1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Verma K, Pillai L. Molecular docking analysis of breast cancer target RAC1B with ligands. Bioinformation 2024; 20:1467-1478. [PMID: 40162454 PMCID: PMC11953550 DOI: 10.6026/9732063002001467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is a malignant neoplasm that arises from the breast tissue, and the best chemotherapy preventive approach is to identify potent inhibitors. In this study, focusing on the Rac1b protein may be an effective approach to developing drug alternatives to treat breast cancer, and we have employed structure-based drug design with the available drugs. Afterwards, molecular docking was used to identify novel inhibitors, and in order to compute the drug likeness and medicinal chemistry, the best-docked complex was put through ADMET studies followed by molecular dynamics simulations to check the stability of the protein-ligand complex using RMSD, RMSF and protein-ligand interactions. Therefore, it is of interest to report the molecular docking analysis of breast cancer target RAC1B with ligands. Here, data shows that the therapeutic compounds that were evaluated showed greater stability in comparison to the reported compounds, EHop-016 and has found promising medication possibilities for breast cancer that target Rac1b.
Collapse
Affiliation(s)
- Kajal Verma
- Institute of Sciences, SAGE University, Indore Madhya Pradesh, India 452020
| | - Lakshmi Pillai
- Institute of Sciences, SAGE University, Indore Madhya Pradesh, India 452020
| |
Collapse
|
4
|
Zhao H, Luo K, Liu M, Cai Y, Liu S, Li S, Zhao Y, Zhang H. Immune regulation and prognostic prediction model establishment and validation of PSMB6 in lung adenocarcinoma. Front Genet 2024; 15:1458047. [PMID: 39507618 PMCID: PMC11538069 DOI: 10.3389/fgene.2024.1458047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Lung cancer is one of the most common malignant tumors, and patients are often diagnosed at an advanced stage, posing a substantial risk to human health, so it is crucial to establish a model to forecast the prognosis of patients with lung cancer. Recent research has indicated that proteasome 20S subunit 6 (PSMB6) may be closely associated with anti-apoptotic pathways, and proliferation transduction signals in tumor cells of different tumors. However, the precise role of PSMB6 in the immunoregulatory processes within lung adenocarcinoma (LUAD) is yet to be elucidated. By analyzing the TCGA database, we discovered a positive correlation between the expression of PSMB6 and tumor growth trends, and lung adenocarcinoma patients with elevated PSMB6 expression levels had a worse prognosis. Our findings suggest a close correlation between PSMB6 expression levels, immune cell infiltration and immune checkpoint gene expression, which suggests that PSMB6 may become a new independent prognostic indicator. In addition, we developed a prognostic model of PSMB6-regulated immune infiltration-associated genes by analyzing the link between PSMB6 and the immune microenvironment. This model can not only predict the prognosis of lung adenocarcinoma but also forecasts the patient's reaction to immunotherapy. The validity of this research outcome has been confirmed by the GSE31210 and IMvigor210 cohorts. Analysis of the Kaplan-Meier Plotter database indicates that individuals with elevated levels of PSMB6 expression exhibit a poorer prognosis. Additionally, in vitro experiments demonstrated that knockdown of PSMB6 inhibits the proliferation, migration, and invasion of lung adenocarcinoma cells while promoting their apoptosis. Overall, our findings suggest that PSMB6 could remarkably influence the management and treatment of lung adenocarcinoma, opening new avenues for targeted immunotherapeutic strategies.
Collapse
Affiliation(s)
- Haiyang Zhao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Nanchong, China
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Innovation Centre for Science and Technology, Nanchong, China
| | - Kexin Luo
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Nanchong, China
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Innovation Centre for Science and Technology, Nanchong, China
| | - Meihan Liu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Innovation Centre for Science and Technology, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuanze Cai
- North Sichuan Medical College, Nanchong, China
| | - Siman Liu
- North Sichuan Medical College, Nanchong, China
| | - Shijuan Li
- Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yongsheng Zhao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Nanchong, China
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongpan Zhang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- North Sichuan Medical College, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Therapeutic Proteins Key Laboratory of Sichuan Province, Nanchong, China
| |
Collapse
|
5
|
Kristiansson A, Ceberg C, Bjartell A, Ceder J, Timmermand OV. Investigating Ras homolog gene family member C (RhoC) and Ki67 expression following external beam radiation therapy show increased RhoC expression in relapsing prostate cancer xenografts. Biochem Biophys Res Commun 2024; 728:150324. [PMID: 38968772 DOI: 10.1016/j.bbrc.2024.150324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Section for Pediatrics, Lund, Sweden; Department of Neonatology, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Medical Radiation Physics, Lund, Sweden
| | - Anders Bjartell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Urological Cancers, Malmö, Sweden
| | - Jens Ceder
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden
| | - Oskar Vilhelmsson Timmermand
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden.
| |
Collapse
|
6
|
Trivedi TS, Shaikh AM, Mankad AU, Rawal RM, Patel SK. Genome-Wide Characterization of Fennel (Anethum foeniculum) MiRNome and Identification of its Potential Targets in Homo sapiens and Arabidopsis thaliana: An Inter and Intra-species Computational Scrutiny. Biochem Genet 2024; 62:2766-2795. [PMID: 38017284 DOI: 10.1007/s10528-023-10575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aafrinbanu M Shaikh
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Zhao P, Zhang J, Song W, Qi D, Huang Y, Su Y, Wu R, Zhang L, Zhang S. Incarvine C and its analogues inhibit the formation of cell cytoskeleton by targeting Rac1. Bioorg Chem 2024; 149:107512. [PMID: 38833990 DOI: 10.1016/j.bioorg.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) has emerged as a key regulator in the treatment of cancer metastasis because of its involvement in the formation of cell plate pseudopods and effects on cell migration. In this study, we found that incarvine C, a natural product isolated from Incarvillea sinensis, and its seven analogues exhibited antitumour activity by inhibiting cell cytoskeleton formation, with moderate cytotoxicity. Accordingly, these compounds inhibited the cytoskeleton-mediated migration and invasion of MDA-MB-231 cells, with inhibition rates ranging from 37.30 % to 69.72 % and 51.27 % to 70.90 % in vitro, respectively. Moreover, they induced G2/M phase cell cycle arrest in MDA-MB-231 cells. A pull-down assay revealed that the interaction between Rac1 and its downstream effector protein PAK1 was inhibited by these compounds and that the compound Ano-6 exhibited substantial activity, with an inhibition rate of more than 90 %. Molecular docking showed that incarvine C and its analogues could bind to the nucleotide-binding pocket of Rac1, maintaining high levels of inactivated Rac1. As Ano-6 exhibited significant activity in vitro, its anti-cancer activity was tested in vivo. Four weeks of oral treatment with Ano-6 was well-tolerated in mice, and it induced a potential anti-tumour response in xenografts of MDA-MB-231 cells. Further studies demonstrated that Ano-6 was enriched in tumour tissues after 2 h of administration and induced an increase in the number of dead tumour cells. In summary, these findings not only reveal the mechanism of incarvine C but also provide a new molecular template for Rac1 inhibitors and identify a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Pengxiang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining 810016, Qinghai, China; Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Jie Zhang
- Qinghai University Affiliated Hospital, 29 Tongren Road, Xining 810016, Qinghai, China
| | - Weirong Song
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Danshi Qi
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Yongchun Huang
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Yudong Su
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Rumeng Wu
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Lirong Zhang
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining 810016, Qinghai, China; Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China.
| |
Collapse
|
8
|
Bannoura SF, Khan HY, Uddin MH, Mohammad RM, Pasche BC, Azmi AS. Targeting guanine nucleotide exchange factors for novel cancer drug discovery. Expert Opin Drug Discov 2024; 19:949-959. [PMID: 38884380 PMCID: PMC11380440 DOI: 10.1080/17460441.2024.2368242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases. AREAS COVERED In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches. EXPERT OPINION Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Boris C Pasche
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Raghuram N, Temel EI, Kawamata T, Kozma KJ, Loch AJ, Wang W, Adams JR, Muller WJ, Egan SE. Elevated expression of wildtype RhoC promotes ErbB2- and Pik3ca-induced mammary tumor formation. Breast Cancer Res 2024; 26:86. [PMID: 38807216 PMCID: PMC11134842 DOI: 10.1186/s13058-024-01842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.
