1
|
Agueda-Oyarzabal M, Isidor MS, Plucińska K, Ingerslev LR, Dmytriyeva O, Petersen PSS, Laftih S, Pontoppidan AB, Henningsen JB, Rupar K, Brown EL, Schwartz TW, Barrès R, Gerhart-Hines Z, Schéele CC, Emanuelli B. Transcriptomic signatures of cold acclimated adipocytes reveal CXCL12 as a Brown autocrine and paracrine chemokine. Mol Metab 2025; 93:102102. [PMID: 39848402 DOI: 10.1016/j.molmet.2025.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications. For this, mRNA levels in mature adipocytes from mouse adipose depots were assessed using RNA sequencing upon chronic cold acclimation, and bioinformatic analysis was used to identify secreted factors. Among 858 cold-sensitive transcripts in BAT adipocytes were 210 secreted factor-encoding genes, and Cxcl12 was the top brown adipocyte-enriched cytokine. Cxcl12 mRNA expression analysis by RT-qPCR and fluorescence in situ hybridization specified Cxcl12 distribution in various cell types, and indicated its enrichment in cold-acclimated brown adipocytes. We found that CXCL12 secretion from BAT was increased after chronic cold, yet its level in plasma remained unchanged, suggesting a local/paracrine function. Cxcl12 knockdown in mature brown adipocytes impaired thermogenesis, as assessed by norepinephrine (NE)-induced glycerol release and mitochondrial respiration. However, knockdown of Cxcl12 did not impact β-adrenergic signaling, suggesting that CXCL12 regulates adipocyte function downstream of the β-adrenergic pathway. Moreover, we provide evidence for CXCL12 to exert intercellular cross-talk via its capacity to promote macrophage chemotaxis and neurite outgrowth. Collectively, our results indicate that CXCL12 is a brown adipocyte-enriched, cold-induced secreted factor involved in adipocyte function and the BAT microenvironment communication network.
Collapse
Affiliation(s)
- Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Laftih
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel B Pontoppidan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Rupar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla C Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Braunsperger A, Bauer M, Brahim CB, Seep L, Tischer D, Peitzsch M, Hasenauer J, Figueroa SH, Worthmann A, Heeren J, Dyar KA, Koehler K, Soriano-Arroquia A, Schönfelder M, Wackerhage H. Effects of time-of-day on the noradrenaline, adrenaline, cortisol and blood lipidome response to an ice bath. Sci Rep 2025; 15:1263. [PMID: 39779795 PMCID: PMC11711488 DOI: 10.1038/s41598-025-85304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
While the effect of time-of-day (morning versus evening) on hormones, lipids and lipolysis has been studied in relation to meals and exercise, there are no studies that have investigated the effects of time-of-day on ice bath induced hormone and lipidome responses. In this crossover-designed study, a group of six women and six men, 26 ± 5 years old, 176 ± 7 cm tall, weighing 75 ± 10 kg, and a BMI of 23 ± 2 kg/m2 had an ice bath (8-12 °C for 5 min) both in the morning and evening on separate days. Absence from intense physical exercise, nutrient intake and meal order was standardized in the 24 h prior the ice baths to account for confounders such as diet or exercise. We collected venous blood samples before and after (5 min and 30 min) the ice baths to measure hormones (noradrenaline, adrenaline, and cortisol) and lipid levels in plasma via liquid chromatography mass spectrometry shotgun lipidomics. We found that ice baths in the morning increase plasma fatty acids more than in the evening. Overall plasma lipid composition significantly differed in-between the morning and evening, and only in the morning ice bathing is accompanied by significantly increased plasma fatty acids from 5.1 ± 2.2% to 6.0 ± 2.4% (P = 0.029) 5 min after and to 6.3 ± 3.1% (P = 0.008) 30 min after. Noradrenaline was not affected by time-of-day and increased significantly immediately after the ice baths in the morning by 127 ± 2% (pre: 395 ± 158 pg/ml, post 5 min: 896 ± 562 pg/ml, P = 0.025) and in the evening by 144 ± 2% (pre: 385 ± 146 pg/ml, post 5 min: 937 ± 547 pg/ml, P = 0.015). Cortisol was generally higher in the morning than in the evening (pre: 179 ± 108 pg/ml versus 91 ± 59 pg/ml, P = 0.013; post 5 min: 222 ± 96 pg/ml versus 101 ± 52 pg/ml, P = 0.001; post 30 min: 190 ± 96 pg/ml versus 98 ± 54 pg/ml, P = 0.009). There was no difference in the hormonal and lipidome response to an ice bath between women and men. The main finding of the study was that noradrenaline, adrenaline, cortisol and plasma lipidome responses are similar after an ice bath in the morning and evening. However, ice baths in the morning increase plasma fatty acids more than in the evening.
