Collapse
|
18
|
Nishimura Y. Technology using simulated microgravity. Regen Ther 2023; 24:318-323. [PMID: 37662695 PMCID: PMC10470365 DOI: 10.1016/j.reth.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
The human body experiences constant stimulation from Earth's gravity, and the absence of gravity leads to various impacts at the cellular and tissue levels. Simulated microgravity (s-μg) has been employed on Earth to investigate these effects, circumventing the challenges of conducting experiments in space and providing an opportunity to understand the influence of microgravity on living organisms. Research focusing on stem cells and utilizing s-μg has enhanced our understanding of how microgravity affects stem cell morphology, migration, proliferation, and differentiation. Studies have used systems such as rotating wall vessels, random positioning machines, and clinostats. By uncovering the mechanisms underlying the observed changes in these studies, there is potential to identify therapeutic targets that regulate stem cell function and explore a range of applications, including stem cell-based regenerative medicine. This review will focus on the features of each device designed to simulate microgravity on Earth, as well as the stem cell experiments performed with those devices.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
19
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Villanueva R. Advances in the knowledge and therapeutics of schizophrenia, major depression disorder, and bipolar disorder from human brain organoid research. Front Psychiatry 2023; 14:1178494. [PMID: 37502814 PMCID: PMC10368988 DOI: 10.3389/fpsyt.2023.1178494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Tridimensional cultures of human induced pluripotent cells (iPSCs) experimentally directed to neural differentiation, termed "brain organoids" are now employed as an in vitro assay that recapitulates early developmental stages of nervous tissue differentiation. Technical progress in culture methodology enabled the generation of regionally specialized organoids with structural and neurochemical characters of distinct encephalic regions. The technical process of organoid elaboration is undergoing progressively implementation, but current robustness of the assay has attracted the attention of psychiatric research to substitute/complement animal experimentation for analyzing the pathophysiology of psychiatric disorders. Numerous morphological, structural, molecular and functional insights of psychiatric disorders have been uncovered by comparing brain organoids made with iPSCs obtained from control healthy subjects and psychiatric patients. Brain organoids were also employed for analyzing the response to conventional treatments, to search for new drugs, and to anticipate the therapeutic response of individual patients in a personalized manner. In this review, we gather data obtained by studying cerebral organoids made from iPSCs of patients of the three most frequent serious psychiatric disorders: schizophrenia, major depression disorder, and bipolar disorder. Among the data obtained in these studies, we emphasize: (i) that the origin of these pathologies takes place in the stages of embryonic development; (ii) the existence of shared molecular pathogenic aspects among patients of the three distinct disorders; (iii) the occurrence of molecular differences between patients bearing the same disorder, and (iv) that functional alterations can be activated or aggravated by environmental signals in patients bearing genetic risk for these disorders.
Collapse
Affiliation(s)
- Rosa Villanueva
- Departamento de Psiquiatría y Salud Mental, Hospital Universitario La Paz, La Paz, Madrid, Spain
| |
Collapse
|
21
|
Wei Z, Bodnar B, Zhao RT, Xiao Q, Saribas S, Wang X, Ho WZ, Hu W. Human iPSC-derived brain organoids: A 3D mini-brain model for studying HIV infection. Exp Neurol 2023; 364:114386. [PMID: 36934866 PMCID: PMC10149614 DOI: 10.1016/j.expneurol.2023.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
The brain is one of the important reservoir sites for HIV persistent/latent infection that often leads to HIV-associated neurocognitive disorders (HAND). However, HIV dynamics in the brain is an understudied area and little is known about mechanisms underlying the development and progression of HAND. This issue is mainly due to the lack of suitable in vitro models that can recapitulate the cellular and molecular complexity of the human brain. Hence, there is an urgent need for such models to study HIV neuropathogenesis and to develop therapeutics for HAND. The emergence of three-dimensional (3D) brain organoids generated from induced pluripotent stem cells (iPSCs) has now provided a clinically relevant in vitro model to study HIV brain infection and neuropathogenesis. Recently, there have been a noticeable number of publications that demonstrate the feasibility and advantages of this model for studies of neurobiology and brain disorders as well as HIV infection. Here, we describe the development of iPSC-derived human microglia-containing brain organoids, including advantages/challenges, and focus on their applicability for modeling HIV brain infection.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ruo-Tong Zhao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Qianhao Xiao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|