Collapse
Affiliation(s)
- Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - E Idil Temel
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Toshihiro Kawamata
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - William J Muller
- Department of Biochemistry and Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Johnson AR, Rao K, Zhang BB, Mullet S, Goetzman E, Gelhaus S, Tejero J, Shiva U. Myoglobin Inhibits Breast Cancer Cell Fatty Acid Oxidation and Migration via Heme-dependent Oxidant Production and Not Fatty Acid Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591659. [PMID: 38746370 PMCID: PMC11092581 DOI: 10.1101/2024.04.30.591659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The monomeric heme protein myoglobin (Mb), traditionally thought to be expressed exclusively in cardiac and skeletal muscle, is now known to be expressed in approximately 40% of breast tumors. While Mb expression is associated with better patient prognosis, the molecular mechanisms by which Mb limits cancer progression are unclear. In muscle, Mb's predominant function is oxygen storage and delivery, which is dependent on the protein's heme moiety. However, prior studies demonstrate that the low levels of Mb expressed in cancer cells preclude this function. Recent studies propose a novel fatty acid binding function for Mb via a lysine residue (K46) in the heme pocket. Given that cancer cells can upregulate fatty acid oxidation (FAO) to maintain energy production for cytoskeletal remodeling during cell migration, we tested whether Mb-mediated fatty acid binding modulates FAO to decrease breast cancer cell migration. We demonstrate that the stable expression of human Mb in MDA-MB-231 breast cancer cells decreases cell migration and FAO. Site-directed mutagenesis of Mb to disrupt Mb fatty acid binding did not reverse Mb-mediated attenuation of FAO or cell migration in these cells. In contrast, cells expressing Apo-Mb, in which heme incorporation was disrupted, showed a reversal of Mb-mediated attenuation of FAO and cell migration, suggesting that Mb attenuates FAO and migration via a heme-dependent mechanism rather than through fatty acid binding. To this end, we show that Mb's heme-dependent oxidant generation propagates dysregulated gene expression of migratory genes, and this is reversed by catalase treatment. Collectively, these data demonstrate that Mb decreases breast cancer cell migration, and this effect is due to heme-mediated oxidant production rather than fatty acid binding. The implication of these results will be discussed in the context of therapeutic strategies to modulate oxidant production and Mb in tumors. Highlights Myoglobin (Mb) expression in MDA-MB-231 breast cancer cells slows migration.Mb expression decreases mitochondrial respiration and fatty acid oxidation.Mb-dependent fatty acid binding does not regulate cell migration or respiration.Mb-dependent oxidant generation decreases mitochondrial metabolism and migration.Mb-derived oxidants dysregulate migratory gene expression.
Collapse
|
11
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
12
|
Peinado FM, Olivas-Martínez A, Lendínez I, Iribarne-Durán LM, León J, Fernández MF, Sotelo R, Vela-Soria F, Olea N, Freire C, Ocón-Hernández O, Artacho-Cordón F. Expression Profiles of Genes Related to Development and Progression of Endometriosis and Their Association with Paraben and Benzophenone Exposure. Int J Mol Sci 2023; 24:16678. [PMID: 38069001 PMCID: PMC10706360 DOI: 10.3390/ijms242316678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Increasing evidence has been published over recent years on the implication of endocrine-disrupting chemicals (EDCs), including parabens and benzophenones in the pathogenesis and pathophysiology of endometriosis. However, to the best of our knowledge, no study has been published on the ways in which exposure to EDCs might affect cell-signaling pathways related to endometriosis. We aimed to describe the endometriotic tissue expression profile of a panel of 23 genes related to crucial cell-signaling pathways for the development and progression of endometriosis (cell adhesion, invasion/migration, inflammation, angiogenesis, and cell proliferation/hormone stimulation) and explore its relationship with the exposure of patients to parabens (PBs) and benzophenones (BPs). This cross-sectional study included a subsample of 33 women with endometriosis from the EndEA study, measuring their endometriotic tissue expressions of 23 genes, while urinary concentrations of methyl-, ethyl-, propyl-, butyl-paraben, benzophenone-1, benzophenone-3, and 4-hydroxybenzophenone were determined in 22 women. Spearman's correlations test and linear and logistic regression analyses were performed. The expression of 52.2% of studied genes was observed in >75% of endometriotic tissue samples and the expression of 17.4% (n = 4) of them in 50-75%. Exposure to certain PB and BP congeners was positively associated with the expression of key genes for the development and proliferation of endometriosis. Genes related to the development and progression of endometriosis were expressed in most endometriotic tissue samples studied, suggesting that exposure of women to PBs and BPs may be associated with the altered expression profile of genes related to cellular pathways involved in the development of endometriosis.
Collapse
Affiliation(s)
- Francisco M. Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | | | - Luz M. Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Digestive Medicine Unit, San Cecilio University Hospital, 18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Mariana F. Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| | - Rafael Sotelo
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
- Nuclear Medicine Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Legal Medicine, Toxicology and Physical Anthropology Department, University of Granada, 18071 Granada, Spain
| | - Olga Ocón-Hernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
13
|
Ma Z, Sun Q, Zhang C, Zheng Q, Liu Y, Xu H, He Y, Yao C, Chen J, Xia H. RHOJ Induces Epithelial-to-Mesenchymal Transition by IL-6/STAT3 to Promote Invasion and Metastasis in Gastric Cancer. Int J Biol Sci 2023; 19:4411-4426. [PMID: 37781036 PMCID: PMC10535698 DOI: 10.7150/ijbs.81972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Recently, the molecular classification of gastric cancer (GC) promotes the advances of GC patients' precision therapy and prognosis prediction. According to the Asian Cancer Research Group (ACRG), GC is classified as microsatellite instable (MSI) subtype GC, microsatellite stable/epithelial-to-mesenchymal transition (MSS/EMT) subtype GC, MSS/TP53- subtype GC, and MSS/TP53+ subtype GC. Due to the easy metastasis of EMT-subtype GC, it has the worst prognosis, the highest recurrence rate, and the tendency to occur at a younger age. Therefore, it is curious and crucial for us to understand the molecular basis of EMT-subtype GC. Methods: The expression of RHOJ was detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) in GC cells and tissues. Western blotting and immunofluorescence (IF) were conducted to examine the effects of RHOJ on the EMT markers' expression of GC cells. The GC cells' migration and invasion were investigated by transwell assay. The tumor growth and metastasis were demonstrated correspondingly in different xenograft models. Results: Firstly, it was noticed that RHOJ was significantly upregulated in EMT-subtype GC and RHOJ has close relationships with the EMT process of GC, based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Next, transwell assay and tail vein metastasis models were conducted to verify that RHOJ mediates the EMT to regulate the invasion and metastasis of GC in vitro and in vivo. In addition, weakened tumor angiogenesis was observed after RHOJ knockdown by the angiogenesis assay of HUVEC. RNA-seq and further study unveiled that RHOJ aggravates the malignant progression of GC by inducing EMT through IL-6/STAT3 to promote invasion and metastasis. Finally, blocking the IL-6/STAT3 signaling overcame RHOJ-mediated GC cells' growth and migration. Conclusions: These results indicate that the upregulation of RHOJ contributes to EMT-subtype GC invasion and metastasis via IL-6/STAT3 signaling, and RHOJ is expected to become a promising biomarker and therapeutic target for EMT-subtype GC patients.
