1
|
Li C, Xiang Z, Hou M, Yu H, Peng P, Lv Y, Ma C, Ding H, Jiang Y, Liu Y, Zhou H, Feng S. miR-NPs-RVG promote spinal cord injury repair: implications from spinal cord-derived microvascular endothelial cells. J Nanobiotechnology 2024; 22:590. [PMID: 39342236 PMCID: PMC11438374 DOI: 10.1186/s12951-024-02797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) often leads to a loss of motor and sensory function. Axon regeneration and outgrowth are key events for functional recovery after spinal cord injury. Endogenous growth of axons is associated with a variety of factors. Inspired by the relationship between developing nerves and blood vessels, we believe spinal cord-derived microvascular endothelial cells (SCMECs) play an important role in axon growth. RESULTS We found SCMECs could promote axon growth when co-cultured with neurons in direct and indirect co-culture systems via downregulating the miR-323-5p expression of neurons. In rats with spinal cord injury, neuron-targeting nanoparticles were employed to regulate miR-323-5p expression in residual neurons and promote function recovery. CONCLUSIONS Our study suggests that SCMEC can promote axon outgrowth by downregulating miR-323-5p expression within neurons, and miR-323-5p could be selected as a potential target for spinal cord injury repair.
Collapse
Affiliation(s)
- Chao Li
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhenyang Xiang
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Mengfan Hou
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Hao Yu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Peng Peng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yigang Lv
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Chao Ma
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Han Ding
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yunpeng Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yang Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Alves CRR, Ha LL, Yaworski R, Sutton ER, Lazzarotto CR, Christie KA, Reilly A, Beauvais A, Doll RM, de la Cruz D, Maguire CA, Swoboda KJ, Tsai SQ, Kothary R, Kleinstiver BP. Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nat Biomed Eng 2024; 8:118-131. [PMID: 38057426 PMCID: PMC10922509 DOI: 10.1038/s41551-023-01132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN. Targeting the SMN2 exon-7 mutation via base editing or other CRISPR-based methods may provide long-lasting outcomes to patients with SMA.
Collapse
Affiliation(s)
- Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Yaworski
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma R Sutton
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Aoife Reilly
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Ariane Beauvais
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Roman M Doll
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Demitri de la Cruz
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Kathryn J Swoboda
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
4
|
Alves CRR, Ha LL, Yaworski R, Lazzarotto CR, Christie KA, Reilly A, Beauvais A, Doll RM, de la Cruz D, Maguire CA, Swoboda KJ, Tsai SQ, Kothary R, Kleinstiver BP. Base editing as a genetic treatment for spinal muscular atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524978. [PMID: 36711797 PMCID: PMC9882371 DOI: 10.1101/2023.01.20.524978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the SMN1 gene. Despite the development of various therapies, outcomes can remain suboptimal in SMA infants and the duration of such therapies are uncertain. SMN2 is a paralogous gene that mainly differs from SMN1 by a C•G-to-T•A transition in exon 7, resulting in the skipping of exon 7 in most SMN2 transcripts and production of only low levels of survival motor neuron (SMN) protein. Genome editing technologies targeted to the SMN2 exon 7 mutation could offer a therapeutic strategy to restore SMN protein expression to normal levels irrespective of the patient SMN1 mutation. Here, we optimized a base editing approach to precisely edit SMN2, reverting the exon 7 mutation via an A•T-to-G•C base edit. We tested a range of different adenosine base editors (ABEs) and Cas9 enzymes, resulting in up to 99% intended editing in SMA patient-derived fibroblasts with concomitant increases in SMN2 exon 7 transcript expression and SMN protein levels. We generated and characterized ABEs fused to high-fidelity Cas9 variants which reduced potential off-target editing. Delivery of these optimized ABEs via dual adeno-associated virus (AAV) vectors resulted in precise SMN2 editing in vivo in an SMA mouse model. This base editing approach to correct SMN2 should provide a long-lasting genetic treatment for SMA with advantages compared to current nucleic acid, small molecule, or exogenous gene replacement therapies. More broadly, our work highlights the potential of PAMless SpRY base editors to install edits efficiently and safely.
