1
|
Kim YS, Okekunle AP, Yang SY, Song JH, Youn J, Kwon GYJ, Lee JE. Fish and meat intake in relation to colorectal adenoma in asymptomatic Korean adults. Front Nutr 2024; 11:1432647. [PMID: 39296502 PMCID: PMC11409847 DOI: 10.3389/fnut.2024.1432647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Colorectal adenomas are recognized as precursors to colorectal cancer through the adenoma-carcinoma sequence. Identifying modifiable dietary factors that may inhibit cancer progression is critical, but epidemiologic studies in Asian populations are scarce. Methods This study explored the impact of fish and meat intake on colorectal adenoma risk among Koreans. The study enrolled asymptomatic adults who visited Seoul National University Hospital Healthcare System Gangnam Center for health check-ups from May to December 2011. All participants underwent screening colonoscopy and completed a validated food frequency questionnaire. The study included 536 adenoma patients, 135 high-risk adenoma patients and 1,122 adenoma-free controls. Using multivariate logistic regression, we calculated odds ratios (ORs) and 95% confidence intervals (CIs) for fish and meat intake related to colorectal adenoma status, significant at p < 0.05. Results The intake of total fish, meat, red meat, chicken or processed meat showed no clear association with the prevalence of colorectal adenoma after adjusting for age, education, smoking status, alcohol intake, physical activity, body mass index, metabolic syndrome, colorectal cancer family history, total energy intake, and total fruit and vegetable intake. However, higher fish intake was associated with lower odds of high-risk colorectal adenoma, with a significant trend observed across quartiles (P for trend = 0.04). This trend was more pronounced among men than women (P for trend = 0.01). Conclusion In conclusion, we observed a significant inverse association between high fish intake and the prevalence of high-risk adenoma, but there were no clear associations between red and processed meat or chicken in the Korean population.
Collapse
Affiliation(s)
- Young Sun Kim
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
| | - Sun Young Yang
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Ji Hyun Song
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jiyoung Youn
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
| | - Gabby Yoon Jeong Kwon
- Department of Biomedical Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
| |
Collapse
|
2
|
Sadeghi H, Lynch CF, Field WR, Snetselaar LG, Jones MP, Sinha R, Torner JC. Dietary omega-6/omega-3 fatty acids and risk of prostate cancer; Is there any potential interaction by organophosphate insecticides among the agricultural health study population. Cancer Epidemiol 2023; 85:102410. [PMID: 37413804 PMCID: PMC10528409 DOI: 10.1016/j.canep.2023.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND In the United States (US), the average annual increase in the incidence of prostate cancer (PCa) has been 0.5% between 2013 and 2017. Although some modifiable factors have been identified as the risk factors for PCa, the effect of lower ratio of omega-6 to omega-3 fatty acids intake (N-6/N-3) remains unknown. Previous studies of the Agricultural Health Study (AHS) reported a significant positive association between PCa and selected organophosphate pesticides (OPs) including terbufos and fonofos. OBJECTIVE The aim of this study was to evaluate the association between N-6/N-3 and PCa and any interaction between N-6/N-3 and 2 selected OPs (i.e., terbufos and fonofos) exposure. DESIGN AND PARTICIPANTS This case-control study, nested within a prospective cohort study, was conducted on a subgroup of the AHS population (1193 PCa cases and 14,872 controls) who returned their dietary questionnaire between 1999 and 2003 MAIN OUTCOME MEASURES: PCa was coded based on the International Classification of Diseases of Oncology (ICD-O-3) definitions and obtained from the statewide cancer registries of Iowa (2003-2017) and North Carolina (2003-2014). STATISTICAL ANALYSIS Multivariate logistic regression analysis was applied to obtain the odds ratios adjusted (aORs) for age at dietary assessment (years), race/ethnicity (white, African American, other), physical activity (hours/week), smoking (yes/no), terbufos (yes/no), fonofos (yes/no), diabetes, lycopene intake (milligrams/day), family history of PCa, and the interaction of N-6/N-3 with age, terbufos and fonofos. Pesticide exposure was assessed by self-administrated questionnaires collecting data on ever/never use of mentioned pesticides during lifetime as a yes/no variable. Assessing the P value for the interaction between pesticides and N-6/N-3, we used the continuous variable of "intensity adjusted cumulative exposure" to terbufos and fonofos. This exposure score was based on duration, intensity and frequency of exposure. We also conducted a stratified regression analysis by quartiles of age. RESULTS Relative to the highest N-6/N-3 quartile, the lowest quartile was significantly associated with a decreased risk of PCa (aOR=0.61, 95% CI: 0.41-0.90), and quartile-specific aORs decreased toward the lowest quartile (Ptrend=<0.01). Based on the age-stratified analysis, the protective effect was only significant for the lowest quartile of N-6/N-3 among those aged between 48 and 55 years old (aORs=0.97, 95% CI, 0.45-0.55). Among those who were exposed to terbufos (ever exposure reported as yes in the self-report questionnaires), lower quartiles of N-6/N-3 were protective albeit nonsignificant (aORs: 0.86, 0.92, 0.91 in quartiles 1,2, and 3, respectively). No meaningful findings were observed for fonofos and N-6/N-3 interaction. CONCLUSION Findings showed that lower N-6/N-3 may decrease risk of PCa among farmers. However, no significant interaction was found between selected organophosphate pesticides and N-6/N-3.