Collapse
Affiliation(s)
- Zhijie Ma
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zheng
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Yixuan Liu
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Haojun Xu
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Yiting He
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Chengyun Yao
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Sprenger A, Carr HS, Ulu A, Frost JA. Src stimulates Abl-dependent phosphorylation of the guanine exchange factor Net1A to promote its cytosolic localization and cell motility. J Biol Chem 2023; 299:104887. [PMID: 37271338 PMCID: PMC10404680 DOI: 10.1016/j.jbc.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
The neuroepithelial cell transforming gene 1 (Net1) is a guanine nucleotide exchange factor for the small GTPase RhoA that promotes cancer cell motility and metastasis. Two isoforms of Net1 exist, Net1 and Net1A, both of which are sequestered in the nucleus in quiescent cells to prevent aberrant RhoA activation. Many cell motility stimuli drive cytosolic relocalization of Net1A, but mechanisms controlling this event are not fully understood. Here, we demonstrate that epithelial growth factor stimulates protein kinase Src- and Abl1-dependent phosphorylation of Net1A to promote its cytosolic localization. We show that Abl1 efficiently phosphorylates Net1A on Y373, and that phenylalanine substitution of Y373 prevents Net1A cytosolic localization. Furthermore, we found that Abl1-driven cytosolic localization of Net1A does not require S52, which is a phosphorylation site of a different kinase, c-Jun N-terminal kinase, that inhibits nuclear import of Net1A. However, we did find that MKK7-stimulated cytosolic localization of Net1A does require Y373. We also demonstrate that aspartate substitution at Y373 is sufficient to promote Net1A cytosolic accumulation, and expression of Net1A Y373D potentiates epithelial growth factor-stimulated RhoA activation, downstream myosin light chain 2 phosphorylation, and F-actin accumulation. Moreover, we show that expression of Net1A Y373D in breast cancer cells also significantly increases cell motility and Matrigel invasion. Finally, we show that Net1A is required for Abl1-stimulated cell motility, which is rescued by expression of Net1A Y373D, but not Net1A Y373F. Taken together, this work demonstrates a novel mechanism controlling Net1A subcellular localization to regulate RhoA-dependent cell motility and invasion.
Collapse
Affiliation(s)
- Ashabari Sprenger
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
15
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
16
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
17
|
Tawfeeq N, Lazarte JMS, Jin Y, Gregory MD, Lamango NS. Polyisoprenylated cysteinyl amide inhibitors deplete singly polyisoprenylated monomeric G-proteins in lung and breast cancer cell lines. Oncotarget 2023; 14:243-257. [PMID: 36961909 PMCID: PMC10038354 DOI: 10.18632/oncotarget.28390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
Finding effective therapies against cancers driven by mutant and/or overexpressed hyperactive G-proteins remains an area of active research. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) are agents that mimic the essential posttranslational modifications of G-proteins. It is hypothesized that PCAIs work as anticancer agents by disrupting polyisoprenylation-dependent functional interactions of the G-Proteins. This study tested this hypothesis by determining the effect of the PCAIs on the levels of RAS and related monomeric G-proteins. Following 48 h exposure, we found significant decreases in the levels of KRAS, RHOA, RAC1, and CDC42 ranging within 20-66% after NSL-YHJ-2-27 (5 μM) treatment in all four cell lines tested, A549, NCI-H1299, MDA-MB-231, and MDA-MB-468. However, no significant difference was observed on the G-protein, RAB5A. Interestingly, 38 and 44% decreases in the levels of the farnesylated and acylated NRAS were observed in the two breast cancer cell lines, MDA-MB-231, and MDA-MB-468, respectively, while HRAS levels showed a 36% decrease only in MDA-MB-468 cells. Moreover, after PCAIs treatment, migration, and invasion of A549 cells were inhibited by 72 and 70%, respectively while the levels of vinculin and fascin dropped by 33 and 43%, respectively. These findings implicate the potential role of PCAIs as anticancer agents through their direct interaction with monomeric G-proteins.
Collapse
Affiliation(s)
- Nada Tawfeeq
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
- These authors contributed equally to this work and share first authorship
| | - Jassy Mary S. Lazarte
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
- These authors contributed equally to this work and share first authorship
| | - Yonghao Jin
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Matthew D. Gregory
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Nazarius S. Lamango
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| |
Collapse
|
18
|
Lv Y, Mou Y, Su J, Liu S, Ding X, Yuan Y, Li G, Li G. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: a network pharmacology-based analysis. Sci Rep 2023; 13:3816. [PMID: 36882618 PMCID: PMC9992681 DOI: 10.1038/s41598-023-30585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Resina Draconis (RD) is known as the "holy medicine for promoting blood circulation" and possesses antitumor properties against various types of cancer, including breast cancer (BC); however, the underlying mechanism is not well understood. To explore the potential mechanism of RD against BC using network pharmacology and experimental validation, data on bioactive compounds, potential targets of RD, and related genes of BC were obtained from multiple public databases. Gene Ontology (GO) and KEGG pathway analyses were performed via the DAVID database. Protein interactions were downloaded from the STRING database. The mRNA and protein expression levels and survival analysis of the hub targets were analyzed using the UALCAN, HPA, Kaplan‒Meier mapper, and cBioPortal databases. Subsequently, molecular docking was used to verify the selected key ingredients and hub targets. Finally, the predicted results of network pharmacology methods were verified by cell experiments. In total, 160 active ingredients were obtained, and 148 RD target genes for the treatment of BC were identified. KEGG pathway analysis indicated that RD exerted its therapeutic effects on BC by regulating multiple pathways. Of these, the PI3K-AKT pathway was indicated to play an important role. In addition, RD treatment of BC seemed to involve the regulation of hub targets that were identified based on PPI interaction network analysis. Validation in different databases showed that AKT1, ESR1, HSP90AA1, CASP3, SRC and MDM2 may be involved in the carcinogenesis and progression of BC and that ESR1, IGF1 and HSP90AA1 were correlated with worse overall survival (OS) in BC patients. Molecular docking results showed that 103 active compounds have good binding activity with the hub targets, among which flavonoid compounds were the most important active components. Therefore, the sanguis draconis flavones (SDF) were selected for subsequent cell experiments. The experimental results showed that SDF significantly inhibited the cell cycle and cell proliferation of MCF-7 cells through the PI3K/AKT pathway and induced MCF-7 cell apoptosis. This study has preliminarily reported on the active ingredients, potential targets, and molecular mechanism of RD against BC, and RD was shown to exert its therapeutic effects on BC by regulating the PI3K/AKT pathway and related gene targets. Importantly, our work could provide a theoretical basis for further study of the complex anti-BC mechanism of RD.