Collapse
Affiliation(s)
- Alexander Braunsperger
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Maximilian Bauer
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Chaima Ben Brahim
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lea Seep
- Computational Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dominik Tischer
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan Hasenauer
- Computational Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Helmholtz Center Munich, German Research Center for Environmental Health, Computational Health Center, Munich, Germany
| | - Sieglinde Hechenbichler Figueroa
- Professorship of Exercise, Nutrition and Health, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Koehler
- Professorship of Exercise, Nutrition and Health, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ana Soriano-Arroquia
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | - Martin Schönfelder
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Henning Wackerhage
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Erdil E, Becker AS, Schwyzer M, Martinez-Tellez B, Ruiz JR, Sartoretti T, Vargas HA, Burger AI, Chirindel A, Wild D, Zamboni N, Deplancke B, Gardeux V, Maushart CI, Betz MJ, Wolfrum C, Konukoglu E. Predicting standardized uptake value of brown adipose tissue from CT scans using convolutional neural networks. Nat Commun 2024; 15:8402. [PMID: 39333526 PMCID: PMC11436835 DOI: 10.1038/s41467-024-52622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
The standard method for identifying active Brown Adipose Tissue (BAT) is [18F]-Fluorodeoxyglucose ([18F]-FDG) PET/CT imaging, which is costly and exposes patients to radiation, making it impractical for population studies. These issues can be addressed with computational methods that predict [18F]-FDG uptake by BAT from CT; earlier population studies pave the way for developing such methods by showing some correlation between the Hounsfield Unit (HU) of BAT in CT and the corresponding [18F]-FDG uptake in PET. In this study, we propose training convolutional neural networks (CNNs) to predict [18F]-FDG uptake by BAT from unenhanced CT scans in the restricted regions that are likely to contain BAT. Using the Attention U-Net architecture, we perform experiments on datasets from four different cohorts, the largest study to date. We segment BAT regions using predicted [18F]-FDG uptake values, achieving 23% to 40% better accuracy than conventional CT thresholding. Additionally, BAT volumes computed from the segmentations distinguish the subjects with and without active BAT with an AUC of 0.8, compared to 0.6 for CT thresholding. These findings suggest CNNs can facilitate large-scale imaging studies more efficiently and cost-effectively using only CT.
Collapse
Affiliation(s)
- Ertunc Erdil
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland.
| | - Anton S Becker
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Moritz Schwyzer
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Borja Martinez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Sartoretti
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - H Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Irene Burger
- Department of Nuclear Medicine, University Zurich Hospital, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ender Konukoglu
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- The LOOP Zürich - Medical Research Center, Zürich, Switzerland
| |
Collapse
|
4
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
5
|
Ye Y, Wang H, Chen W, Chen Z, Wu D, Zhang F, Hu F. Dynamic changes of immunocyte subpopulations in thermogenic activation of adipose tissues. Front Immunol 2024; 15:1375138. [PMID: 38812501 PMCID: PMC11133676 DOI: 10.3389/fimmu.2024.1375138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives The effects of cold exposure on whole-body metabolism in humans have gained increasing attention. Brown or beige adipose tissues are crucial in cold-induced thermogenesis to dissipate energy and thus have the potential to combat metabolic disorders. Despite the immune regulation of thermogenic adipose tissues, the overall changes in vital immune cells during distinct cold periods remain elusive. This study aimed to discuss the overall changes in immune cells under different cold exposure periods and to screen several potential immune cell subpopulations on thermogenic regulation. Methods Cibersort and mMCP-counter algorithms were employed to analyze immune infiltration in two (brown and beige) thermogenic adipose tissues under distinct cold periods. Changes in some crucial immune cell populations were validated by reanalyzing the single-cell sequencing dataset (GSE207706). Flow cytometry, immunofluorescence, and quantitative real-time PCR assays were performed to detect the proportion or expression changes in mouse immune cells of thermogenic adipose tissues under cold challenge. Results The proportion of monocytes, naïve, and memory T cells increased, while the proportion of NK cells decreased under cold exposure in brown adipose tissues. Conclusion Our study revealed dynamic changes in immune cell profiles in thermogenic adipose tissues and identified several novel immune cell subpopulations, which may contribute to thermogenic activation of adipose tissues under cold exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