Collapse
Affiliation(s)
- Christiano R. R. Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Yaworski
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kathleen A. Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Aoife Reilly
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Ariane Beauvais
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Roman M. Doll
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Demitri de la Cruz
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Casey A. Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022; 23:10878. [PMID: 36142791 PMCID: PMC9503857 DOI: 10.3390/ijms231810878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Valentina Piano
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
6
|
Li M, Shan W, Hua Y, Chao F, Cui Y, Lv L, Dou X, Bian X, Zou J, Li H, Lin W. Exosomal miR-92b-3p Promotes Chemoresistance of Small Cell Lung Cancer Through the PTEN/AKT Pathway. Front Cell Dev Biol 2021; 9:661602. [PMID: 34136482 PMCID: PMC8201786 DOI: 10.3389/fcell.2021.661602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to first-line chemotherapy drugs has become an obstacle to improving the clinical prognosis of patients with small cell lung cancer (SCLC). Exosomal microRNAs have been shown to play pro- and anti-chemoresistant roles in various cancers, but their role in SCLC chemoresistance has never been explored. In this study, we observed that the expression of exosomal miR-92b-3p was significantly increased in patients who developed chemoresistance. Luciferase reporter analysis confirmed that PTEN was a target gene of miR-92b-3p. The PTEN/AKT regulatory network was related to miR-92b-3p-mediated cell migration and chemoresistance in vitro and in vivo in SCLC. Importantly, exosomes isolated from the conditioned medium of SBC-3 cells overexpressing miR-92b-3p could promote SCLC chemoresistance and cell migration. Furthermore, we found that plasma miR-92b-3p levels were significantly higher in patients with chemoresistant SCLC than in those with chemosensitive SCLC, but the levels were down-regulated in patients who achieved remission. Kaplan–Meier analysis showed that SCLC patients with high miR-92b-3p expression were associated with shorter progression-free survival. Overall, our results suggested that exosomal miR-92b-3p is a potential dynamic biomarker to monitor chemoresistance in SCLC and represents a promising therapeutic target for chemoresistant SCLC.
Collapse
Affiliation(s)
- Ming Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wulin Shan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Hua
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yayun Cui
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Lv
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyan Dou
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing Bian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinglu Zou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
7
|
Hung TH, Liu YC, Wu CH, Chen CC, Chao H, Yang FY, Chen SF. Antenatal low-intensity pulsed ultrasound reduces neurobehavioral deficits and brain injury following dexamethasone-induced intrauterine growth restriction. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2021; 31:e12968. [PMID: 33960564 PMCID: PMC8549022 DOI: 10.1111/bpa.12968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Intrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and IUGR survivors are at increased risk of neurodevelopmental deficits. No effective interventions are currently available to improve the structure and function of the IUGR brain before birth. This study investigated the protective effects of low‐intensity pulsed ultrasound (LIPUS) on postnatal neurodevelopmental outcomes and brain injury using a rat model of IUGR induced by maternal exposure to dexamethasone (DEX). Pregnant rats were treated with DEX (200 μg/kg, s.c.) and LIPUS daily from gestational day (GD) 14 to 19. Behavioral assessments were performed on the IUGR offspring to examine neurological function. Neuropathology, levels of neurotrophic factors, and CaMKII‐Akt‐related molecules were assessed in the IUGR brain, and expression of glucose and amino acid transporters and neurotrophic factors were examined in the placenta. Maternal LIPUS treatment increased fetal weight, fetal liver weight, and placental weight following IUGR. LIPUS treatment also increased neuronal number and myelin protein expression in the IUGR brain, and attenuated neurodevelopmental deficits at postnatal day (PND) 18. However, the number of oligodendrocytes or microglia was not affected. These changes were associated with the upregulation of brain‐derived neurotrophic factor (BDNF) and placental growth factor (PlGF) protein expression, and enhancement of neuronal CaMKII and Akt activation in the IUGR brain at PND 1. Additionally, LIPUS treatment promoted glucose transporter (GLUT) 1 production and BDNF expression in the placenta, but had no effects on GLUT3 or amino acid transporter expression. Our findings suggest that antenatal LIPUS treatment may reduce IUGR‐induced brain injury via enhancing cerebral BDNF/CaMKII/Akt signaling. These data provide new evidence that LIPUS stimulation could be considered for antenatal neuroprotective therapy in IUGR.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Cheng Liu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan.,Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hsien Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
9
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
10
|