Collapse
Affiliation(s)
- Yana Lv
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yan Mou
- Yuxi Normal University, Yuxi, 653100, China
| | - Jing Su
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Shifang Liu
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Xuan Ding
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yin Yuan
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Ge Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Guang Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| |
Collapse
|
19
|
Morishita J, Nurse P. Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells. Open Biol 2023; 13:220185. [PMID: 36854376 PMCID: PMC9974304 DOI: 10.1098/rsob.220185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The Rho GTPase family proteins are key regulators of cytoskeletal dynamics. Deregulated activity of Rho GTPases is associated with cancers and neurodegenerative diseases, and their potential as drug targets has long been recognized. Using an economically effective drug screening workflow in fission yeast and human cells, we have identified a Rho GTPase inhibitor, O1. By a suppressor mutant screen in fission yeast, we find a point mutation in the rho1 gene that confers resistance to O1. Consistent with the idea that O1 is the direct inhibitor of Rho1, O1 reduced the cellular amount of activated, GTP-bound Rho1 in wild-type cells, but not in the O1-resistant mutant cells, in which the evolutionarily conserved Ala62 residue is mutated to Thr. Similarly, O1 inhibits activity of the human orthologue RhoA GTPase in tissue culture cells. Our studies illustrate the power of yeast phenotypic screens in the identification and characterization of drugs relevant to human cells and have identified a novel GTPase inhibitor for fission yeast and human cells.
Collapse
Affiliation(s)
- Jun Morishita
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
20
|
Kuang M, Zhou Z, Lu Z, Shen W, Ge H, Tao X, Zhao Y, Zhuge L, Sun Y, Ji D, Zhang H. Prognostic prediction of lung adenocarcinoma by integrative analysis of RHOH expression and methylation. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:148-156. [PMID: 36710485 PMCID: PMC9978903 DOI: 10.1111/crj.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE The development of epigenetics holds great promise for diagnosis and treatment of lung adenocarcinoma (LUAD). The purpose of this work was to analyze the correlation between Ras Homolog Gene Family Member H (RHOH) expression and methylation in patients with LUAD and its association with survival. METHODS Data related to gene expression, DNA methylation, and clinical features of LUAD from The Cancer Genome Atlas (TCGA) database were analyzed. A total of 50 patients were included in verification group. The methylation level of RHOH in verification group was detected by bisulfite amplicon sequencing. RESULTS The RHOH methylation level in TCGA cohort was significantly and negatively correlated with its expression level (Cor = -0.5, p = 2.687e-33). Patients with hypermethylation and low expression of RHOH had significantly worse prognosis than patients with hypomethylation and low expression of RHOH (TCGA: p = 0.004; validation cohort: p = 0.006, HR: 4.740, 95% CI: 1.567-14.340). CONCLUSION Our research revealed that RHOH may prove to be a new potential prognostic predictor for LUAD patients.
Collapse
Affiliation(s)
- Muyu Kuang
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenhua Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Zhongyuan Lu
- Department of Thoracic Surgery, 903th Hospital of PLA, Hangzhou, China
| | - Weina Shen
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Haiyan Ge
- Department of Pulmonary Diseases, Huadong Hospital, Shanghai, China
| | - Xiaoting Tao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yue Zhao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lingdun Zhuge
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dongmei Ji
- Department of Head & Neck tumors and Neuroendocrine tumors, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huibiao Zhang
- Department of Thoracic Surgery, Huadong Hospital, Shanghai, China
| |
Collapse
|
21
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
22
|
Chen F, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang J, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene 2023; 42:679-692. [PMID: 36599922 PMCID: PMC9957727 DOI: 10.1038/s41388-022-02574-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Collapse
Affiliation(s)
- Fuhui Chen
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sevim B. Gurler
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Novo
- grid.5379.80000000121662407Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cigdem Selli
- grid.470904.e0000 0004 0496 2805Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Denis G. Alferez
- grid.5379.80000000121662407Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Secil Eroglu
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kyriaki Pavlou
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew H. Sims
- grid.470904.e0000 0004 0496 2805Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Neil E. Humphreys
- grid.5379.80000000121662407Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- grid.5379.80000000121662407Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Campbell
- grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK
| | - Owen J. Sansom
- grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK ,grid.8756.c0000 0001 2193 314XSchool of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Tournier
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert B. Clarke
- grid.5379.80000000121662407Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- grid.5379.80000000121662407Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H. Streuli
- grid.5379.80000000121662407Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
23
|
Sayedyahossein S, Smith J, Barnaeva E, Li Z, Choe J, Ronzetti M, Dextras C, Hu X, Marugan J, Southall N, Baljinnyam B, Thines L, Tran AD, Ferrer M, Sacks DB. Discovery of small molecule inhibitors that effectively disrupt IQGAP1-Cdc42 interaction in breast cancer cells. Sci Rep 2022; 12:17372. [PMID: 36253497 PMCID: PMC9576799 DOI: 10.1038/s41598-022-21342-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
The small GTPase Cdc42 is an integral component of the cytoskeleton, and its dysregulation leads to pathophysiological conditions, such as cancer. Binding of Cdc42 to the scaffold protein IQGAP1 stabilizes Cdc42 in its active form. The interaction between Cdc42 and IQGAP1 enhances migration and invasion of cancer cells. Disrupting this association could impair neoplastic progression and metastasis; however, no effective means to achieve this has been described. Here, we screened 78,500 compounds using a homogeneous time resolved fluorescence-based assay to identify small molecules that disrupt the binding of Cdc42 to IQGAP1. From the combined results of the validation assay and counter-screens, we selected 44 potent compounds for cell-based experiments. Immunoprecipitation and cell viability analysis rendered four lead compounds, namely NCGC00131308, NCGC00098561, MLS000332963 and NCGC00138812, three of which inhibited proliferation and migration of breast carcinoma cells. Microscale thermophoresis revealed that two compounds bind directly to Cdc42. One compound reduced the amount of active Cdc42 in cells and effectively impaired filopodia formation. Docking analysis provided plausible models of the compounds binding to the hydrophobic pocket adjacent to the GTP binding site of Cdc42. In conclusion, we identified small molecules that inhibit binding between Cdc42 and IQGAP1, which could potentially yield chemotherapeutic agents.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.39381.300000 0004 1936 8884Present Address: Department of Physiology and Pharmacology, University of Western Ontario, London, ON Canada
| | - Jessica Smith
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.94365.3d0000 0001 2297 5165Present Address: Center for Scientific Review, National Institutes of Health, Bethesda, MD USA
| | - Elena Barnaeva
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Zhigang Li
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jun Choe
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Michael Ronzetti
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Christopher Dextras
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Xin Hu
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Juan Marugan
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Noel Southall
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Bolormaa Baljinnyam
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Louise Thines
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Andy D. Tran
- grid.48336.3a0000 0004 1936 8075Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Rockville, MD USA
| | - Marc Ferrer
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - David B. Sacks
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
24
|
Xu L, Li YH, Zhao WJ, Sang YF, Chen JJ, Li DJ, Du MR. RhoB Promotes Endometrial Stromal Cells Decidualization Via Semaphorin3A/PlexinA4 Signaling in Early Pregnancy. Endocrinology 2022; 163:6679730. [PMID: 36047434 DOI: 10.1210/endocr/bqac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Endometrial decidualization refers to a series of morphological changes and functional remodeling of the uterine endometrium to accept the embryo under the effect of estrogen and progesterone secreted by ovaries after ovulation. During decidualization, endometrial stromal cells (ESCs) proliferate and differentiate into decidual stromal cells, undergoing cytoskeletal rearrangement-mediated morphological changes and expressing decidualization markers, such as insulin-like growth factor-binding protein-1 and prolactin. Ras homology (Rho) proteins, a family of small G proteins, are well known as regulators of cellular morphology and involved in multiple other cellular processes. In this study, we found ras homolog family member B (RHOB) was the most significantly upregulated gene in the Rho protein family after the in vitro decidualization of human primary ESCs. RhoB expression was induced mainly by 3',5'-cyclic adenosine 5'-monophosphate (cAMP) / protein kinase A (PKA) / cyclic adenosine monophosphate-response element binding protein signaling and partly by progesterone signaling. Knockdown of RhoB in ESCs greatly inhibited actin cytoskeletal rearrangement, cell morphological transformation, and upregulation of insulin-like growth factor-binding protein-1, suggesting an indispensable role of RhoB in decidualization. Mechanistically, the downstream target of RhoB was semaphorin3A (Sema3A), which mediated its signaling via interacting with the receptor, plexinA4. More importantly, decreased expression of RhoB, Sema3A, and plexinA4 were detected in deciduas from patients with unexplained spontaneous miscarriage. Collectively, our results indicate that RhoB/Sema3A/plexinA4 signaling plays a positive role in endometrial decidualization and relates to unexplained spontaneous miscarriage, which is worthy of further exploration so as to provide new insights into therapeutic strategies for pregnancy diseases associated with poor decidualization.