Collapse
Affiliation(s)
- Homa Sadeghi
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - William R Field
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Torner
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
3
|
Bessot A, Gunter J, Waugh D, Clements JA, Hutmacher DW, McGovern J, Bock N. GelMA and Biomimetic Culture Allow the Engineering of Mineralized, Adipose, and Tumor Tissue Human Microenvironments for the Study of Advanced Prostate Cancer In Vitro and In Vivo. Adv Healthc Mater 2023; 12:e2201701. [PMID: 36708740 PMCID: PMC11469108 DOI: 10.1002/adhm.202201701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Indexed: 01/30/2023]
Abstract
Increasing evidence shows bone marrow (BM)-adipocytes as a potentially important contributor in prostate cancer (PCa) bone metastases. However, a lack of relevant models has prevented the full understanding of the effects of human BM-adipocytes in this microenvironment. It is hypothesized that the combination of tunable gelatin methacrylamide (GelMA)-based hydrogels with the biomimetic culture of human cells would offer a versatile 3D platform to engineer human bone tumor microenvironments containing BM-adipocytes. Human osteoprogenitors, adipocytes, and PCa cells are individually cultured in vitro in GelMA hydrogels, leading to mineralized, adipose, and PCa tumor 3D microtissues, respectively. Osteoblast mineralization and tumor spheroid formation are tailored by hydrogel stiffness with lower stiffnesses correlating with increased mineralization and tumor spheroid size. Upon coculture with tumor cells, BM-adipocytes undergo morphological changes and delipidation, suggesting reciprocal interactions between the cell types. When brought in vivo, the mineralized and adipose microtissues successfully form a humanized fatty bone microenvironment, presenting, for the first time, with human adipocytes. Using this model, an increase in tumor burden is observed when human adipocytes are present, suggesting that adipocytes support early bone tumor growth. The advanced platform presented here combines natural aspects of the microenvironment with tunable properties useful for bone tumor research.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Genomics and Personalised HealthQUTBrisbaneQLD4102Australia
| | - David Waugh
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
| | - Judith A. Clements
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Dietmar W. Hutmacher
- School of MechanicalMedical and Process EngineeringEngineering FacultyQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| |
Collapse
|
4
|
Zhao H, Wang M, Peng X, Zhong L, Liu X, Shi Y, Li Y, Chen Y, Tang S. Fish consumption in multiple health outcomes: an umbrella review of meta-analyses of observational and clinical studies. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:152. [PMID: 36845999 PMCID: PMC9951006 DOI: 10.21037/atm-22-6515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Background Omega-3 polyunsaturated fatty acids are known to be associated with numbers of health benefits, and which can be uptake from fish. The aim of this study was to evaluate the current evidence of associations between consumption of fish and diverse health outcomes. Here, we performed an umbrella review to summarize the breadth, strength, and validity of the evidence derived from meta-analyses and systematic reviews of fish consumption on all health outcomes. Methods The methodological quality of the included meta-analyses and the quality of the evidence were assessed by the Assessment of Multiple Systematic Reviews (AMSTAR) and the grading of recommendations, assessment, development, and evaluation (GRADE) tools, respectively. The umbrella review identified 91 meta-analyses with 66 unique health outcomes, of which 32 outcomes were beneficial, 34 showed nonsignificant associations and only one was harmful (myeloid leukemia). Results A total of 17 beneficial associations [all-cause mortality, prostate cancer mortality, cardiovascular disease (CVD) mortality, esophageal squamous cell carcinoma (ESCC), glioma, non-Hodgkin lymphoma (NHL), oral cancer, acute coronary syndrome (ACS), cerebrovascular disease, metabolic syndrome, age-related macular degeneration (AMD), inflammatory bowel disease (IBD), Crohn's disease (CD), triglycerides, vitamin D, high-density lipoprotein (HDL)-cholesterol, and multiple sclerosis (MS)], and eight nonsignificant associations [colorectal cancer (CRC) mortality, esophageal adenocarcinoma (EAC), prostate cancer, renal cancer, ovarian cancer, hypertension, ulcerative colitis (UC), and rheumatoid arthritis (RA)] were evaluated as