Huang H, Kaur S, Hu Y. Lab review: Molecular dissection of the signal transduction pathways associated with PTEN deletion-induced optic nerve regeneration. Restor Neurol Neurosci 2020; 37:545-552. [PMID: 31839616 DOI: 10.3233/rnn-190949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Permanent loss of vital functions after central nervous system (CNS) injury occurs in part because axons in the adult mammalian CNS do not regenerate after injury. PTEN was identified as a prominent intrinsic inhibitor of CNS axon regeneration about 10 years ago. The PTEN negatively regulated PI3K-AKT-mTOR pathway, which has been intensively explored in diverse models of axon injury and diseases and its mechanism for axon regeneration is becoming clearer. OBJECTIVE It is timely to summarize current knowledge about the PTEN/AKT/mTOR pathway and discuss future directions of translational regenerative research for neural injury and neurodegenerative diseases. METHODS Using mouse optic nerve crush as an in vivo retinal ganglion cell axon injury model, we have conducted an extensive molecular dissection of the PI3K-AKT-mTORC1/mTORC2 pathway to illuminate the cross-regulating mechanisms in axon regeneration. RESULTS AKT is the nodal point that coordinates both positive (PI3K-PDK1-pAKT-T308) and negative (PI3K-mTORC2-pAKT-S473) signals to regulate adult CNS axon regeneration through two parallel pathways, activating mTORC1 and inhibiting GSK3β. However, mTORC1/S6K1-mediated feedback inhibition after PTEN deletion prevents potent AKT activation. CONCLUSIONS A key permissive signal from an unidentified AKT-independent pathway is required for stimulating the neuron-intrinsic growth machinery. Future studies into this complex neuron-intrinsic balancing mechanism involving necessary and permissive signals for axon regeneration is likely to lead to safe and effective regenerative strategies for CNS repair.
Collapse
Affiliation(s)
- Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Simran Kaur
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
11
|
Leibinger M, Hilla AM, Andreadaki A, Fischer D. GSK3-CRMP2 signaling mediates axonal regeneration induced by Pten knockout. Commun Biol 2019; 2:318. [PMID: 31453382 PMCID: PMC6707209 DOI: 10.1038/s42003-019-0524-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Knockout of phosphatase and tensin homolog (PTEN-/-) is neuroprotective and promotes axon regeneration in mature neurons. Elevation of mTOR activity in injured neurons has been proposed as the primary underlying mechanism. Here we demonstrate that PTEN-/- also abrogates the inhibitory activity of GSK3 on collapsin response mediator protein 2 (CRMP2) in retinal ganglion cell (RGC) axons. Moreover, maintenance of GSK3 activity in Gsk3S/A knockin mice significantly compromised PTEN-/--mediated optic nerve regeneration as well as the activity of CRMP2, and to a lesser extent, mTOR. These GSK3S/A mediated negative effects on regeneration were rescued by viral expression of constitutively active CRMP2T/A, despite decreased mTOR activation. Gsk3S/A knockin or CRMP2 inhibition also decreased PTEN-/- mediated neurite growth of RGCs in culture and disinhibition towards CNS myelin. Thus, the GSK3/CRMP2 pathway is essential for PTEN-/- mediated axon regeneration. These new mechanistic insights may help to find novel strategies to promote axon regeneration.
Collapse
Affiliation(s)
- Marco Leibinger
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University, 44780 Bochum, Germany
| | - Alexander M. Hilla
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University, 44780 Bochum, Germany
| | - Anastasia Andreadaki
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University, 44780 Bochum, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University, 44780 Bochum, Germany
| |
Collapse
|
12
|
Chen Z, Li Z, Jiang C, Jiang X, Zhang J. MiR‐92b‐3p promotes neurite growth and functional recovery via the PTEN/AKT pathway in acute spinal cord injury. J Cell Physiol 2019; 234:23043-23052. [PMID: 31120592 DOI: 10.1002/jcp.28864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Zixian Chen
- Department of Orthopaedics Zhongshan Hospital of Fudan University Shanghai China
| | - Zheng Li
- Department of Orthopaedics Zhongshan Hospital of Fudan University Shanghai China
| | - Chang Jiang
- Department of Orthopaedics Zhongshan Hospital of Fudan University Shanghai China
| | - Xiaoxing Jiang
- Department of Orthopaedics Zhongshan Hospital of Fudan University Shanghai China
| | - Jian Zhang
- Department of Orthopaedics Zhongshan Hospital of Fudan University Shanghai China
| |
Collapse
|
13
|
Huang H, Miao L, Yang L, Liang F, Wang Q, Zhuang P, Sun Y, Hu Y. AKT-dependent and -independent pathways mediate PTEN deletion-induced CNS axon regeneration. Cell Death Dis 2019; 10:203. [PMID: 30814515 PMCID: PMC6393504 DOI: 10.1038/s41419-018-1289-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Phosphatase and tensin homolog (PTEN) acts as a brake for the phosphatidylinositol 3-kinase-AKT-mTOR complex 1 (mTORC1) pathway, the deletion of which promotes potent central nervous system (CNS) axon regeneration. Previously, we demonstrated that AKT activation is sufficient to promote CNS axon regeneration to a lesser extent than PTEN deletion. It is still questionable whether AKT is entirely responsible for the regenerative effect of PTEN deletion on CNS axons. Here, we show that blocking AKT or its downstream effectors, mTORC1 and GSK3β, significantly reduces PTEN deletion-induced mouse optic nerve regeneration, indicating the necessary role of AKT-dependent signaling. However, AKT is only marginally activated in PTEN-null mice due to mTORC1-mediated feedback inhibition. That combining PTEN deletion with AKT overexpression or GSK3β deletion achieves significantly more potent axonal regeneration suggests an AKT-independent pathway for axon regeneration. Elucidating the AKT-independent pathway is required to develop effective strategies for CNS axon regeneration.