|
7
|
Bulthaupt HH, Glatz F, Papidocha SM, Wu C, Teh S, Wolfrum S, Balážová L, Wolfrum C, Carreira EM. Enantioselective Total Syntheses of Cassane Furanoditerpenoids and Their Stimulation of Cellular Respiration in Brown Adipocytes. J Am Chem Soc 2023; 145:21562-21568. [PMID: 37751294 DOI: 10.1021/jacs.3c07597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
We report the first and enantioselective total syntheses of (+)-1-deacetylcaesalmin C, (+)-δ-caesalpin, (+)-norcaesalpinin MC, and (+)-norcaesalpinin P. Salient features of the synthetic strategy are an exo-selective intramolecular Diels-Alder reaction of a furanoquinone monoketal and subsequent chemoselective reduction of the resulting pentacyclic furfuryl ketal, furnishing a keystone intermediate. The latter enables access to the collection of natural products through implementation of stereoselective oxidations. Having accessed the cassane furanoditerpenoids, we unveil previously unknown bioactivity: (+)-1-deacetylcaesalmin C stimulates respiration in brown adipocytes, which has been suggested to play a central role in treatment of obesity.
Collapse
Affiliation(s)
| | - Fabian Glatz
- ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093 Zurich, Switzerland
| | - Sven M Papidocha
- ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093 Zurich, Switzerland
| | - Chunyan Wu
- ETH Zurich, Schorenstrasse 16, IFN, 8603 Schwerzenbach, Switzerland
| | - Shawn Teh
- ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093 Zurich, Switzerland
| | - Susanne Wolfrum
- ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093 Zurich, Switzerland
| | - Lucia Balážová
- Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | | | - Erick M Carreira
- ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Yu EA, Jackman RP, Glesby MJ, Narayan KV. Bidirectionality between Cardiometabolic Diseases and COVID-19: Role of Humoral Immunity. Adv Nutr 2023; 14:1145-1158. [PMID: 37302794 PMCID: PMC10256583 DOI: 10.1016/j.advnut.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiometabolic diseases and abnormalities have recently emerged as independent risk factors of coronavirus disease 2019 (COVID-19) severity, including hospitalizations, invasive mechanical ventilation, and mortality. Determining whether and how this observation translates to more effective long-term pandemic mitigation strategies remains a challenge due to key research gaps. Specific pathways by which cardiometabolic pathophysiology affects humoral immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vice versa, remain unclear. This review summarizes current evidence of the bidirectional influences between cardiometabolic diseases (diabetes, adiposity, hypertension, CVDs) and SARS-CoV-2 antibodies induced from infection and vaccination based on human studies. Ninety-two studies among >408,000 participants in 37 countries on 5 continents (Europe, Asia, Africa, and North and South America) were included in this review. Obesity was associated with higher neutralizing antibody titers following SARS-CoV-2 infection. Most studies conducted prior to vaccinations found positive or null associations between binding antibodies (levels, seropositivity) and diabetes; after vaccinations, antibody responses did not differ by diabetes. Hypertension and CVDs were not associated with SARS-CoV-2 antibodies. Findings underscore the importance of elucidating the extent that tailored recommendations for COVID-19 prevention, vaccination effectiveness, screening, and diagnoses among people with obesity could reduce disease burden caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Elaine A Yu
- Vitalant Research Institute, San Francisco, CA; University of California, San Francisco, San Francisco, CA.
| | - Rachael P Jackman
- Vitalant Research Institute, San Francisco, CA; University of California, San Francisco, San Francisco, CA
| | - Marshall J Glesby
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Km Venkat Narayan
- Rollins School of Public Health, Emory University, Atlanta, GA; Emory Global Diabetes Research Center of Woodruff Health Sciences Center, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
10
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Blondin DP. Human thermogenic adipose tissue. Curr Opin Genet Dev 2023; 80:102054. [PMID: 37269791 DOI: 10.1016/j.gde.2023.102054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 06/05/2023]
Abstract
Human thermogenic adipose tissue has long been touted as a promising therapeutic target for obesity and its associated metabolic diseases. Here, we provide a brief overview of the current knowledge of in vivo human thermogenic adipose tissue metabolism. We explore the evidence provided by retrospective and prospective studies describing the association of brown adipose tissue (BAT) [18F]fluorodeoxyglucose accumulation and various cardiometabolic risk factors. Although these studies have been invaluable in generating hypothesis, it has also raised some questions about the reliability of this method as an indicator of BAT thermogenic capacity. We discuss the evidence in support of human BAT functioning as a local thermogenic organ and energy sink, as an endocrine organ, and as a biomarker of adipose tissue health.