moderate/high quality of evidence. According to dose-response analyses, consumption of fish, especially fatty types, seems generally safe at one-two servings per week and could exert protective effects. Conclusions Fish consumption is often associated with a variety of health outcomes, both beneficial and harmless, but only about 34% of the associations were graded as based on a moderate/high quality of evidence, and additional multicenter high quality randomized controlled trials (RCTs) with a large sample size are needed to verify these findings in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China;,Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaojuan Peng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China;,Department of Endocrinology, Liuzhou People’s Hospital, Liuzhou, China
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiongxiu Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuting Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Sachdeva A, Hart CA, Kim K, Tawadros T, Oliveira P, Shanks J, Brown M, Clarke N. Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer 2022; 127:1254-1262. [PMID: 35869144 PMCID: PMC9519535 DOI: 10.1038/s41416-022-01914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The key process of mesenchymal to amoeboid transition (MAT), which enables prostate cancer (PCa) transendothelial migration and subsequent development of metastases in red bone marrow stroma, is driven by phosphorylation of EphA2S897 by pAkt, which is induced by the omega-6 polyunsaturated fatty acid arachidonic acid. Here we investigate the influence of EphA2 signalling in PCa progression and long-term survival. Methods The mechanisms underpinning metastatic biopotential of altered EphA2 signalling in relation to PTEN status were assessed in vitro using canonical (EphA2D739N) and non-canonical (EphA2S897G) PC3-M mutants, interrogation of publicly available PTEN-stratified databases and clinical validation using a PCa TMA (n = 177) with long-term follow-up data. Spatial heterogeneity of EphA2 was assessed using a radical prostatectomy cohort (n = 67). Results Non-canonical EphA2 signalling via pEphA2S897 is required for PCa transendothelial invasion of bone marrow endothelium. High expression of EphA2 or pEphA2S897 in a PTENlow background is associated with poor overall survival. Expression of EphA2, pEphA2S897 and the associated MAT marker pMLC2 are spatially regulated with the highest levels found within lesion areas within 500 µm of the prostate margin. Conclusion EphA2 MAT-related signalling confers transendothelial invasion. This is associated with a substantially worse prognosis in PTEN-deficient PCa.
Collapse
|
6
|
Xu MQ, Hao YL, Wang JR, Li ZY, Li H, Feng ZH, Wang H, Wang JW, Zhang X. Antitumor Activity of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo. Int J Nanomedicine 2021; 16:7269-7281. [PMID: 34737564 PMCID: PMC8558831 DOI: 10.2147/ijn.s331578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Small molecule modified antitumor drug conjugate nanoparticles have the advantages of high drug loading, simple synthesis and preparation, and better biocompatibility. Due to the large demand for exogenous α-linolenic acid (ALA) by tumor cells, we synthesized α-linolenic acid-paclitaxel conjugate (ALA-PTX) and prepared α-linolenic acid-paclitaxel conjugate nanoparticles (ALA-PTX NPs), in order to obtain better tumor cellular uptake and antitumor activity in vitro and in vivo. Methods We synthesized and characterized ALA-PTX, and then prepared and characterized ALA-PTX NPs. The cellular uptake, uptake pathways, intracellular behavior, in vitro and in vivo antitumor activity of ALA-PTX NPs were evaluated. Results The size of ALA-PTX NPs was approximately 110.7±1.7 nm. The drug loading was approximately 90% (w/w) with CrEL-free and organic solvent-free characteristics. The cellular uptake of ALA-PTX NPs was significantly higher than that of PTX injection by MCF-7, MCF-7/ADR and HepG2 cells. In these three cell lines, the cellular uptake of ALA-PTX NPs at 6h was approximately 1.5-2.6 times higher than that of PTX injection. ALA-PTX NPs were ingested through clathrin-mediated endocytosis, then transferred to lysosomes, and could dissolve in cells to play an antitumor activity. The in vitro and in vivo antitumor activity of ALA-PTX NPs was confirmed in MCF-7/ADR and HepG2 cell models and tumor-bearing nude mouse models. Conclusion ALA-PTX NPs developed in our study could provide a new method for the preparation of nano-delivery systems suitable for antitumor therapy that could increase tumor cellular uptake and enhance antitumor activity.