Collapse
Affiliation(s)
- Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yan-Hong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei-Jie Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Fei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jia-Jia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mei-Rong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
25
|
Bakherad H, Ghasemi F, Hosseindokht M, Zare H. Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer. Cancer Cell Int 2022; 22:245. [PMID: 35933373 PMCID: PMC9357333 DOI: 10.1186/s12935-022-02665-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common type of cancer in women and the second leading cause of cancer death in female. Triple-negative breast cancer has a more aggressive proliferation and a poorer clinical diagnosis than other breast cancers. The most common treatments for TNBC are chemotherapy, surgical removal, and radiation therapy, which impose many side effects and costs on patients. Nanobodies have superior advantages, which makes them attractive for use in therapeutic agents and diagnostic kits. There are numerous techniques suggested by investigators for early detection of breast cancer. Nevertheless, there are fewer molecular diagnostic methods in the case of TNBC due to the lack of expression of famous breast cancer antigens in TNBC. Although conventional antibodies have a high ability to detect tumor cell markers, their large size, instability, and costly production cause a lot of problems. Since the HER-2 do not express in TNBC diagnosis, the production of nanobodies for the diagnosis and treatment of cancer cells should be performed against other antigens expressed in TNBC. In this review, nanobodies which developed against triple negative breast cancer, were classified based on type of antigen.
Collapse
Affiliation(s)
- Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Hosseindokht
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
26
|
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 2022; 13:720076. [PMID: 35571115 PMCID: PMC9098811 DOI: 10.3389/fphar.2022.720076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cancer among all types of cancers. It accounts for 12% of the total cases of cancers. The complex and heterogeneous nature of breast cancer makes it difficult to treat in advanced stages. The expression of various enzymes and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is still under investigation. In healthy cells, Nrf2 expression is lower, which maintains antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated with various phenomena, such as the development of drug resistance, angiogenesis, development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the development of drug resistance, angiogenesis, cancer stem cell generation, and metastasis in the specific context of breast cancer. We also discussed the therapeutic strategies employed against breast cancer exploiting Nrf2 signaling cascades.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
27
|
Zhang C, Li Z, Zhang Y, Zhao C, Wang H, Lin J, Liu C, Wang X, Wang H. Genomic Variations and Immune-Related Features of TMB, PD-L1 Expression and CD8+ T Cell Infiltration in Chinese Pulmonary Sarcomatoid Carcinoma. Int J Gen Med 2022; 15:4209-4220. [PMID: 35480996 PMCID: PMC9035462 DOI: 10.2147/ijgm.s357659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) is a rare and distinct subtype of lung cancer characterized by its aggressiveness and dismal prognosis. However, genomic landscape and immune contexture have not been fully elucidated among PSC patients. Methods In the present study, whole-exome-sequencing (WES) analyses were performed to depict genomic landscape of 38 independent PSC samples. Tumor mutation burden (TMB) was calculated with the total number of non-synonymous SNVs and indel variants per megabase of coding regions. PD-L1 expression and CD8+ T cell density were evaluated by immunohistochemistry in PSC samples. Their associations with genomic mutation were further assessed in genes with most frequent mutation. Overall survival (OS) of PSC patients with top mutated genes and high and low TMB, PD-L1 and CD8+ TIL expressions were further compared. Subgroup analyses of OS stratified by morphology and pathological type were conducted. Their correlation with TMB, PD-L1 and CD8+ T cell were further assessed. Results We identified a cohort of genomic and somatic mutation in PSC patients. Subgroup patients with distinct clinicopathological features were found to harbor different genomic mutations and immunologic features. Besides, genomic profiles influenced outcomes, with SARS mutation associated with worsened prognosis. Conclusion Through the mapping of genetic and immunologic landscape, we find the heterogeneity among the subgroups of PSC. Our findings may provide opportunities for therapeutic susceptibility among Chinese PSC patients.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, 200032, People’s Republic of China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yanxiang Zhang
- Berry Oncology Corporation, Beijing, 102206, People’s Republic of China
| | - Chenglong Zhao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250013, People’s Republic of China
| | - Hui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jiamao Lin
- Department of Traditional Chinese Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Cuicui Liu
- Department of Oncology, Linyi People’s Hospital, Linyi, 276000, People’s Republic of China
| | - Xiaohui Wang
- Research Service Office, Shandong Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
- Correspondence: Haiyong Wang, Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China, Tel +86 0531 67626332, Fax +86 0531 67626332, Email
| |
Collapse
|
28
|
Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity. Sci Rep 2022; 12:5291. [PMID: 35351946 PMCID: PMC8964680 DOI: 10.1038/s41598-022-09364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Genetically encoded, Förster resonance energy transfer (FRET) biosensors enable live-cell optical imaging of signaling molecules. Small conformational changes often limit the dynamic range of biosensors that combine fluorescent proteins (FPs) and sensing domains into a single polypeptide. To address this, we developed FRET and lanthanide-based FRET (LRET) biosensors of Rac1 activation with two key features that enhance sensitivity and dynamic range. For one, alpha helical linker domains separate FRET partners and ensure a large conformational change and FRET increase when activated Rac1 at the biosensor C-terminus interacts with an amino-terminal Rac binding domain. Incorporation of a luminescent Tb(III) complex with long (~ ms) excited state lifetime as a LRET donor enabled time-gated luminescence measurements of Rac1 activity in cell lysates. The LRET dynamic range increased with ER/K linker length up to 1100% and enabled robust detection of Rac1 inhibition in 96-well plates. The ER/K linkers had a less pronounced, but still significant, effect on conventional FRET biosensors (with FP donors and acceptors), and we were able to dynamically image Rac1 activation at cell edges using fluorescence microscopy. The results herein highlight the potential of FRET and LRET biosensors with ER/K linkers for cell-based imaging and screening of protein activities.
