1
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24:858-877. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
2
|
Althoff MD, Gaietto K, Holguin F, Forno E. Obesity-related Asthma: A Pathobiology-based Overview of Existing and Emerging Treatment Approaches. Am J Respir Crit Care Med 2024; 210:1186-1200. [PMID: 39311907 PMCID: PMC11568442 DOI: 10.1164/rccm.202406-1166so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Although obesity-related asthma is associated with worse asthma outcomes, optimal treatment approaches for this complex phenotype are still largely unavailable. This state-of-the-art review article synthesizes evidence for existing and emerging treatment approaches for obesity-related asthma and highlights pathways that offer potential targets for novel therapeutics. Existing treatments targeting insulin resistance and obesity, including metformin and GLP-1 (glucagon-like-peptide 1) receptor agonists, have been associated with improved asthma outcomes, although GLP-1R agonist data in asthma are limited to individuals with comorbid obesity. Monoclonal antibodies approved for treatment of moderate to severe asthma generally appear to be effective in individuals with obesity, although this is based on retrospective or secondary analysis of clinical trials; moreover, although most of these asthma biologics are approved for use in the pediatric population, the impact of obesity on their efficacy has not been well studied in youth. Potential therapeutic targets being investigated include IL-6, arginine metabolites, nitro-fatty acids, and mitochondrial antioxidants, with clinical trials for each currently underway. Potential therapeutic targets include adipose tissue eosinophils and the GLP-1-arginine-advanced glycation end products axis, although data in humans are still needed. Finally, transcriptomic and epigenetic studies of "obese asthma" demonstrate enrichment of IFN-related signaling pathways, Rho-GTPase pathways, and integrins, suggesting that these too could represent future treatment targets. We advocate for further study of these potential therapeutic mechanisms and continued investigation of the distinct inflammatory pathways characteristic of obesity-related asthma, to facilitate effective treatment development for this unique asthma phenotype.
Collapse
Affiliation(s)
- Meghan D. Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Kristina Gaietto
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Erick Forno
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Department of Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|
3
|
Rusinkevich V, Elias D, Vladut Talor M, Čiháková D. The Technique of Permanent Pericardial Catheter in Mice. JACC Basic Transl Sci 2024; 9:1234-1247. [PMID: 39534637 PMCID: PMC11551876 DOI: 10.1016/j.jacbts.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 11/16/2024]
Abstract
Intrapericardial delivery offers a route for heart therapies. Mouse heart size and membrane thickness pose catheterization challenges, hampering pericardium-targeted treatments. The objectives were to develop a mouse surgical technique for pericardial catheter insertion and to assess its suitability for intrapericardial delivery, including use with a myocardial ischemia/reperfusion model. We used successful catheter implantation in BALB/cJ and ΔdblGATA1 mice, showcasing intrapericardial delivery with fluorescent beads and eosinophils. We demonstrated a combination of pericardial catheterization with myocardial ischemia/reperfusion model. A reliable catheterization technique, enabling intrapericardial delivery of therapeutic agents in mice provides a valuable tool for studying the pericardial space and mediastinum in basic and translational research.
Collapse
Affiliation(s)
- Vitali Rusinkevich
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David Elias
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monica Vladut Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Noble SL, Mules TC, Le Gros G, Inns S. The immunoregulatory potential of eosinophil subsets. Immunol Cell Biol 2024; 102:775-786. [PMID: 39269337 DOI: 10.1111/imcb.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Eosinophils have traditionally been viewed as pathological effector cells primarily involved in antiparasitic and allergic immune reactions; however, it is becoming increasingly apparent that eosinophils are multifaceted leukocytes that contribute to a variety of roles in both health and disease. Recent research shows that eosinophils play important immunoregulatory roles across various tissue sites including the gastrointestinal tract, adipose tissue, lung, liver, heart, muscles, thymus and bone marrow. With recent advances in our knowledge and appreciation of eosinophil immunoregulatory functions at these tissue sites, as well as emerging research demonstrating the existence of distinct subsets of eosinophils, a review of this topic is timely. Although some questions remain regarding eosinophil function and heterogeneity, this review summarizes the contemporary understanding of the immunoregulatory roles of eosinophils across various tissues and discusses the latest research on eosinophil heterogeneity and subsets.
Collapse
Affiliation(s)
- Sophia-Louise Noble
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | - Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| |
Collapse
|
5
|
Wu B, Lan X, Gao M, Wei W, Wang Y, Yang Y, Yu Z, Huang M, Wu Q. Elucidation of the molecular mechanism of type 2 diabetes mellitus affecting the progression of nonalcoholic steatohepatitis using bioinformatics and network pharmacology: A review. Medicine (Baltimore) 2024; 103:e39731. [PMID: 39287256 PMCID: PMC11404948 DOI: 10.1097/md.0000000000039731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Increasing evidence suggests that patients with diabetes are at increased risk of developing nonalcoholic steatohepatitis (NASH), but the underlying mechanisms that affect the progression of NASH remain unclear. In this study, we used bioinformatics and network pharmacology methods to explore the differentially expressed genes of NASH and the related genes of type 2 diabetes mellitus, and a total of 46 common targets were obtained. Gene ontology showed that the common targets were mainly involved in biological processes such as glucocorticoid, hormone, and bacterium responses. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis signal pathways were mainly in colorectal cancer, amphetamine addition, the peroxisome proliferator-activated receptor signaling pathway, and the toll-like receptor signaling pathway. The protein-protein interaction network identified 8 hub genes, and the co-expression network was analyzed to obtain 7 related functions and mutual proportions of hub genes. A total of 120 transcription factors were predicted for hub genes. Hub genes were closely related to immune cells, including neutropils and eosinophils. In addition, we identified 15 potential candidate drugs based on hub genes that are promising for the treatment of NASH. Type 2 diabetes mellitus can affect the progression of NASH by changing hormone levels and inflammatory responses through multiple targets and signaling pathways. Eight hub genes are expected to be potential targets for subsequent treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaohong Lan
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Wei
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuekun Wang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiyang Yu
- The fourth was assigned to the outpatient department, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Huang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinyan Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Jorssen J, Van Hulst G, Mollers K, Pujol J, Petrellis G, Baptista AP, Schetters S, Baron F, Caers J, Lambrecht BN, Dewals BG, Bureau F, Desmet CJ. Single-cell proteomics and transcriptomics capture eosinophil development and identify the role of IL-5 in their lineage transit amplification. Immunity 2024; 57:1549-1566.e8. [PMID: 38776917 DOI: 10.1016/j.immuni.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/07/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The activities, ontogeny, and mechanisms of lineage expansion of eosinophils are less well resolved than those of other immune cells, despite the use of biological therapies targeting the eosinophilia-promoting cytokine interleukin (IL)-5 or its receptor, IL-5Rα. We combined single-cell proteomics and transcriptomics and generated transgenic IL-5Rα reporter mice to revisit eosinophilopoiesis. We reconciled human and murine eosinophilopoiesis and provided extensive cell-surface immunophenotyping and transcriptomes at different stages along the continuum of eosinophil maturation. We used these resources to show that IL-5 promoted eosinophil-lineage expansion via transit amplification, while its deletion or neutralization did not compromise eosinophil maturation. Informed from our resources, we also showed that interferon response factor-8, considered an essential promoter of myelopoiesis, was not intrinsically required for eosinophilopoiesis. This work hence provides resources, methods, and insights for understanding eosinophil ontogeny, the effects of current precision therapeutics, and the regulation of eosinophil development and numbers in health and disease.