Collapse
Affiliation(s)
- Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yan-Li Hao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Hui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jing-Wen Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
7
|
Mediterranean Diet Food Components as Possible Adjuvant Therapies to Counteract Breast and Prostate Cancer Progression to Bone Metastasis. Biomolecules 2021; 11:biom11091336. [PMID: 34572548 PMCID: PMC8470063 DOI: 10.3390/biom11091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bone metastasis is a serious and often lethal complication of particularly frequent carcinomas, such as breast and prostate cancers, which not only reduces survival but also worsens the patients’ quality of life. Therefore, it is important to find new and/or additional therapeutic possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean diet (MD) is effective in the prevention of cancer and improves cancer patients’ health, thus, here, we considered its impact on bone metastasis. We highlighted some molecular events relevant for the development of a metastatic phenotype in cancer cells and the alterations of physiological bone remodeling, which occur during skeleton colonization. We then considered those natural compounds present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this bioactivity by the dietary components of the MD, together with its wide access to all people, could help not only to maintain healthy status but also to improve the quality of life of patients with bone metastases.
Collapse
|
8
|
Liput KP, Lepczyński A, Ogłuszka M, Nawrocka A, Poławska E, Grzesiak A, Ślaska B, Pareek CS, Czarnik U, Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int J Mol Sci 2021; 22:6965. [PMID: 34203461 PMCID: PMC8268933 DOI: 10.3390/ijms22136965] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
The dietary recommendation encourages reducing saturated fatty acids (SFA) in diet and replacing them with polyunsaturated fatty acids (PUFAs) n-3 (omega-3) and n-6 (omega-6) to decrease the risk of metabolic disturbances. Consequently, excessive n-6 PUFAs content and high n-6/n-3 ratio are found in Western-type diet. The importance of a dietary n-6/n-3 ratio to prevent chronic diseases is linked with anti-inflammatory functions of linolenic acid (ALA, 18:3n-3) and longer-chain n-3 PUFAs. Thus, this review provides an overview of the role of oxylipins derived from n-3 PUFAs and oxylipins formed from n-6 PUFAs on inflammation. Evidence of PUFAs' role in carcinogenesis was also discussed. In vitro studies, animal cancer models and epidemiological studies demonstrate that these two PUFA groups have different effects on the cell growth, proliferation and progression of neoplastic lesions.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Grzesiak
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Chandra S. Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| |
Collapse
|
9
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
10
|
Kaler J, Hussain A, Haque A, Naveed H, Patel S. A Comprehensive Review of Pharmaceutical and Surgical Interventions of Prostate Cancer. Cureus 2020; 12:e11617. [PMID: 33240734 PMCID: PMC7681941 DOI: 10.7759/cureus.11617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2020] [Indexed: 01/09/2023] Open
Abstract
As the second most common cause of death amongst men in the United States, prostate cancer is a type of cancer that is known to develop and originate in the prostate gland. The main function of the prostate gland is to produce seminal fluid in which the sperm bathes. The seminal fluids are necessary for allowing the sperm to move easily through the urethra and also allows successful fertilization by providing an alkaline environment for the sperm in the acidic nature of the vagina. The seminal vesicles are two smaller glands that are attached to either side of the prostate gland and in radical prostatectomies, can get removed. In the event that the seminal vesicles are removed during a radical prostatectomy, the individual is unable to produce any seminal fluids and thus, becoming infertile. Prostate cancer is most commonly seen in patients over the age of 66 years, however, in the presence of predisposing risk factors, may occur as early as in the late 40s. Certain risk factors may speed the presentation of prostate cancer in individuals and thus, mandatory screening is recommended around the age of 45. If no risk factors are present, screening is recommended to begin after the age of 50 years. Screening for prostate cancer is focused on looking for prostate-specific antigen (PSA) in a blood test, though this may not be the most reliable method. The method of diagnosis stems from further testing done following an abnormal PSA test. A digital rectal examination and ultrasonography may also be used to assist with the diagnosis of prostate cancer. Though there are several different types of pharmaceutical interventions currently present in the eradication of prostate cancer, with androgen deprivation therapy being the most commonly used, surgical interventions may be utilized to completely resect cancer from an individual. Different radical prostatectomies are used; the appropriate approach utilized is dependent on the extensiveness of cancer and the type of cancer that is present.
