1
|
Wang Z, Pal D, Pilechi A, Ariya PA. Nanoplastics in Water: Artificial Intelligence-Assisted 4D Physicochemical Characterization and Rapid In Situ Detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8919-8931. [PMID: 38709668 PMCID: PMC11112734 DOI: 10.1021/acs.est.3c10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/08/2024]
Abstract
For the first time, we present a much-needed technology for the in situ and real-time detection of nanoplastics in aquatic systems. We show an artificial intelligence-assisted nanodigital in-line holographic microscopy (AI-assisted nano-DIHM) that automatically classifies nano- and microplastics simultaneously from nonplastic particles within milliseconds in stationary and dynamic natural waters, without sample preparation. AI-assisted nano-DIHM identifies 2 and 1% of waterborne particles as nano/microplastics in Lake Ontario and the Saint Lawrence River, respectively. Nano-DIHM provides physicochemical properties of single particles or clusters of nano/microplastics, including size, shape, optical phase, perimeter, surface area, roughness, and edge gradient. It distinguishes nano/microplastics from mixtures of organics, inorganics, biological particles, and coated heterogeneous clusters. This technology allows 4D tracking and 3D structural and spatial study of waterborne nano/microplastics. Independent transmission electron microscopy, mass spectrometry, and nanoparticle tracking analysis validates nano-DIHM data. Complementary modeling demonstrates nano- and microplastics have significantly distinct distribution patterns in water, which affect their transport and fate, rendering nano-DIHM a powerful tool for accurate nano/microplastic life-cycle analysis and hotspot remediation.
Collapse
Affiliation(s)
- Zi Wang
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Devendra Pal
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9,Canada
| | | | - Parisa A. Ariya
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9,Canada
| |
Collapse
|
2
|
Jin L, Yu Z, Au A, Serles P, Wang N, Lant JT, Filleter T, Yip CM. P-TDHM: Open-source portable telecentric digital holographic microscope. HARDWAREX 2024; 17:e00508. [PMID: 38327674 PMCID: PMC10847153 DOI: 10.1016/j.ohx.2024.e00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
We present the design of a low-cost, portable telecentric digital holographic microscope (P-TDHM) that utilizes off-the-shelf components. We describe the system's hardware and software elements and evaluate its performance by imaging samples ranging from nano-printed targets to live HeLa cells, HEK293 cells, and Dolichospermum via both in-line and off-axis modes. Our results demonstrate that the system can acquire high quality quantitative phase images with nanometer axial and sub-micron lateral resolution in a small form factor, making it a promising candidate for resource-limited settings and remote locations. Our design represents a significant step forward in making telecentric digital holographic microscopy accessible and affordable to the broader community.
Collapse
Affiliation(s)
- Lei Jin
- Institute of Biomedical Engineering, 164 College St, University of Toronto, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ziyang Yu
- Institute of Biomedical Engineering, 164 College St, University of Toronto, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Aaron Au
- Institute of Biomedical Engineering, 164 College St, University of Toronto, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Peter Serles
- Department of Mechanical and Industrial Engineering, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Nan Wang
- Civil and Environmental Engineering, 527 College Avenue, Cornell University, Ithaca, NY 14853, United States
| | - Jeremy T. Lant
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Christopher M. Yip
- Institute of Biomedical Engineering, 164 College St, University of Toronto, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, 200 College St, Toronto, ON M5S 3E5, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Pal D, Amyot M, Liang C, Ariya PA. Real-time 4D tracking of airborne virus-laden droplets and aerosols. COMMUNICATIONS ENGINEERING 2023; 2:41. [PMCID: PMC10955884 DOI: 10.1038/s44172-023-00088-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2024]
Abstract
There is currently no real-time airborne virus tracking method, hindering the understanding of rapid virus changes and associated health impacts. Nano-digital in-line holographic microscopy (Nano-DIHM) is a lensless technology that can directly obtain the interference patterns of objects by recording the scattered light information originating from the objects. Here, we provide evidence for real-time physicochemical tracking of virus-laden droplets and aerosols in the air using desktop label-free Nano-DIHM. The virus interference patterns, as single and ensemble particles, were imaged by the Nano-DIHM with 32.5 ms resolution. The next-generation Stingray and Octopus software was used to automate object detection, characterization and classification from the recorded holograms. The detection system was demonstrated to detect active MS2 bacteriophages, inactivated SARS-CoV-2 and RNA fragments, and an MS2 mixture with metallic and organic compounds. This work demonstrates the feasibility of using Nano-DIHM to provide rapid virus detection to improve transmission management in real time. Devendra Pal and coworkers report an imaging system using Nano-Digital in-line Holographic Microscopy (NanoDIHM) to detect airborne viruses in droplets and aerosols in real time. This system is able to detect various viruses in air, water and heterogeneous matrices within one minute, enabling real-time tracking of pollutant particles for efficient epidemic management.