Collapse
Affiliation(s)
- Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, 3001, 12th Ave North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
12
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
13
|
Paul A, Chanclón B, Brännmark C, Wittung-Stafshede P, Olofsson CS, Asterholm IW, Parekh SH. Comparing lipid remodeling of brown adipose tissue, white adipose tissue, and liver after one-week high fat diet intervention with quantitative Raman microscopy. J Cell Biochem 2023; 124:382-395. [PMID: 36715685 DOI: 10.1002/jcb.30372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.
Collapse
Affiliation(s)
- Alexandra Paul
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Belén Chanclón
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Brännmark
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
14
|
Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, Chen T, Xi Q, Sun J, Ren X, Zhang Y. The novel importance of miR-143 in obesity regulation. Int J Obes (Lond) 2023; 47:100-108. [PMID: 36528726 DOI: 10.1038/s41366-022-01245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
16
|
Wang Y, Li X, Liu C, Zhou L, Shi L, Zhang Z, Chen L, Gao M, Gao L, Xu Y, Huang H, Li J, Chen Z. WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice. LIFE METABOLISM 2022; 1:270-284. [PMID: 39872074 PMCID: PMC11749075 DOI: 10.1093/lifemeta/loac028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2025]
Abstract
Brown adipocyte maturation during postnatal development is essential for brown adipose tissue (BAT) to protect animals against cold. Impaired maturation of brown adipocytes leads to cold intolerance. However, the molecular mechanisms that determine the maturation of brown adipocytes during postnatal development are not fully understood. Here, we identify Wilms' tumor 1-associating protein (WTAP) as an essential regulator in the postnatal development and maturation of BAT. BAT-specific knockout of Wtap (Wtap-BKO) severely impairs maturation of BAT in vivo by decreasing the expression of BAT-selective genes, leading to the whitening of interscapular BAT (iBAT). Single nucleus RNA-sequencing analysis shows the dynamic changes of cell heterogeneity in iBAT of Wtap-BKO mice. Adult mice with WTAP deficiency in BAT display hypothermic and succumb to acute cold challenge. Mechanistically, WTAP deficiency decreases m6A mRNA modification by reducing the protein stability of METTL3. BAT-specific overexpression of Mettl3 partially rescues the phenotypes observed in Wtap-BKO mice. These data demonstrate that WTAP/METTL3 plays an essential role in iBAT postnatal development and thermogenesis.
Collapse
Affiliation(s)
- Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Cenxi Liu
- School of Life Science, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
| | - Liying Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lei Shi
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Long Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lanyue Gao
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jin Li
- School of Life Science, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
17
|
Qi Y, Hui XH. The Single-Cell Revelation of Thermogenic Adipose Tissue. Mol Cells 2022; 45:673-684. [PMID: 36254709 PMCID: PMC9589375 DOI: 10.14348/molcells.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.