Collapse
Affiliation(s)
- Joseph Jorssen
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Glenn Van Hulst
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Kiréna Mollers
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Julien Pujol
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Georgios Petrellis
- Laboratory of Parasitology, FARAH Institute, University of Liege, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liege, Belgium
| | - Antonio P Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frédéric Baron
- Laboratory of Haematology, GIGA Institute, Faculty of Medicine, Liege University Hospital Centre, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Jo Caers
- Laboratory of Haematology, GIGA Institute, Faculty of Medicine, Liege University Hospital Centre, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH Institute, University of Liege, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Faculty of Veterinary Medicine, University of Liege, B34 Avenue de l'Hopital 1, 4000 Liege, Belgium.
| |
Collapse
|
7
|
Chen L, Xuan Y, Zhu Y, Wang J, Tian W, Yang X, Chen W, Chen S, Wang S, Miao Q, Liu Y, Zhang R, Hu C, Zhang Y, Jin L, Yu H. Adipocyte secreted NRG4 ameliorates age-associated metabolic dysfunction. Biochem Pharmacol 2024; 225:116327. [PMID: 38823457 DOI: 10.1016/j.bcp.2024.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
With the progressive aging of society, there is an increasing prevalence of age-related diseases that pose a threat to the elderly's quality of life. Adipose tissue, a vital energy reservoir with endocrine functions, is one of the most vulnerable tissues in aging, which in turn influences systematic aging process, including metabolic dysfunction. However, the underlying mechanism is still poorly understood. In this study, we found that NRG4, a novel adipokine, is obviously decreased in adipocyte tissues and serums during aging. Moreover, delivered recombinant NRG4 protein (rNRG4) into aged mice can ameliorate age-associated insulin resistance, glucose disorders and other metabolic disfunction. In addition, rNRG4 treatment alleviates age-associated hepatic steatosis and sarcopenia, accompanied with altered gene signatures. Together, these results indicate that NRG4 plays a key role in the aging process and is a therapeutic target for the treatment of age-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yangyang Zhu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Jinghui Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Xihua Xian People's Hospital, Zhoukou 466000, China
| | - Wen Tian
- Department of Endocrinology, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaoyue Yang
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Siyi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qizeng Miao
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yahui Liu
- Department of Laboratory Medicine, Shanghai Post and Telecommunications Hospital, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China.
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Li Jin
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China.
| | - Haoyong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
8
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
9
|
Ealey KN, Togo J, Lee JH, Patel Y, Kim JR, Park SY, Sung HK. Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue. GeroScience 2024; 46:3457-3470. [PMID: 38379117 PMCID: PMC11009208 DOI: 10.1007/s11357-024-01093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
The aging of white adipose tissue (WAT) involves senescence of adipose stem and progenitor cells (ASPCs) and dysregulation of immune cell populations, serving as a major driver of age-associated adipose dysfunction and metabolic diseases. Conversely, the elimination of senescent ASPCs is associated with improvements in overall health. Intermittent fasting (IF), a dietary intervention that incorporates periodic cycles of fasting and refeeding, has been reported to promote weight loss and fat mass reduction and improve glucose and insulin homeostasis in both murine and human studies. While previous studies have assessed the effects of IF on obesity-associated metabolic dysfunction, few studies have examined the aging-specific changes to ASPCs and immune cell populations in WAT. Here, we show that IF in 18-20-month-old mice reduced senescent phenotypes of ASPCs and restored their adipogenic potential. Intriguingly, IF-treated mice exhibited an increase in adipose eosinophils, which has been reported to be associated with improved WAT homeostasis and immunological fitness in aged mice. The observed cellular and metabolic changes suggest that IF may be a feasible lifestyle regimen to reduce cellular senescence which could result in attenuation of downstream aging-induced WAT dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Kafi N Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacques Togo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jae-Ryong Kim
- Department of Biochemistry, Yeungnam University, Daegu, 42415, Republic of Korea.
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - So-Young Park
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
- Department of Physiology, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Sikder S, Pierce D, Sarkar ER, McHugh C, Quinlan KGR, Giacomin P, Loukas A. Regulation of host metabolic health by parasitic helminths. Trends Parasitol 2024; 40:386-400. [PMID: 38609741 DOI: 10.1016/j.pt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Obesity is a worldwide pandemic and major risk factor for the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). T2D requires lifelong medical support to limit complications and is defined by impaired glucose tolerance, insulin resistance (IR), and chronic low-level systemic inflammation initiating from adipose tissue. The current preventative strategies include a healthy diet, controlled physical activity, and medication targeting hyperglycemia, with underexplored underlying inflammation. Studies suggest a protective role for helminth infection in the prevention of T2D. The mechanisms may involve induction of modified type 2 and regulatory immune responses that suppress inflammation and promote insulin sensitivity. In this review, the roles of helminths in counteracting MetS, and prospects for harnessing these protective mechanisms for the development of novel anti-diabetes drugs are discussed.