Collapse
Affiliation(s)
- Jasndeep Kaler
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Azhar Hussain
- Healthcare Administration, Franklin University, Columbus, USA
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Ayema Haque
- Internal Medicine, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| | - Hassan Naveed
- Internal Medicine, St. Matthew's University School of Medicine, Grand Cayman, CYM
| | - Sundip Patel
- Medicine, Windsor University School of Medicine, Cayon, KNA
| |
Collapse
|
11
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Tang NT, D. Snook R, Brown MD, Haines BA, Ridley A, Gardner P, Denbigh JL. Fatty-Acid Uptake in Prostate Cancer Cells Using Dynamic Microfluidic Raman Technology. Molecules 2020; 25:E1652. [PMID: 32260207 PMCID: PMC7180971 DOI: 10.3390/molecules25071652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells.
Collapse
Affiliation(s)
- Nga-Tsing Tang
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Richard D. Snook
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Mick D. Brown
- Division of Cancer Sciences, University of Manchester, Manchester M20 4GJ, UK;
| | - Bryan A. Haines
- Fluxion BioSciences, 1600 Harbor Bay Parkway, #150, Alameda, CA 94502, USA;
| | - Andrew Ridley
- Labtech International Ltd., Mytogen House, 11 Browning Road, Heathfield, East Sussex TN21 8DB, UK;
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Joanna L. Denbigh
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
13
|
Shiozawa Y. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:57-72. [PMID: 32030676 DOI: 10.1007/978-3-030-36214-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Abstract
Leptin is a hormone that plays a major role as mediator of long-term regulation of energy balance, suppressing food intake, and stimulating weight loss. More recently, important physiological roles other than controlling appetite and energy expenditure have been suggested for leptin, including neuroendocrine, reparative, reproductive, and immune functions. These emerging peripheral roles let hypothesize that leptin can modulate also cancer progression. Indeed, many studies have demonstrated that elevated chronic serum concentrations of leptin, frequently seen in obese subjects, represent a stimulatory signal for tumor growth. Current knowledge indicates that also different non-tumoral cells resident in tumor microenvironment may respond to leptin creating a favorable soil for cancer cells. In addition, leptin is produced also within the tumor microenvironment creating the possibility for paracrine and autocrine action. In this review, we describe the main mechanisms that regulate peripheral leptin availability and how leptin can shape tumor microenvironment.
Collapse
|
15
|
Abstract
Accumulating evidence highlights the importance of interactions between tumour cells and stromal cells for tumour initiation, progression, and metastasis. In tumours that contain adipocyte in their stroma, adipocytes contribute to modification of tumour microenvironment and affect metabolism of tumour and tumour progression by production of cytokines and adipokines from the lipids. The omentum and bone marrow (BM) are highly adipocyte-rich and are also common metastatic and primary tumour developmental sites. Omental adipocytes exhibit metabolic cross-talk, immune modulation, and angiogenesis. BM adipocytes secrete adipokines, and participate in solid tumour metastasis through regulation of the CCL2/CCR2 axis and metabolic interactions. BM adipocytes also contribute to the progression of hematopoietic neoplasms. Here, we here provide an overview of research progress on the cross-talks between omental/BM adipocytes and tumour cells, which may be pivotal modulators of tumour biology, thus highlighting novel therapeutic targets. Abbreviations: MCP-1, monocyte chemoattractant protein 1IL, interleukinSTAT3, signal transducer and activator of transcription 3FABP4, fatty acid binding protein 4PI3K/AKT, phosphoinositide 3-kinase/protein kinase BPPAR, peroxisome proliferator-activated receptorPUFA, polyunsaturated fatty acidTAM, tumour-associated macrophagesVEGF, vascular endothelial growth factorVEGFR, vascular endothelial growth factor receptorBM, bone marrowBMA, bone marrow adipocytesrBMA, regulated BMAcBMA, constitutive BMAUCP-1, uncoupling protein-1TNF-α, tumour necrosis factor-alphaRANKL, receptor activator of nuclear factor kappa-Β ligandVCAM-1, vascular cell adhesion molecule 1JAK2, Janus kinase 2CXCL (C–X–C motif) ligandPGE2, prostaglandin E2COX-2, cyclooxygenase-2CCL2, C-C motif chemokine ligand 2NF-κB, nuclear factor-kappa BMM, multiple myelomaALL, acute lymphoblastic leukemiaAML, acute myeloid leukemiaGDF15, growth differentiation factor 15AMPK, AMP-activated protein kinaseMAPK, mitogen-activated protein kinaseAPL, acute promyelocytic leukemiaCCR2, C-C motif chemokine receptor 2SDF-1α, stromal cell-derived factor-1 alphaFFA, free fatty acidsLPrA, leptin peptide receptor antagonistMCD, malonyl-CoA decarboxylase.