Collapse
|
29
|
Ali R, Mir HA, Hamid R, Bhat B, Shah RA, Khanday FA, Bhat SS. Actin Modulation Regulates the Alpha-1-Syntrophin/p66Shc Mediated Redox Signaling Contributing to the RhoA GTPase Protein Activation in Breast Cancer Cells. Front Oncol 2022; 12:841303. [PMID: 35273919 PMCID: PMC8904154 DOI: 10.3389/fonc.2022.841303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
SNTA1 signaling axis plays an essential role in cytoskeletal organization and is also implicated in breast cancers. In this study, we aimed to investigate the involvement of actin cytoskeleton in the propagation of SNTA1/p66shc mediated pro-metastatic cascade in breast cancer cells.The effect of actin filament depolymerization on SNTA1-p66Shc interaction and the trimeric complex formation was analyzed using co-immunoprecipitation assays. Immunofluorescence and RhoA activation assays were used to show the involvement of SNTA1-p66Shc interaction in RhoA activation and F-actin organization. Cellular proliferation and ROS levels were assessed using MTT assay and Amplex red catalase assay. The migratory potential was evaluated using transwell migration assay and wound healing assay.We found that cytochalasin D mediated actin depolymerization significantly declines endogenous interaction between SNTA1 and p66Shc protein in MDA-MB-231 cells. Results indicate that SNTA1 and p66Shc interact with RhoA protein under physiological conditions. The ROS generation and RhoA activation were substantially enhanced in cells overexpressing SNTA1 and p66Shc, promoting proliferation and migration in these cells. In addition, we found that loss of SNTA1-p66Shc interaction impaired actin organization, proliferation, and migration in breast cancer cells. Our results demonstrate a novel reciprocal regulatory mechanism between actin modulation and SNTA1/p66Shc/RhoA signaling cascade in human metastatic breast cancer cells.
Collapse
Affiliation(s)
- Roshia Ali
- Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- National Agricultural Higher Education Project (NAHEP) Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | | | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| |
Collapse
|
30
|
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased Pro-Apoptotic and Anti-Proliferative Activities of Simvastatin Encapsulated PCL-PEG Nanoparticles on Human Breast Cancer Adenocarcinoma Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Khamko R, Daduang J, Settasatian C, Limpaiboon T. OPCML Exerts Antitumor Effects in Cholangiocarcinoma via AXL/STAT3 Inactivation and Rho GTPase Down-regulation. Cancer Genomics Proteomics 2021; 18:771-780. [PMID: 34697068 DOI: 10.21873/cgp.20296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Opioid-binding protein/cell adhesion molecule-like (OPCML) plays a crucial role in the suppression of tumor progression in several cancer types. Nevertheless, the association between OPCML functions and cholangiocarcinoma (CCA) progression remains unknown. We aimed to investigate biological functions of OPCML and related signaling pathways in CCA cell lines. MATERIALS AND METHODS Methylation status and ectopic expression of OPCML were determined in CCA cell lines using methylation-specific polymerase chain reaction and pcDNA3.1+/C-(K)DYK-OPCML, respectively. Cell proliferation, migration and invasion were investigated. RESULTS OPCML was found to be epigenetically silenced by DNA methylation. Ectopic expression of OPCML inhibited CCA proliferation by inducing apoptosis via AXL receptor tyrosine kinase/signal transducer and activator of transcription 3 (AXL/STAT3) inactivation. It also suppressed cell migration and invasion via down-regulation of Rho GTPases, ras homolog family member A (RHOA), Rac family small GTPase 1 (RAC1) and cell division cycle 42 (CDC42). CONCLUSION We are the first to unravel the antitumor effects and the related signaling pathways of OPCML in CCA. The loss of OPCML expression due to promoter hypermethylation can cause a decrease in cell death but increase in cell migration and invasion, which may at least in part contribute to CCA progression.
Collapse
Affiliation(s)
- Ricuphan Khamko
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand; .,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
32
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
33
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
34
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
35
|
Al-Zubaidi Y, Chen Y, Khalilur Rahman M, Umashankar B, Choucair H, Bourget K, Chung L, Qi Y, Witting PK, Anderson RL, O'Neill GM, Dunstan CR, Rawling T, Murray M. PTU, a novel ureido-fatty acid, inhibits MDA-MB-231 cell invasion and dissemination by modulating Wnt5a secretion and cytoskeletal signaling. Biochem Pharmacol 2021; 192:114726. [PMID: 34389322 DOI: 10.1016/j.bcp.2021.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.
Collapse
Affiliation(s)
- Yassir Al-Zubaidi
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia; College of Pharmacy, The University of Mashreq, Baghdad, Iraq
| | - Yongjuan Chen
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Bala Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Long Chung
- Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Paul K Witting
- Discipline of Pathology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Robin L Anderson
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Colin R Dunstan
- School of Biomedical Engineering, University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun 2021; 12:2198. [PMID: 33850160 PMCID: PMC8044243 DOI: 10.1038/s41467-021-22522-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is initiated by somatic mutations in oncogenes or tumor suppressor genes. However, additional alterations provide selective advantages to the tumor cells to resist treatment and develop metastases. Their identification is of paramount importance. Reduced expression of EFA6B (Exchange Factor for ARF6, B) is associated with breast cancer of poor prognosis. Here, we report that loss of EFA6B triggers a transcriptional reprogramming of the cell-to-ECM interaction machinery and unleashes CDC42-dependent collective invasion in collagen. In xenograft experiments, MCF10 DCIS.com cells, a DCIS-to-IDC transition model, invades faster when knocked-out for EFA6B. In addition, invasive and metastatic tumors isolated from patients have lower expression of EFA6B and display gene ontology signatures identical to those of EFA6B knock-out cells. Thus, we reveal an EFA6B-regulated molecular mechanism that controls the invasive potential of mammary cells; this finding opens up avenues for the treatment of invasive breast cancer.
Collapse
|
37
|
Keller L, Tardy C, Ligat L, Gilhodes J, Filleron T, Bery N, Rochaix P, Aquilina A, Bdioui S, Roux T, Trinquet E, Favre G, Olichon A. Nanobody-Based Quantification of GTP-Bound RHO Conformation Reveals RHOA and RHOC Activation Independent from Their Total Expression in Breast Cancer. Anal Chem 2021; 93:6104-6111. [PMID: 33825439 DOI: 10.1021/acs.analchem.0c05137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 μg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.
Collapse
Affiliation(s)
- Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | - Claudine Tardy
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France
| | - Laetitia Ligat
- Le Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, plateau de protéomique, Toulouse 31037, France
| | - Julia Gilhodes
- Service de Biostatistiques, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31059, France
| | - Thomas Filleron
- Service de Biostatistiques, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31059, France
| | - Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France
| | - Philippe Rochaix
- Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | | | | | | | | | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion 97487, France
| |
Collapse
|
38
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
39
|
Gjelaj E, Hamel PA. Distinct epithelial-to-mesenchymal transitions induced by PIK3CA H1047R and PIK3CB. J Cell Sci 2021; 134:jcs.248294. [PMID: 33526718 DOI: 10.1242/jcs.248294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
The most common PIK3CA mutation, producing the H1047R mutant of p110α, arises in myriad malignancies and is typically observed in low-grade breast tumours. In contrast, amplification is observed for wild-type PIK3CB, encoding p110β, and occurs at low frequency but in aggressive, high-grade metastatic tumours. We hypothesized that mutant p110αH1047R and wild-type p110β give rise to distinct transformed phenotypes. We show that p110αH1047R and wild-type p110β, but not wild-type p110α, transform MCF-10A cells and constitutively stimulate phosphoinositide 3-kinase (PI3K)-AKT pathway signalling. However, their resultant morphological transformed phenotypes are distinct. p110αH1047R induced an epithelial-to-mesenchymal transition (EMT) commensurate with SNAIL (also known as SNAI1) induction and loss of E-cadherin. Upon p110β expression, however, E-cadherin expression was maintained despite cells readily delaminating from epithelial sheets. Distinct from the prominent filopodia in p110αH1047R-expressing cells, p110β induced formation of lamellipodia, and these cells migrated with significantly greater velocity and decreased directionality. p110β-induced phenotypic alterations were accompanied by hyperactivation of RAC1; the dependency of transformation of p110β-binding to Rac1 revealed using a Rac1-binding mutant of p110β. Thus, PIK3CB amplification induces a transformed phenotype that is dependent upon a p110β-Rac1 signalling loop and is distinct from the transformed phenotype induced by p110αH1047R.