Collapse
Affiliation(s)
- Suchandan Sikder
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia.
| | - Doris Pierce
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| | - Eti R Sarkar
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Connor McHugh
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| |
Collapse
|
11
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Day KS, Rempel L, Rossi FMV, Theret M. Origins and functions of eosinophils in two non-mucosal tissues. Front Immunol 2024; 15:1368142. [PMID: 38585275 PMCID: PMC10995313 DOI: 10.3389/fimmu.2024.1368142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils are a type of granulocyte named after the presence of their eosin-stained granules. Traditionally, eosinophils have been best known to play prominent roles in anti-parasitic responses and mediating allergic reactions. Knowledge of their behaviour has expanded with time, and they are now recognized to play integral parts in the homeostasis of gastrointestinal, respiratory, skeletal muscle, adipose, and connective tissue systems. As such, they are implicated in a myriad of pathologies, and have been the target of several medical therapies. This review focuses on the lifespan of eosinophils, from their origins in the bone marrow, to their tissue-resident role. In particular, we wish to highlight the functions of eosinophils in non-mucosal tissues with skeletal muscle and the adipose tissues as examples, and to discuss the current understanding of their participation in diseased states in these tissues.
Collapse
Affiliation(s)
- Katie S. Day
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Lucas Rempel
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Marine Theret
- Department of Medical Genetics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Zhou Z, Yao J, Wu D, Huang X, Wang Y, Li X, Lu Q, Qiu Y. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 2024; 57:513-527.e6. [PMID: 38262419 DOI: 10.1016/j.immuni.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Accumulation of senescent cells in organs and tissues is a hallmark of aging and known to contribute to age-related diseases. Although aging-associated immune dysfunction, or immunosenescence, is known to contribute to this process, the underlying mechanism remains elusive. Here, we report that type 2 cytokine signaling deficiency accelerated aging and, conversely, that the interleukin-4 (IL-4)-STAT6 pathway protected macrophages from senescence. Mechanistically, activated STAT6 promoted the expression of genes involved in DNA repair both via homologous recombination and Fanconi anemia pathways. Conversely, STAT6 deficiency induced release of nuclear DNA into the cytoplasm to promote tissue inflammation and organismal aging. Importantly, we demonstrate that IL-4 treatment prevented macrophage senescence and improved the health span of aged mice to an extent comparable to senolytic treatment, with further additive effects when combined. Together, our findings support that type 2 cytokine signaling protects macrophages from immunosenescence and thus hold therapeutic potential for improving healthy aging.
Collapse
Affiliation(s)
- Zhao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xun Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yushuang Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Qiang Lu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Finlay CM, Allen JE. IL-4-ever young: Type 2 cytokine signaling in macrophages slows aging. Immunity 2024; 57:403-406. [PMID: 38479355 DOI: 10.1016/j.immuni.2024.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 01/22/2025]
Abstract
Macrophages activated via the IL-4 receptor possess non-immune functions that support tissue homeostasis, but their specific role in aging is unknown. In this issue of Immunity, Zhou et al. show that IL-4 extends lifespan by inducing DNA repair pathways that protect macrophages from cellular senescence.
Collapse
Affiliation(s)
- Conor M Finlay
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Costa DG, Ferreira-Marques M, Cavadas C. Lipodystrophy as a target to delay premature aging. Trends Endocrinol Metab 2024; 35:97-106. [PMID: 37968143 DOI: 10.1016/j.tem.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Lipodystrophy syndromes are rare diseases characterized by low levels and an abnormal distribution of adipose tissue, caused by diverse genetic or acquired causes. These conditions commonly exhibit metabolic complications, including insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, and adipose tissue dysfunction. Moreover, genetic lipodystrophic laminopathies exhibit a premature aging phenotype, emphasizing the importance of restoring adipose tissue distribution and function. In this opinion, we discuss the relevance of adipose tissue reestablishment as a potential approach to alleviate premature aging and age-related complications in genetic lipodystrophy syndromes.
Collapse
Affiliation(s)
- Daniela G Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
16
|
Mukherjee S, Bruno MEC, Oakes J, Hawk GS, Stromberg AJ, Cohen DA, Starr ME. Mechanisms of γδ T cell accumulation in visceral adipose tissue with aging. FRONTIERS IN AGING 2024; 4:1258836. [PMID: 38274288 PMCID: PMC10808514 DOI: 10.3389/fragi.2023.1258836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
γδ T cells are resident in visceral adipose tissue (VAT) where they show an age-associated increase in numbers and contribute to local and systemic chronic inflammation. However, regulation of this population and mechanisms for the age-dependent accumulation are not known. In this study, we identified a progressive trend of γδ T cell accumulation in VAT over the lifespan in mice and explored physiological mechanisms contributing to accumulation. Using isochronic parabiotic pairs of wild-type (WT) and T cell receptor delta knockout (TCRδ KO) mice at young and old age, we confirmed that VAT γδ T cells are predominately a tissue-resident population which is sustained in aging. Migration of peripheral γδ T cells into VAT was observed at less than 10%, with a decreasing trend by aging, suggesting a minor contribution of recruitment to γδ T cell accumulation with aging. Since tissue-resident T cell numbers are tightly regulated by a balance between proliferation and programmed cell death, we further explored these processes. Using in vivo EdU incorporation and the proliferation marker Ki67, we found that the absolute number of proliferating γδ T cells in VAT is significantly higher in the aged compared to young and middle-aged mice, despite a decline in the proportion of proliferating to non-proliferating cells by age. Analysis of apoptosis via caspase 3/7 activation revealed that VAT γδ T cells show reduced apoptosis starting at middle age and continuing into old age. Further, induction of apoptosis using pharmacological inhibitors of Bcl2 family proteins revealed that VAT γδ T cells at middle age are uniquely protected from apoptosis via a mechanism independent of traditional anti-apoptotic Bcl2-family proteins. Collectively, these data indicate that protection from apoptosis at middle age increases survival of tissue-resident γδ T cells resulting in an increased number of proliferative cells from middle age onward, and leading to the age-associated accumulation of γδ T cells in VAT. These findings are important to better understand how adipose tissue dysfunction and related changes in the immune profile contribute to inflammaging among the elderly.