Collapse
Affiliation(s)
- Yue Qi
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Hannah Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
19
|
Ma Y, Jun H, Wu J. Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends Immunol 2022; 43:718-727. [PMID: 35931611 PMCID: PMC9727785 DOI: 10.1016/j.it.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Chen Y, Wu Z, Huang S, Wang X, He S, Liu L, Hu Y, Chen L, Chen P, Liu S, He S, Shan B, Zheng L, Duan SZ, Song Z, Jiang L, Wang QA, Gan Z, Song BL, Liu J, Rui L, Shao M, Liu Y. Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nat Metab 2022; 4:1166-1184. [PMID: 36123394 DOI: 10.1038/s42255-022-00631-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/01/2022] [Indexed: 12/23/2022]
Abstract
Adipose tissue undergoes thermogenic remodeling in response to thermal stress and metabolic cues, playing a crucial role in regulating energy expenditure and metabolic homeostasis. Endoplasmic reticulum (ER) stress is associated with adipose dysfunction in obesity and metabolic disease. It remains unclear, however, if ER stress-signaling in adipocytes mechanistically mediates dysregulation of thermogenic fat. Here we show that inositol-requiring enzyme 1α (IRE1α), a key ER stress sensor and signal transducer, acts in both white and beige adipocytes to impede beige fat activation. Ablation of adipocyte IRE1α promotes browning/beiging of subcutaneous white adipose tissue following cold exposure or β3-adrenergic stimulation. Loss of IRE1α alleviates diet-induced obesity and augments the anti-obesity effect of pharmacologic β3-adrenergic stimulation. Notably, IRE1α suppresses stimulated lipolysis and degrades Ppargc1a messenger RNA through its RNase activity to downregulate the thermogenic gene program. Hence, blocking IRE1α bears therapeutic potential in unlocking adipocytes' thermogenic capacity to combat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijia He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yurong Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Jiang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Qiong A Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mengle Shao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
De Bock K, Wolfrum C. A 'replace me' signal from dying brown fat fires up weight loss. Nature 2022; 609:252-253. [PMID: 35821410 DOI: 10.1038/d41586-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022; 12:biom12050702. [PMID: 35625629 PMCID: PMC9138344 DOI: 10.3390/biom12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Collapse
|
23
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
24
|
Johansen OS, Ma T, Gerhart-Hines Z. Leveraging GPCR signaling in thermogenic fat to counteract metabolic diseases. Mol Metab 2022; 60:101474. [PMID: 35339729 PMCID: PMC9046952 DOI: 10.1016/j.molmet.2022.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022] Open
Abstract
Background Thermogenic brown and beige adipocytes are recognized for their unique capacity to consume extraordinary levels of metabolites and lipids from the blood to fuel heat-producing catabolic processes [[1], [2], [3], [4], [5], [6], [7]]. In humans, the functions of thermogenic adipocytes are associated with cardiometabolic protection and improved glycemic control [[8], [9], [10], [11], [12], [13]]. Consequently, engaging these macronutrient-consuming and energy-dissipating activities has gained attention as a promising therapeutic strategy for counteracting metabolic diseases, such as obesity and diabetes. Scope of review In this review, we highlight new advances in our understanding of the physiological role of G protein-coupled receptors (GPCRs) in controlling thermogenic adipocyte biology. We further extend our discussion to the opportunities and challenges posed by pharmacologically targeting different elements of GPCR signaling in these highly specialized fat cells. Major conclusions GPCRs represent appealing candidates through which to harness adipose thermogenesis. Yet safely and effectively targeting these druggable receptors on brown and beige adipocytes has thus far proven challenging. Therefore, continued interrogation across the GPCR landscape is necessary for future leaps within the field of thermogenic fat biology to unlock the therapeutic potential of adipocyte catabolism. Brown and beige thermogenic adipocytes robustly consume and catabolize macronutrients. The catabolic activity of thermogenic adipocytes promotes organismal energy balance. Thermogenic adipocyte functions are tightly controlled by G protein-coupled receptors (GPCRs). GPCRs can be potentially targeted at multiple levels to therapeutically harness thermogenic activity.
Collapse
Affiliation(s)
- Olivia Sveidahl Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK; Embark Biotech ApS, Copenhagen, DK
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK; Embark Biotech ApS, Copenhagen, DK; Center for Adipocyte Signaling, Odense, DK.
| |
Collapse
|
25
|
Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends Biochem Sci 2022; 47:531-546. [PMID: 35304047 DOI: 10.1016/j.tibs.2022.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omics approaches help to elucidate adipocyte insulin action in cellular time and space.
Collapse
|
26
|
Agueda-Oyarzabal M, Emanuelli B. Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Front Endocrinol (Lausanne) 2022; 13:839360. [PMID: 35360060 PMCID: PMC8963988 DOI: 10.3389/fendo.2022.839360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Brown adipose tissue (BAT) is a unique organ in mammals capable of dissipating energy in form of heat. Additionally, white adipose tissue (WAT) can undergo browning and perform thermogenesis. In recent years, the research community has aimed to harness thermogenic depot functions for new therapeutic strategies against obesity and the metabolic syndrome; hence a comprehensive understanding of the thermogenic fat microenvironment is essential. Akin to WAT, immune cells also infiltrate and reside within the thermogenic adipose tissues and perform vital functions. As highly plastic organs, adipose depots rely on crucial interplay with these tissue resident cells to conserve their healthy state. Evidence has accumulated to show that different immune cell populations contribute to thermogenic adipose tissue homeostasis and activation through complex communicative networks. Furthermore, new studies have identified -but still not fully characterized further- numerous immune cell populations present in these depots. Here, we review the current knowledge of this emerging field by describing the immune cells that sway the thermogenic adipose depots, and the complex array of communications that influence tissue performance.