Collapse
Affiliation(s)
- Ersa Gjelaj
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul A Hamel
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
40
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
41
|
Grimes MM, Kenney SR, Dominguez DR, Brayer KJ, Guo Y, Wandinger-Ness A, Hudson LG. The R-enantiomer of ketorolac reduces ovarian cancer tumor burden in vivo. BMC Cancer 2021; 21:40. [PMID: 33413202 PMCID: PMC7791840 DOI: 10.1186/s12885-020-07716-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.
Collapse
Affiliation(s)
- Martha M. Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - S. Ray Kenney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
- Division of Molecular Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Dayna R. Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico USA
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Yuna Guo
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| |
Collapse
|
42
|
Mazloomi SM, Foroutan-Ghaznavi M, Montazeri V, Tavoosidana G, Fakhrjou A, Nozad-Charoudeh H, Pirouzpanah S. Profiling the expression of pro-metastatic genes in association with the clinicopathological features of primary breast cancer. Cancer Cell Int 2021; 21:6. [PMID: 33407452 PMCID: PMC7789694 DOI: 10.1186/s12935-020-01708-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastasis accounts for ninety percent of breast cancer (BrCa) mortality. Cortactin, Ras homologous gene family member A (RhoA), and Rho-associated kinase (ROCK) raise cellular motility in favor of metastasis. Claudins (CLDN) belong to tight junction integrity and are dysregulated in BrCa. Thus far, epidemiologic evidence regarding the association of different pro-metastatic genes with pathological phenotypes of BrCa is largely inconsistent. This study aimed to determine the possible transcriptional models of pro-metastatic genes incorporate in holding the integrity of epithelial cell-cell junctions (CTTN, RhoA, ROCK, CLDN-1, CLDN-2, and CLDN-4), for the first time, in association with clinicopathological features of primary BrCa. METHODS In a consecutive case-series design, 206 newly diagnosed non-metastatic eligible BrCa patients with histopathological confirmation (30-65 years) were recruited in Tabriz, Iran (2015-2017). Real-time RT-PCR was used. Then fold changes in the expression of target genes were measured. RESULTS ROCK amplification was associated with the involvement of axillary lymph node metastasis (ALNM; ORadj. = 3.05, 95%CI 1.01-9.18). Consistently, inter-correlations of CTTN-ROCK (β = 0.226, P < 0.05) and RhoA-ROCK (β = 0.311, P < 0.01) were determined among patients diagnosed with ALNM+ BrCa. In addition, the overexpression of CLDN-4 was frequently observed in tumors identified by ALNM+ or grade III (P < 0.05). The overexpression of CTTN, CLDN-1, and CLDN-4 genes was correlated positively with the extent of tumor size. CTTN overexpression was associated with the increased chance of luminal-A positivity vs. non-luminal-A (ORadj. = 1.96, 95%CI 1.02-3.77). ROCK was also expressed in luminal-B BrCa tumors (P < 0.05). The estrogen receptor-dependent transcriptions were extended to the inter-correlations of RhoA-ROCK (β = 0.280, P < 0.01), ROCK-CLDN-2 (β = 0.267, P < 0.05), and CLDN-1-CLDN-4 (β = 0.451, P < 0.001). CONCLUSIONS For the first time, our findings suggested that the inter-correlations of CTTN-ROCK and RhoA-ROCK were significant transcriptional profiles determined in association with ALNM involvement; therefore the overexpression of ROCK may serve as a potential molecular marker for lymphatic metastasis. The provided binary transcriptional profiles need more approvals in different clinical features of BrCa metastasis.
Collapse
Affiliation(s)
- Seyed-Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, 7193635899 Iran
| | - Mitra Foroutan-Ghaznavi
- Students’ Research Committee, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, 7134814336 Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 5166414766 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756 Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Surgery Ward, Nour-Nejat Hospital, Tabriz, 5166614766 Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469 Iran
| | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766 Iran
| | | | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 5166414766 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756 Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711 Iran
| |
Collapse
|
43
|
Tsubaki M, Genno S, Takeda T, Matsuda T, Kimura N, Yamashita Y, Morii Y, Shimomura K, Nishida S. Rhosin Suppressed Tumor Cell Metastasis through Inhibition of Rho/YAP Pathway and Expression of RHAMM and CXCR4 in Melanoma and Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9010035. [PMID: 33406809 PMCID: PMC7824767 DOI: 10.3390/biomedicines9010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
The high mortality rate of cancer is strongly correlated with the development of distant metastases at secondary sites. Although Rho GTPases, such as RhoA, RhoB, RhoC, and RhoE, promote tumor metastasis, the main roles of Rho GTPases remain unidentified. It is also unclear whether rhosin, a Rho inhibitor, acts by suppressing metastasis by a downstream inhibition of Rho. In this study, we investigated this mechanism of metastasis in highly metastatic melanoma and breast cancer cells, and the mechanism of inhibition of metastasis by rhosin. We found that rhosin suppressed the RhoA and RhoC activation, the nuclear localization of YAP, but did not affect ERK1/2, Akt, or NF-κB activation in the highly metastatic cell lines B16BL6 and 4T1. High expression of YAP was associated with poor overall and recurrence-free survival in patients with breast cancer or melanoma. Treatment with rhosin inhibited lung metastasis in vivo. Moreover, rhosin inhibited tumor cell adhesion to the extracellular matrix via suppression of RHAMM expression, and inhibited SDF-1-induced cell migration and invasion by decreasing CXCR4 expression in B16BL6 and 4T1 cells. These results suggest that the inhibition of RhoA/C-YAP pathway by rhosin could be an extremely useful therapeutic approach in patients with melanoma and breast cancer.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Shuuji Genno
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Takuya Matsuda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Naoto Kimura
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Yuuma Yamashita
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-0025, Japan;
| | - Kazunori Shimomura
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-0025, Japan;
| | - Shozo Nishida
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
- Correspondence: ; Tel.: +81-6-6721-2332
| |
Collapse
|
44
|
Lamango NS, Nkembo AT, Ntantie E, Tawfeeq N. Polyisoprenylated Cysteinyl Amide Inhibitors: A Novel Approach to Controlling Cancers with Hyperactive Growth Signaling. Curr Med Chem 2021; 28:3476-3489. [PMID: 33176634 PMCID: PMC9175089 DOI: 10.2174/0929867327666201111140825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Aberrant activation of monomeric G-protein signaling pathways drives some of the most aggressive cancers. Suppressing these hyperactivities has been the focus of efforts to obtain targeted therapies. Polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in various cancers. Its inhibition induces the death of cancer cells that harbor the constitutively active K-Ras proteins. Furthermore, the viability of cancer cells driven by factors upstream of K-Ras, such as overexpressed growth factors and their receptors or the mutationally-activated receptors, is also susceptible to PMPMEase inhibition. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were thus designed to target cancers with hyperactive signaling pathways involving the G-proteins. The PCAIs were, however, poor inhibitors of PMPMEase, with Ki values ranging from 3.7 to 20 μM. On the other hand, they inhibited cell viability, proliferation, colony formation, induced apoptosis in cells with mutant K-Ras and inhibited cell migration and invasion with EC50 values of 1 to 3 μM. HUVEC tube formation was inhibited at submicromolar concentrations through their disruption of actin filament organization. At the molecular level, the PCAIs at 2 to 5 μM depleted monomeric G-proteins such as K-Ras, RhoA, Cdc42 and Rac1. The PCAIs also deplete vinculin and fascin that are involved in actin organization and function while disrupting vinculin punctates in the process. These demonstrate a polyisoprenylation-dependent mechanism that explains the observed PCAIs' inhibition of the proliferative, invasive and angiogenic processes that promote both tumor growth and metastasis.