Collapse
Affiliation(s)
- Sujata Mukherjee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Maria E. C. Bruno
- Division of Research, Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Jason Oakes
- Division of Laboratory Animal Resources, University of Kentucky, Lexington, KY, United States
| | - Gregory S. Hawk
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Arnold J. Stromberg
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Donald A. Cohen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Marlene E. Starr
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- Division of Research, Department of Surgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Hosseini A, Germic N, Markov N, Stojkov D, Oberson K, Yousefi S, Simon HU. The regulatory role of eosinophils in adipose tissue depends on autophagy. Front Immunol 2024; 14:1331151. [PMID: 38235134 PMCID: PMC10792036 DOI: 10.3389/fimmu.2023.1331151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Obesity is a metabolic condition that elevates the risk of all-cause mortality. Brown and beige adipose tissues, known for their thermogenic properties, offer potential therapeutic targets for combating obesity. Recent reports highlight the role of immune cells, including eosinophils, in adipose tissue homeostasis, while the underlying mechanisms are poorly understood. Methods To study the role of autophagy in eosinophils in this process, we used a genetic mouse model lacking autophagy-associated protein 5 (Atg5), specifically within the eosinophil lineage (Atg5 eoΔ). Results The absence of Atg5 in eosinophils led to increased body weight, impaired glucose metabolism, and alterations in the cellular architecture of adipose tissue. Our findings indicate that Atg5 modulates the functional activity of eosinophils within adipose tissue rather than their abundance. Moreover, RNA-seq analysis revealed upregulation of arginase 2 (Arg2) in Atg5-knockout eosinophils. Increased Arg2 activity was shown to suppress adipocyte beiging. Furthermore, we observed enrichment of the purine pathway in the absence of Atg5 in eosinophils, leading to a pro-inflammatory shift in macrophages and a further reduction in beiging. Discussion The data shed light on the importance of autophagy in eosinophils and its impact on adipose tissue homeostasis by suppressing Arg2 expression and limiting inflammation in adipose tissue.
Collapse
Affiliation(s)
- Aref Hosseini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
18
|
Yang J, Liu T, Zhang L, Li X, Du FP, Liu Q, Dong H, Liu Y. Eosinophils at diagnosis are elevated in amyotrophic lateral sclerosis. Front Neurol 2023; 14:1289467. [PMID: 38187158 PMCID: PMC10768070 DOI: 10.3389/fneur.2023.1289467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a rare, devastating neurodegenerative disease that affects upper and lower motor neurons. To date, no effective treatment or reliable biomarker for ALS has been developed. In recent years, many factors have been proposed as possible biomarkers of ALS; however, no consensus has been reached. Therefore, a reliable biomarker is urgently needed. Eosinophils may play a crucial role in healthy humans and diseases, and serve as a biomarker for many chronic diseases. Methods Routine blood test results were collected from 66 healthy controls and 59 patients with ALS. The percentages and total numbers of each cell population were analyzed, and the correlation between these indicators and patient ALS functional rating scale-revised (ALSFRS-R) score or disease progression rate (ΔFS score) was analyzed. Results Compared to healthy controls, the number of blood leukocytes, neutrophils, monocytes, and basophils was significantly decreased in patients with ALS (p = 0.002, p = 0.001, p = 0.049, and p < 0.0001, respectively). There was an increase in the number of eosinophils (p < 0.0001), but no difference in the number of lymphocytes between patients with ALS and healthy controls was found (p = 0.563). Compared to healthy controls, the percentage of neutrophils was decreased and the percentage of lymphocytes and eosinophils was increased in patients with ALS (p = 0.01, p = 0.012, and p = 0.001, respectively). There was no difference between patients with ALS and healthy controls in the percentage of monocytes and basophils (p = 0.622 and p = 0.09, respectively). However, only the percentage and number of eosinophils had a correlation with the ΔFS score. Further multivariate analysis revealed a significant correlation between the disease duration, eosinophil count and percentage, and the disease progression rate (p < 0.0001, p = 0.048, and p = 0.023, respectively). The neutrophil-to-eosinophil ratio (NER), lymphocyte-to-eosinophil ratio (LER), and monocyte-to-eosinophil ratio (MER) were significantly lower in patients with ALS than in healthy controls. However, only the LER was significantly correlated with the ΔFS score. Conclusion These observations implicate neutrophils, lymphocytes, and eosinophils as important factors, and increasing eosinophil counts were negatively correlated with the ΔFS score in patients with ALS.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Tingting Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Lei Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Feng Ping Du
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
19
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
20
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
22
|
Ghaffari S, Rezaei N. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy. J Transl Med 2023; 21:551. [PMID: 37587450 PMCID: PMC10433623 DOI: 10.1186/s12967-023-04418-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023] Open
Abstract
Despite being an integral part of the immune response in the tumor microenvironment (TME), few studies have mechanistically elucidated eosinophil functions in cancer outcomes. Eosinophils are a minor population of granulocytes that are mostly explored in asthma and allergic disorders. Their influence on primary and metastatic tumors, however, has recently come to light. Eosinophils' diverse armamentarium of mediators and receptors allows them to participate in innate and adaptive immunity, such as type 1 and type 2 immunity, and shape TME and tumor outcomes. Based on TME cells and cytokines, activated eosinophils drive other immune cells to ultimately promote or suppress tumor growth. Discovering exactly what conditions determine the pro-tumorigenic or anti-tumorigenic role of eosinophils allows us to take advantage of these signals and devise novel strategies to target cancer cells. Here, we first revisit eosinophil biology and differentiation as recognizing eosinophil mediators is crucial to their function in homeostatic and pathological conditions as well as tumor outcome. The bulk of our paper discusses eosinophil interactions with tumor cells, immune cells-including T cells, plasma cells, natural killer (NK) cells-and gut microbiota. Eosinophil mediators, such as IL-5, IL-33, granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin (TSLP), and CCL11 also determine eosinophil behavior toward tumor cells. We then examine the implications of these findings for cancer immunotherapy approaches, including immune checkpoint blockade (ICB) therapy using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy. Eosinophils synergize with CAR T cells and ICB therapy to augment immunotherapies.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
23
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
24
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Molecular Markers of Blood Cell Populations Can Help Estimate Aging of the Immune System. Int J Mol Sci 2023; 24:ijms24065708. [PMID: 36982782 PMCID: PMC10055688 DOI: 10.3390/ijms24065708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Aging of the immune system involves functional changes in individual cell populations, in hematopoietic tissues and at the systemic level. They are mediated by factors produced by circulating cells, niche cells, and at the systemic level. Age-related alterations in the microenvironment of the bone marrow and thymus cause a decrease in the production of naive immune cells and functional immunodeficiencies. Another result of aging and reduced tissue immune surveillance is the accumulation of senescent cells. Some viral infections deplete adaptive immune cells, increasing the risk of autoimmune and immunodeficiency conditions, leading to a general degradation in the specificity and effectiveness of the immune system in old age. During the COVID-19 pandemic, the state-of-the-art application of mass spectrometry, multichannel flow cytometry, and single-cell genetic analysis have provided vast data on the mechanisms of aging of the immune system. These data require systematic analysis and functional verification. In addition, the prediction of age-related complications is a priority task of modern medicine in the context of the increase in the aged population and the risk of premature death during epidemics. In this review, based on the latest data, we discuss the mechanisms of immune aging and highlight some cellular markers as indicators of age-related immune disbalance that increase the risk of senile diseases and infectious complications.