Collapse
Affiliation(s)
- Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada
| | - Marc Amyot
- Department of Biological Sciences, Univerité de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - Chen Liang
- Department of Medicine, Division of Experimental Medicine, McGill University and Jewish General Hospital, 3755 Cote Sainte Catherine Rd., Montreal, QC G3T 1 E2 Canada
| | - Parisa A. Ariya
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 2K6 Canada
| |
Collapse
|
4
|
Wang Z, Pilechi A, Fok Cheung M, Ariya PA. In-situ and real-time nano/microplastic coatings and dynamics in water using nano-DIHM: A novel capability for the plastic life cycle research. WATER RESEARCH 2023; 235:119898. [PMID: 36989805 DOI: 10.1016/j.watres.2023.119898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
A novel nano-digital inline holographic microscope (nano-DIHM) was used to advance in-situ and real-time nano/microplastic physicochemical research, such as particle coatings and dynamic processes in water. Nano-DIHM data provided evidence of distinct coating patterns on nano/microplastic particles by oleic acid, magnetite, and phytoplankton, representing organic, inorganic, and biological coatings widely present in the natural surroundings. A high-resolution scanning transmission electron microscopy confirmed nano-DIHM data, demonstrating its nano/microplastic research capabilities. The sedimentation of two plastic size categories was examined: (a) ∼10 to 700 µm, and (b) ∼ 1 to 5 mm. Particle size was the primary factor affecting the sedimentation for studied (a) microplastics and (b) pellets. Two types of silicone rubbers exhibited different sedimentation processes. We also demonstrated that inorganic ions in seawater and oleic acid organic coatings altered the sedimentation velocity of studied plastics by 9 - 13% and 5 - 9%, respectively. Semi-empirical probability functions were developed and incorporated into a numerical model (CaMPSim-3D) to simulate the transport of studied microplastics and pellets in the Saint John River estuary. Water dynamics was the driving force of plastic transport, yet the accumulation of plastics was selectively dependant on particle physicochemical properties such as size and density by ∼ 7%. The usage of nano-DIHM for targeted identification of nano/microplastic hotspots and aquatic plastic wastes remediation were discussed.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Maïline Fok Cheung
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada; Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
5
|
Hall R, Pal D, Ariya PA. Novel Dynamic Technique, Nano-DIHM, for Rapid Detection of Oil, Heavy Metals, and Biological Spills in Aquatic Systems. Anal Chem 2022; 94:11390-11400. [PMID: 35929664 DOI: 10.1021/acs.analchem.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous anthropogenic and natural particle contaminants exist in diverse aquatic systems, with widely unknown environmental fates. We coupled a flow tube with a digital in-line holographic microscopy (nano-DIHM) technique for aquatic matrices, for in situ real-time analysis of particle size, shape, and phase. Nano-DIHM enables 4D tracking of particles in water and their transformations in three-dimensional space. We demonstrate that nano-DIHM can be automated to detect and track oil spills/oil droplets in dynamic systems. We provide evidence that nano-DIHM can detect the MS2 bacteriophage as a representative biological-viral material and mercury-containing particles alongside other heavy metals as common toxic contaminants. Nano-DIHM shows the capability of observation of combined materials in water, characterizing the interactions of various particles in mixtures, and particles with different coatings in a suspension. The observed sizes of the particles and droplets ranged from ∼1 to 200 μm. We herein demonstrate the ability of nano-DIHM to characterize and distinguish particle-based contaminants in water and their interactions in both stationary and dynamic modes with a 62.5 millisecond time resolution. The fully automated software for dynamic and real-time detection of contaminants will be of global significance. A comparison is also made between nano-DIHM and established techniques such as S/TEM for their different capabilities. Nano-DIHM can provide a range of physicochemical information in stationary and dynamic modes, allowing life cycle analysis of diverse particle contaminants in different aquatic systems, and serve as an effective tool for rapid response for spills and remediation of natural waters.
Collapse
Affiliation(s)
- Ryan Hall
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada.,Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| |
Collapse
|