Collapse
Affiliation(s)
- Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Augustine T. Nkembo
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Elizabeth Ntantie
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Nada Tawfeeq
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| |
Collapse
|
45
|
Yin J, Ge X, Shi Z, Yu C, Lu C, Wei Y, Zeng A, Wang X, Yan W, Zhang J, You Y. Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p. Am J Cancer Res 2021; 11:1763-1779. [PMID: 33408780 PMCID: PMC7778586 DOI: 10.7150/thno.47057] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Glioma stem-like cells (GSCs) contribute to temozolomide (TMZ) resistance in gliomas, although the mechanisms have not been delineated. Methods: In vitro functional experiments (colony formation assay, flow cytometric analysis, TUNEL assay) were used to assess the ability of extracellular vesicles (EVs) from hypoxic GSCs to promote TMZ resistance in glioblastoma (GBM) cells. RNA sequencing and quantitative Reverse Transcription-PCR were employed to identify the functional miRNA in hypoxic EVs. Chromatin immunoprecipitation assays were performed to analyze the transcriptional regulation of miRNAs by HIF1α and STAT3. RIP and RNA pull-down assays were used to validate the hnRNPA2B1-mediated packaging of miRNA into EVs. The function of EV miR-30b-3p from hypoxic GSCs was verified by in vivo experiments and analysis of clinical samples. Results: Hypoxic GSC-derived EVs exerted a greater effect on GBM chemoresistance than those from normoxic GSCs. The miRNA profiling revealed that miR-30b-3p was significantly upregulated in the EVs from hypoxic GSCs. Further, HIF1α and STAT3 transcriptionally induced miR-30b-3p expression. RNA immunoprecipitation and RNA-pull down assays revealed that binding of miR-30b-3p with hnRNPA2B1 facilitated its transfer into EVs. EV-packaged miR-30b-3p (EV-miR-30b-3p) directly targeted RHOB, resulting in decreased apoptosis and increased proliferation in vitro and in vivo. Our results provided evidence that miR-30b-3p in CSF could be a potential biomarker predicting resistance to TMZ. Conclusion: Our findings indicated that targeting EV-miR-30b-3p could provide a potential treatment strategy for GBM.
Collapse
|
46
|
A novel RhoA-related gene, DjRhoA, contributes to the regeneration of brain and intestine in planarian Dugesia japonica. Biochem Biophys Res Commun 2020; 533:1359-1365. [PMID: 33059921 DOI: 10.1016/j.bbrc.2020.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
A small GTPase, RhoA, plays a variety of functions in the regulation of cellular and developmental events via its downstream effectors, including cytokinesis, cell migration, and phagocytosis. In this study, a novel RhoA-related gene from the planarian Dugesia japonica, DjRhoA, was cloned and characterized. The full-length cDNA of DjRhoA is 869 bp, and the open reading frame encodes a poly-peptide of 194 amino acids. Phylogenetic analysis revealed that DjRhoA clustered with another RhoA-related protein, DjRho2, and located on the base of phylogenetic tree. Whole-mount in situ hybridization results indicated that DjRhoA was expressed in the brain primordia and intestine during regeneration. Knockdown of DjRhoA induces defects in the brain and intestine. These results suggested that DjRhoA was responsible for the regeneration of brain and intestine in Dugesia japonica.
Collapse
|
47
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
48
|
Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55:386-407. [PMID: 32838579 DOI: 10.1080/10409238.2020.1810622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Antimetastatic Potential of Rhodomyrtone on Human Chondrosarcoma SW1353 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8180261. [PMID: 32802134 PMCID: PMC7403900 DOI: 10.1155/2020/8180261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
Chondrosarcoma is primary bone cancer, with the forceful capacity to cause local invasion and distant metastasis, and has a poor prognosis. Cancer metastasis is a complication of most cancers; it is one of the leading causes of cancer-related death. Rhodomyrtone is a pure compound that has been shown to induce apoptosis and antimetastasis in skin cancer. However, the inhibitory effect of rhodomyrtone on human chondrosarcoma cell metastasis is largely unknown. Effect of rhodomyrtone on cell viability in SW1353 cell was determined by MTT assay. Antimigration, anti-invasion, and antiadhesion were carried out to investigate the antimetastatic potential of rhodomyrtone on SW1353 cells. Gelatin zymography was performed to determine matrix metalloproteinase-2 (MMP-2) and MMP-9 activities. The effect of rhodomyrtone on the underlying mechanisms was performed by Western blot analysis. The results demonstrated that rhodomyrtone reduced cell viability of SW1353 cells at the low concentration (<3 μg/mL); cell viability was >80%. Rhodomyrtone at the subcytotoxic concentrations (0.5, 1.5, and 3 μg/mL) significantly inhibited cell migration, invasion, and adhesion of SW1353 cells in a dose-dependent fashion. Protein expression of integrin αv, integrin β3, and the downstream migratory proteins including focal adhesion kinase (FAK) and the phosphorylation of serine/threonine AKT, Ras, RhoA, Rac1, and Cdc42 were inhibited after treatment with rhodomyrtone. Moreover, we found that rhodomyrtone decreased the protein level of MMP-2 and MMP-9 as well as the enzyme activity in SW1353 cells. Meanwhile, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression was increased in a dose-dependent fashion. Besides, rhodomyrtone dramatically inhibited the expression of growth factor receptor-bound protein-2 (GRB2) and the phosphorylated form of extracellular signal regulation kinase1/2 (ERK1/2) and c-Jun N-terminal kinase1/2 (JNK1/2). These results indicated that rhodomyrtone inhibited SW1353 cell migration, invasion, and metastasis by suppressing integrin αvβ3/FAK/AKT/small Rho GTPases pathway as well as downregulation of MMP-2/9 via ERK and JNK signal inhibition. These findings indicate that rhodomyrtone possessed the antimetastasis activity that may be used for antimetastasis therapy in the future.
Collapse
|
50
|
Sun Z, Zhang H, Zhang Y, Liao L, Zhou W, Zhang F, Lian F, Huang J, Xu P, Zhang R, Lu W, Zhu M, Tao H, Yang F, Ding H, Chen S, Yue L, Zhou B, Zhang N, Tan M, Jiang H, Chen K, Liu B, Liu C, Dang Y, Luo C. Covalent Inhibitors Allosterically Block the Activation of Rho Family Proteins and Suppress Cancer Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000098. [PMID: 32714746 PMCID: PMC7375240 DOI: 10.1002/advs.202000098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/27/2020] [Indexed: 05/31/2023]
Abstract
The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well-characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well-conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC-Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC-Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC-Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti-metastasis drug development, and also provides a novel strategy for inhibitor discovery toward "undruggable" protein targets.
Collapse
|