Collapse
|
26
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
27
|
Shu T, Zhang J, Zhou Y, Chen Z, Li J, Tang Q, Lei W, Xing Y, Wang J, Wang C. Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA. Eur Respir J 2023; 61:13993003.00582-2022. [PMID: 36423907 PMCID: PMC9978164 DOI: 10.1183/13993003.00582-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disease featuring pulmonary vessel remodelling and perivascular inflammation. The effect, if any, of eosinophils (EOS) on the development of PH remains unclear. METHODS EOS infiltration and chemotaxis were investigated in peripheral blood and lung tissues from pulmonary arterial hypertension (PAH) patients without allergic history and from sugen/hypoxia-induced PH mice. The role of EOS deficiency in PH development was investigated using GATA1-deletion (ΔdblGATA) mice and anti-interleukin 5 antibody-treated mice and rats. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was conducted to identify the critical oxylipin molecule(s) produced by EOS. Culture supernatants and lysates of EOS were collected to explore the mechanisms in co-culture cell experiments. RESULTS There was a lower percentage of EOS in peripheral blood but higher infiltration in lung tissues from PAH patients and PH mice. PAH/PH lungs showed increased EOS-related chemokine expression, mainly C-C motif chemokine ligand 11 derived from adventitial fibroblasts. EOS deficiency aggravated PH in rodents, accompanied by increased neutrophil and monocyte/macrophage infiltration. EOS highly expressed arachidonate 15-lipoxygenase (ALOX15). 14-hydroxy docosahexaenoic acid (14-HDHA) and 17-HDHA were critical downstream oxylipins produced by EOS, which showed anti-inflammatory effects on recruitment of neutrophils and monocytes/macrophages through N-formyl peptide receptor 2. They also repressed pulmonary artery smooth muscle cell (PASMC) proliferation by activating peroxisome proliferator-activated receptor γ and blunting Stat3 phosphorylation. CONCLUSIONS In PH development without external stimuli, peripheral blood exhibits a low EOS level. EOS play a protective role by suppressing perivascular inflammation and maintaining PASMC homeostasis via 14/17-HDHA.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this manuscript
| | - Jiawei Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this manuscript
| | - Yitian Zhou
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- MD Program, Peking Union Medical College, Beijing, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinqiu Li
- State Key Laboratory of Medical Molecular Biology, Dept of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qihao Tang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqi Lei
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Dept of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- J. Wang and Y. Xing contributed equally to this article as lead authors and supervised the work
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- J. Wang and Y. Xing contributed equally to this article as lead authors and supervised the work
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Dept of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Dept of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Gonzalez Gomez H, Savarraj JPJ, Paz AS, Ren X, Chen H, McCullough LD, Choi HA, Gusdon AM. Peripheral eosinophil trends and clinical outcomes after non-traumatic subarachnoid hemorrhage. Front Neurol 2023; 14:1051732. [PMID: 36895904 PMCID: PMC9989180 DOI: 10.3389/fneur.2023.1051732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Background/objective Uncontrolled systemic inflammation after non-traumatic subarachnoid hemorrhage (SAH) is associated with worse outcomes. Changes in the peripheral eosinophil count have been linked to worse clinical outcomes after ischemic stroke, intracerebral hemorrhage, and traumatic brain injury. We aimed to investigate the association of eosinophil counts with clinical outcomes after SAH. Methods This retrospective observational study included patients with SAH admitted from January 2009 to July 2016. Variables included demographics, modified Fisher scale (mFS), Hunt-Hess Scale (HHS), global cerebral edema (GCE), and the presence of any infection. Peripheral eosinophil counts were examined as part of routine clinical care on admission and daily for 10 days after aneurysmal rupture. Outcome measures included dichotomized discharge mortality, modified Ranked Scale (mRS) score, delayed cerebral ischemia (DCI), vasospasm, and need for ventriculoperitoneal shunt (VPS). Statistical tests included the chi-square test, Student's t-test, and multivariable logistic regression (MLR) model. Results A total of 451 patients were included. The median age was 54 (IQR 45, 63) years, and 295 (65.4%) were female patients. On admission, 95 patients (21.1%) had a high HHS (>4), and 54 (12.0%) had GCE. A total of 110 (24.4%) patients had angiographic vasospasm, 88 (19.5%) developed DCI, 126 (27.9%) had an infection during hospitalization, and 56 (12.4%) required VPS. Eosinophil counts increased and peaked on days 8-10. Higher eosinophil counts on days 3-5 and day 8 were seen in patients with GCE (p < 0.05). Higher eosinophil counts on days 7-9 (p < 0.05) occurred in patients with poor discharge functional outcomes. In multivariable logistic regression models, higher day 8 eosinophil count was independently associated with worse discharge mRS (OR 6.72 [95% CI 1.27, 40.4], p = 0.03). Conclusion This study demonstrated that a delayed increase in eosinophils after SAH occurs and may contribute to functional outcomes. The mechanism of this effect and the relationship with SAH pathophysiology merit further investigation.