Collapse
|
27
|
Cannavino J, Gupta RK. Cellular and molecular brakes on adipogenesis. Nat Metab 2022; 4:13-14. [PMID: 35027769 DOI: 10.1038/s42255-021-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jessica Cannavino
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Ma Y, Liu S, Jun H, Wu J. CHRNA2: a new paradigm in beige thermoregulation and metabolism. Trends Cell Biol 2021; 32:479-489. [PMID: 34952750 DOI: 10.1016/j.tcb.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The contribution of thermogenic adipocytes to maintain systemic metabolic homeostasis has been increasingly appreciated in recent years. It is now recognized that different types (e.g., brown, beige) and subtypes of thermogenic adipocytes may arise from various developmental origins. In addition to the adrenergic pathway, other signals can activate thermogenesis, including paracrine communication between immune cells within the adipose tissue niche and thermogenic adipocytes. In this opinion article we highlight the recently discovered beige-selective signaling between acetylcholine from immune cells and cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) in activated beige adipocytes. We present our current knowledge of how this previously unrecognized adipose non-neuronal cholinergic signaling pathway mediates beige thermoregulation, and discuss its impact on whole-body fitness and its therapeutic potential as a novel target for combating metabolic disease.
Collapse
Affiliation(s)
- Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Sun W. Fat for heat. Science 2021; 374:1066. [PMID: 34822283 DOI: 10.1126/science.abm8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Yu EA, Le NA, Stein AD. Measuring Postprandial Metabolic Flexibility to Assess Metabolic Health and Disease. J Nutr 2021; 151:3284-3291. [PMID: 34293154 PMCID: PMC8562077 DOI: 10.1093/jn/nxab263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic abnormalities substantially increase the risk of noncommunicable diseases, which are among the leading causes of mortality globally. Mitigating and preventing these adverse consequences remains challenging due to a limited understanding of metabolic health. Metabolic flexibility, a key tenet of metabolic health, encompasses the responsiveness of interrelated pathways to maintain energy homeostasis throughout daily physiologic challenges, such as the response to meal challenges. One critical underlying research gap concerns the measurement of postprandial metabolic flexibility, which remains incompletely understood. We concisely review the methodology for assessment of postprandial metabolic flexibility in recent human studies. We identify 3 commonalities of study design, specifically the nature of the challenge, nature of the response measured, and approach to data analysis. Primary interventions were acute short-term nutrition challenges, including single- and multiple-macronutrient tolerance tests. Postmeal challenge responses were measured via laboratory assays and instrumentation, based on a diverse set of metabolic flexibility indicators [e.g., energy expenditure (whole-body indirect calorimetry), glucose and insulin kinetics, metabolomics, transcriptomics]. Common standard approaches have been diabetes-centric with single-macronutrient challenges (oral-glucose-tolerance test) to characterize the postprandial response based on glucose and insulin metabolism; or broad measurements of energy expenditure with calculated macronutrient oxidation via indirect calorimetry. Recent methodological advances have included the use of multiple-macronutrient meal challenges that are more representative of physiologic meals consumed by free-living humans, combinatorial approaches for assays and instruments, evaluation of other metabolic flexibility indicators via precision health, systems biology, and temporal perspectives. Omics studies have identified potential novel indicators of metabolic flexibility, which provide greater granularity to prior evidence from canonical approaches. In summary, recent findings indicate the potential for an expanded understanding of postprandial metabolic flexibility, based on nonclassical measurements and methodology, which could represent novel dynamic indicators of metabolic diseases.
Collapse
Affiliation(s)
- Elaine A Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Foundation for Atlanta Veterans Education and Research (FAVER), Atlanta Veterans Affairs Health Care System (AVAHCS), Atlanta, GA, USA
| | | |
Collapse
|
31
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|