Collapse
Affiliation(s)
- Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Linqing Miao
- Shriners Center for Neural Repair and Rehabilitation, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Liu Yang
- Shriners Center for Neural Repair and Rehabilitation, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Feisi Liang
- Shriners Center for Neural Repair and Rehabilitation, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Qizhao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pei Zhuang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
14
|
Kumar P, Raeman R, Chopyk DM, Smith T, Verma K, Liu Y, Anania FA. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3537-3545. [PMID: 30293572 PMCID: PMC6529190 DOI: 10.1016/j.bbadis.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell line and examined the underlying molecular mechanisms involved in adiponectin-mediated upregulation of PTEN activity during fibrosis. PTEN expression was found to be significantly reduced in the livers of mice treated with CCl4, whereas its expression was rescued by adiponectin treatment. The DNA methylation proteins DNMT1, DNMT3A, and DNMT3B are all highly expressed in activated primary HSCs compared to quiescent HSCs, and thus represent additional regulatory targets during liver fibrogenesis. Expression of DNMT proteins was significantly induced in the presence of fibrotic stimuli; however, only DNMT3B expression was reduced in the presence of adiponectin. Adiponectin-induced suppression of DNMT3B was found to be mediated by enhanced miR-29b expression. Furthermore, PTEN expression was significantly increased by overexpression of miR-29b, whereas its expression was markedly reduced by a miR-29b inhibitor in LX-2 cells. These findings suggest that adiponectin-induced upregulation of miR-29b can suppress DNMT3B transcription in LX-2 cells, thus resulting in reduced methylation of PTEN CpG islands and ultimately suppressing the PI3K/AKT pathway. Together, these data suggest a possible new explanation for the inhibitory effect of adiponectin on HSC activation and liver fibrogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Kiran Verma
- Labratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Zhang J, Yang D, Huang H, Sun Y, Hu Y. Coordination of Necessary and Permissive Signals by PTEN Inhibition for CNS Axon Regeneration. Front Neurosci 2018; 12:558. [PMID: 30158848 PMCID: PMC6104488 DOI: 10.3389/fnins.2018.00558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
In the nearly 10 years since PTEN was identified as a prominent intrinsic inhibitor of CNS axon regeneration, the PTEN negatively regulated PI3K-AKT-mTOR pathway has been intensively explored in diverse models of axon injury and diseases and its mechanism for axon regeneration is becoming clearer. It is therefore timely to summarize current knowledge and discuss future directions of translational regenerative research for neural injury and neurodegenerative diseases. Using mouse optic nerve crush as an in vivo retinal ganglion cell axon injury model, we have conducted an extensive molecular dissection of the PI3K-AKT pathway to illuminate the cross-regulating mechanisms in axon regeneration. AKT is the nodal point that coordinates both positive and negative signals to regulate adult CNS axon regeneration through two parallel pathways, activating mTORC1 and inhibiting GSK3ββ. Activation of mTORC1 or its effector S6K1 alone can only slightly promote axon regeneration, whereas blocking mTORC1 significantly prevent axon regeneration, suggesting the necessary role of mTORC1 in axon regeneration. However, mTORC1/S6K1-mediated feedback inhibition prevents potent AKT activation, which suggests a key permissive signal from an unidentified AKT-independent pathway is required for stimulating the neuron-intrinsic growth machinery. Future studies into this complex neuron-intrinsic balancing mechanism involving necessary and permissive signals for axon regeneration is likely to lead eventually to safe and effective regenerative strategies for CNS repair.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dakai Yang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|