Collapse
Affiliation(s)
- Hugo Gonzalez Gomez
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Jude P. J. Savarraj
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Atzhiry S. Paz
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Xuefang Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Hua Chen
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Huimahn A. Choi
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Aaron M. Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
29
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
30
|
Liu R, Peng Y, Ye H, Xia X, Chen W, Huang F, Li Z, Yang X. Peripheral Eosinophil Count Associated with Disease Activity and Clinical Outcomes in Hospitalized Patients with Lupus Nephritis. Nephron Clin Pract 2023; 147:408-416. [PMID: 36657400 DOI: 10.1159/000528486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/13/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the association of peripheral eosinophil (EOS) count with disease activity and kidney outcomes in lupus nephritis (LN) patients. METHODS A total of 453 hospitalized and biopsy-proven LN patients at our hospital from 2006 to 2013 were enrolled, of which 388 patients had repeated measurements of EOS. Relationships were explored between average EOS and disease activity at baseline, using the systemic lupus erythematosus disease activity (SLEDAI) and activity index (AI) on kidney biopsy. Follow-up data were available through December 2016. The primary outcome measure was a composite of doubling of serum creatinine and end-stage kidney disease after a median follow-up of 51 months. RESULTS The mean age of the enrolled 388 LN patients was 33.1 ± 10.8 years old, and 335 (86%) were female. The median average peripheral EOS count was 0.033 (0.015-0.057) ×109/L. Mean AI and SLEDAI score were 6.8 ± 2.5 and 14.9 ± 5.4, respectively. Logistic regression models showed that decreased average EOS was independently associated with higher AI (≥6) and higher SLEDAI (≥15) (odds ratio [OR] 0.93, 95% confidence interval [CI] 0.90-0.97; and OR 0.96, 95% CI: 0.93-0.99, respectively). There was a parabolic relationship between average EOS and the primary outcome, with hazard ratio (HR) > 1 for both levels ≤0.033 and >0.16 × 109/L. CONCLUSION Lower EOS count was independently associated with severe disease activity and kidney progression in LN.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xi Xia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Fengxian Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
31
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
32
|
Li Z, Gao Z, Sun T, Zhang S, Yang S, Zheng M, Shen H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front Immunol 2023; 14:1098570. [PMID: 36911663 PMCID: PMC9998503 DOI: 10.3389/fimmu.2023.1098570] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Meteorin-like, also known as Metrnl, Meteorin-β, Subfatin, and Cometin, is a novel secreted protein exerting pleiotropic effects on inflammation, immunology, and metabolism. Earlier research on this hormone focused on regulating energy expenditure and glucose homeostasis. Consequently, several studies attempted to characterize the molecule mechanism of Metrnl in glucose metabolism and obesity-related disorders but reported contradictory clinical results. Recent studies gradually noticed its multiple protective functions in inflammatory immune regulations and cardiometabolic diseases, such as inducing macrophage activation, angiogenesis, tissue remodeling, bone formation, and preventing dyslipidemias. A comprehensive understanding of this novel protein is essential to identify its significance as a potential therapeutic drug or a biomarker of certain diseases. In this review, we present the current knowledge on the physiology of Metrnl and its roles in inflammation, immunology, and metabolism, including animal/cell interventional preclinical studies and human clinical studies. We also describe controversies regarding the data of circulation Metrnl in different disease states to determine its clinical application better.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Ziyu Gao
- Department of Thyroid Surgery, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shipeng Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shengnan Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Meilin Zheng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| |
Collapse
|
33
|
Jackson DJ, Pavord ID. Living without eosinophils: evidence from mouse and man. Eur Respir J 2023; 61:13993003.01217-2022. [PMID: 35953100 PMCID: PMC9834633 DOI: 10.1183/13993003.01217-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 01/19/2023]
Abstract
The enduring view of eosinophils, as immune effector cells whose primary function is host defence against infection by helminths and other microbial pathogens, sets the stage for a fundamental question regarding the safety of therapeutic eosinophil depletion. If eosinophils are significantly reduced or altogether depleted in an effort to alleviate the negative effects of tissue eosinophilia and eosinophilic inflammation in conditions such as asthma, COPD, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome, would these patients become susceptible to infection or another illness? Development of mouse models in which the eosinophil lineage has been ablated, observations in patients naturally lacking eosinophils and data from studies of eosinophil-depleting medical therapies indicate that the absence of eosinophils is not detrimental to health. The evidence available to date, as presented in this review, supports the conclusion that even if certain homeostatic roles for the eosinophil may be demonstrable in controlled animal models and human in vitro settings, the evolution of the human species appears to have provided sufficient immune redundancy such that one may be hale and hearty without eosinophils.
Collapse
Affiliation(s)
- David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
36
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
37
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
38
|
Palmer AK, Jensen MD. Metabolic changes in aging humans: current evidence and therapeutic strategies. J Clin Invest 2022; 132:158451. [PMID: 35968789 PMCID: PMC9374375 DOI: 10.1172/jci158451] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aging and metabolism are inextricably linked, and many age-related changes in body composition, including increased central adiposity and sarcopenia, have underpinnings in fundamental aging processes. These age-related changes are further exacerbated by a sedentary lifestyle and can be in part prevented by maintenance of activity with aging. Here we explore the age-related changes seen in individual metabolic tissues - adipose, muscle, and liver - as well as globally in older adults. We also discuss the available evidence for therapeutic interventions such as caloric restriction, resistance training, and senolytic and senomorphic drugs to maintain healthy metabolism with aging, focusing on data from human studies.
Collapse
Affiliation(s)
| | - Michael D. Jensen
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Kalemci S, Bozdağ HG. Do blood eosinophil levels affect the prognosis of AECOPD patients? Heart Lung 2022; 56:182. [PMID: 35870959 DOI: 10.1016/j.hrtlng.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Serdar Kalemci
- Kocaeli Health and Technology University, European Vocational College, Department of Anesthesia, Kocaeli, Turkey
| | - Huriye Gülistan Bozdağ
- Muğla Sıtkı Koçman University, School of Medicine, Department of Chest Surgery, Muğla, Turkey.
| |
Collapse
|
40
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
41
|
Qian XH, Liu XL, Chen SD, Tang HD. Identification of Immune Hub Genes Associated With Braak Stages in Alzheimer’s Disease and Their Correlation of Immune Infiltration. Front Aging Neurosci 2022; 14:887168. [PMID: 35619939 PMCID: PMC9129065 DOI: 10.3389/fnagi.2022.887168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Tau pathology is one of the pathological features of AD, and its progression is closely related to the progress of AD. Immune system dysfunction is an important mediator of Tau pathological progression, but the specific molecular mechanism is still unclear. The purpose of this study is to determine the immune hub genes and peripheral immune cell infiltration associated with the Braak stages, and the molecular mechanisms between them. Methods In this study, 60 samples with different Braak stages in the GSE106241 dataset were used to screen Braak stages-related immune hub genes by using the WGCNA package in R and cytoHubba plugin. The temporal lobe expression data in the Alzdata database were used to verify the results. The correlation between the expression level of immune core genes and the pathological features of AD was analyzed to evaluate the abundance of peripheral immune cell infiltration and screened Braak stages-related cells. Finally, we used correlation analysis of immune hub genes and immune cells and Gene Set Enrichment Analysis (GSEA) of them. Results Seven genes (GRB2, HSP90AA1, HSPA4, IGF1, KRAS, PIK3R1, and PTPN11) were identified as immune core genes after the screening of the test datasets and validation of independent data. Among them, Kirsten rat sarcoma viral oncogene homolog (KRAS) and Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) were the most closely related to Tau and Aβ pathology in AD. In addition, the ImmuneScore increased gradually with the increase of Braak stages. Five types of immune cells (plasma cells, T follicular helper cells, M2 macrophage, activated NK cells, and eosinophils) were correlated with Braak stages. KRAS and PIK3R1 were the immune core genes most related to the abnormal infiltration of peripheral immune cells. They participated in the regulation of the pathological process of AD through axon guidance, long-term potentiation, cytokine–cytokine receptor interaction, RNA polymerase, etc. Conclusion The KRAS and PIK3R1 genes were identified as the immune hub genes most associated with Tau pathological progress in AD. The abnormal infiltration of peripheral immune cells mediated by these cells was involved in the Tau pathological process. This provides new insights for AD.
Collapse
Affiliation(s)
- Xiao-hang Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Sheng-di Chen,
| | - Hui-dong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui-dong Tang,
| |
Collapse
|
42
|
Theret M, Rempel L, Hashimoto J, Ritso M, Tung LW, Li FF, Messing M, Hughes M, McNagny K, Rossi F. Elevated numbers of infiltrating eosinophils accelerate the progression of Duchenne muscular dystrophy pathology in mdx mice. Development 2022; 149:274824. [DOI: 10.1242/dev.200112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Eosinophils, best known for their role in anti-parasitic responses, have recently been shown to actively participate in tissue homeostasis and repair. Their regulation must be tightly controlled, as their absence or hyperplasia is associated with chronic disease (e.g. asthma or inflammatory bowel disease). In the context of skeletal muscle, eosinophils play a supportive role after acute damage. Indeed, their depletion leads to strong defects in skeletal muscle regeneration and, in the absence of eosinophil-secreted interleukin (IL) 4 and IL13, fibro-adipogenic progenitors fail to support muscle stem cell proliferation. However, the role of eosinophils in muscular dystrophy remains elusive. Although it has been shown that eosinophils are present in higher numbers in muscles from mdx mice (a mouse model for Duchenne muscular dystrophy), their depletion does not affect muscle histopathology at an early age. Here, we evaluated the impact of hyper-eosinophilia on the development of fibrofatty infiltration in aged mdx mice and found that muscle eosinophilia leads to defects in muscle homeostasis, regeneration and repair, and eventually hastens death.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Joshua Hashimoto
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Morten Ritso
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fang Fang Li
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Melina Messing
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael Hughes
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kelly McNagny
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fabio Rossi
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
43
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
44
|
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13:300. [PMID: 35379822 PMCID: PMC8980023 DOI: 10.1038/s41419-022-04752-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.
Collapse
Affiliation(s)
- Min-Yi Ou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hao Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
45
|
Wechsler ME, Ackerman SJ, Weller PF. In Reply-Are Eosinophils Needed for Normal Health? Mayo Clin Proc 2022; 97:805-807. [PMID: 35379426 DOI: 10.1016/j.mayocp.2022.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | - Steven J Ackerman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Peter F Weller
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Janson C, Bjermer L, Lehtimäki L, Kankaanranta H, Karjalainen J, Altraja A, Yasinska V, Aarli B, Rådinger M, Hellgren J, Lofdahl M, Howarth PH, Porsbjerg C. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J 2022; 9:2040707. [PMID: 35251534 PMCID: PMC8896196 DOI: 10.1080/20018525.2022.2040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eosinophils have a broad range of functions, both homeostatic and pathological, mediated through an array of cell surface receptors and specific secretory granules that promote interactions with their microenvironment. Eosinophil development, differentiation, activation, survival and recruitment are closely regulated by a number of type 2 cytokines, including interleukin (IL)-5, the key driver of eosinophilopoiesis. Evidence shows that type 2 inflammation, driven mainly by interleukin (IL)-4, IL-5 and IL-13, plays an important role in the pathophysiology of eosinophilic airway diseases, including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Several biologic therapies have been developed to suppress type 2 inflammation, namely mepolizumab, reslizumab, benralizumab, dupilumab, omalizumab and tezepelumab. While these therapies have been associated with clinical benefits in a range of eosinophilic diseases, their development has highlighted several challenges and directions for future research. These include the need for further information on disease progression and identification of treatable traits, including clinical characteristics or biomarkers that will improve the prediction of treatment response. The Nordic countries have a long tradition of collaboration using patient registries and Nordic asthma registries provide unique opportunities to address these research questions. One example of such a registry is the NORdic Dataset for aSThmA Research (NORDSTAR), a longitudinal population-based dataset containing all 3.3 million individuals with asthma from four Nordic countries (Denmark, Finland, Norway and Sweden). Large-scale, real-world registry data such as those from Nordic countries may provide important information regarding the progression of eosinophilic asthma, in addition to clinical characteristics or biomarkers that could allow targeted treatment and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jussi Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Alan Altraja
- Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentyna Yasinska
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
| | - Bernt Aarli
- Department of Clinical Science, University of Bergen and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Hellgren
- Department of Otorhinolaryngology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter H Howarth
- Respiratory Medical Franchise, GSK, Brentford, Middlesex, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
47
|
Wang W, Zhang W, Hu D, Li L, Cui L, Liu J, Liu S, Xu J, Wu S, Deng F, Guo X. Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127462. [PMID: 34653859 DOI: 10.1016/j.jhazmat.2021.127462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Unhealthy metabolic status increases risks of cardiovascular and other diseases. This study aims to explore whether there is a link between O3 and metabolic health indicators through a viewpoint of inflammatory pathways. 49 metabolically healthy normal-weight (MH-NW) and 39 metabolically healthy obese (MHO) young adults aged 18-26 years were recruited from a panel study with three visits. O3 exposure were estimated based on fixed-site environmental monitoring data and time-activity diary for each participant. Compared to MH-NW people, MHO people were more susceptible to the adverse effects on metabolic status, including blood pressure, glucose, and lipid indicators when exposed to O3. For instance, O3 exposure was associated with significant decreases in high-density lipoprotein cholesterol (HDL-C), and increases in C-peptide and low-density lipoprotein cholesterol (LDL-C) among MHO people, while only weaker changes in HDL-C and LDL-C among MH-NW people. Mediation analyses indicated that leptin mediated the metabolic health effects in both groups, while eosinophils and MCP-1 were also important mediating factors for the MHO people. Although both with a metabolically healthy status, compared to normal-weight people, obese people might be more susceptible to the negative effects of O3 on metabolic status, possibly through inflammatory indicators such as leptin, eosinophils, and MCP-1.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
48
|
Camell CD. Adipose tissue microenvironments during aging: Effects on stimulated lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159118. [PMID: 35131468 PMCID: PMC8986088 DOI: 10.1016/j.bbalip.2022.159118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a critical organ for nutrient sensing, energy storage and maintaining metabolic health. The failure of adipose tissue homeostasis leads to metabolic disease that is seen during obesity or aging. Local metabolic processes are coordinated by interacting microenvironments that make up the complexity and heterogeneity of the adipose tissue. Catecholamine-induced lipolysis, a critical pathway in adipocytes that drives the release of stored triglyceride as free fatty acid after stimulation, is impaired during aging. The impairment of this pathway is associated with a failure to maintain a healthy body weight, core body-temperature during cold stress or mount an immune response. Along with impairments in aged adipocytes, aging is associated with an accumulation of inflammation, immune cell activation, and increased dysfunction in the nervous and lymphatic systems within the adipose tissue. Together these microenvironments support the initiation of stimulated lipolysis and the transport of free fatty acid under conditions of metabolic homeostasis. However, during aging, the defects in these cellular systems result in a reduction in ability to stimulate lipolysis. This review will focus on how the immune, nervous and lymphatic systems interact during tissue homeostasis, review areas that are impaired with aging and discuss areas of research that are currently unclear.
Collapse
Affiliation(s)
- Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
49
|
Abstract
Neuronal innervation in the adipose tissues plays a crucial role in regulating adipose thermogenic capacity and metabolic homeostasis. The tissue-wide nerves display a large extent of structural plasticity under physiological and pathological conditions that alter the neuronal control of metabolic states. We find here that neuronal plasticity is regulated by immune cells, which constitutes an appealing way to reshape neural-controlled energy balance by targeting immune components. Sympathetic innervation regulates energy balance, and the nerve density in the adipose tissues changes under various metabolic states, resulting in altered neuronal control and conferring resilience to metabolic challenges. However, the impact of the immune milieu on neuronal innervation is not known. Here, we examined the regulatory role on nerve plasticity by eosinophils and found they increased cell abundance in response to cold and produced nerve growth factor (NGF) in the white adipose tissues (WAT). Deletion of Ngf from eosinophils or depletion of eosinophils impairs cold-induced axonal outgrowth and beiging process. The spatial proximity between sympathetic nerves, IL-33–expressing stromal cells, and eosinophils was visualized in both human and mouse adipose tissues. At the cellular level, the sympathetic adrenergic signal induced calcium flux in the stromal cells and subsequent release of IL-33, which drove the up-regulation of IL-5 from group 2 innate lymphoid cells (ILC2s), leading to eosinophil accretion. We propose a feed-forward loop between sympathetic activity and type 2 immunity that coordinately enhances sympathetic innervation and promotes energy expenditure.
Collapse
|
50
|
Dahlquist KJ, Camell CD. Aging Leukocytes and the Inflammatory Microenvironment of the Adipose Tissue. Diabetes 2022; 71:23-30. [PMID: 34995348 PMCID: PMC8763870 DOI: 10.2337/dbi21-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Age-related immunosenescence, defined as an increase in inflammaging and the decline of the immune system, leads to tissue dysfunction and increased risk for metabolic disease. The elderly population is expanding, leading to a heightened need for therapeutics to improve health span. With age, many alterations of the immune system are observed, including shifts in the tissue-resident immune cells, increased expression of inflammatory factors, and the accumulation of senescent cells, all of which are responsible for a chronic inflammatory loop. Adipose tissue and the immune cell activation within are of particular interest for their well-known roles in metabolic disease. Recent literature reveals that adipose tissue is an organ in which signs of initial aging occur, including immune cell activation. Aged adipose tissue reveals changes in many innate and adaptive immune cell subsets, revealing a complex interaction that contributes to inflammation, increased senescence, impaired catecholamine-induced lipolysis, and impaired insulin sensitivity. Here, we will describe current knowledge surrounding age-related changes in immune cells while relating those findings to recent discoveries regarding immune cells in aged adipose tissue.
Collapse
Affiliation(s)
| | - Christina D. Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|