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Lupien LE, Dunkley EM, Maloy MJ, Lehner IB, Foisey MG, Ouellette ME, Lewis LD, Pooler DB, Kinlaw WB, Baures PW. An Inhibitor of Fatty Acid Synthase Thioesterase Domain with Improved Cytotoxicity against Breast Cancer Cells and Stability in Plasma. J Pharmacol Exp Ther 2019; 371:171-185. [PMID: 31300609 PMCID: PMC7184194 DOI: 10.1124/jpet.119.258947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
It is well recognized that many cancers are addicted to a constant supply of fatty acids (FAs) and exhibit brisk de novo FA synthesis. Upregulation of a key lipogenic enzyme, fatty acid synthase (FASN), is a near-universal feature of human cancers and their precursor lesions, and has been associated with chemoresistance, tumor metastasis, and diminished patient survival. FASN inhibition has been shown to be effective in killing cancer cells, but progress in the field has been hindered by off-target effects and poor pharmaceutical properties of candidate compounds. Our initial hit (compound 1) was identified from a high-throughput screening effort by the Sanford-Burnham Center for Chemical Genomics using purified FASN thioesterase (FASN-TE) domain. Despite being a potent inhibitor of purified FASN-TE, compound 1 proved highly unstable in mouse plasma and only weakly cytotoxic to breast cancer (BC) cells in vitro. An iterative process of synthesis, cytotoxicity testing, and plasma stability assessment was used to identify a new lead (compound 41). This lead is more cytotoxic against multiple BC cell lines than tetrahydro-4-methylene-2S-octyl-5-oxo-3R-furancarboxylic acid (the literature standard for inhibiting FASN), is stable in mouse plasma, and shows negligible cytotoxic effects against nontumorigenic mammary epithelial cells. Compound 41 also has drug-like physical properties based on Lipinski's rules and is, therefore, a valuable new lead for targeting fatty acid synthesis to exploit the requirement of tumor cells for fatty acids. SIGNIFICANCE STATEMENT: An iterative process of synthesis and biological testing was used to identify a novel thioesterase domain FASN inhibitor that has drug-like properties, is more cytotoxic to breast cancer cells than the widely used tetrahydro-4-methylene-2S-octyl-5-oxo-3R-furancarboxylic acid, and has negligible effects on the growth and proliferation of noncancerous mammary epithelial cells. Our studies have confirmed the value of using potent and selective FASN inhibitors in the treatment of BC cells and have shown that the availability of exogenous lipoproteins may impact both cancer cell FA metabolism and survival.
Collapse
Affiliation(s)
- Leslie E Lupien
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Evan M Dunkley
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Margaret J Maloy
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Ian B Lehner
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Maxwell G Foisey
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Maddison E Ouellette
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Lionel D Lewis
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Darcy Bates Pooler
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - William B Kinlaw
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Paul W Baures
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| |
Collapse
|
17
|
Bratton BA, Maly IV, Hofmann WA. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells. PLoS One 2019; 14:e0219822. [PMID: 31314803 PMCID: PMC6636762 DOI: 10.1371/journal.pone.0219822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
Progression of prostate cancer to lethal forms is marked by emergence of hormone-independent proliferation of the cancer cells. Nutritional and epidemiological studies have indicated that prostate cancer progression is correlated with the consumption of polyunsaturated fatty acids (PUFA). To shed additional light on the cell-level mechanisms of the observed correlation, we compared the sensitivity of hormone-dependent and hormone-independent prostate cancer cells to growth medium supplementation with free PUFAs in a cell proliferation and viability assay. Our data show that the hormone-dependent cells are comparatively insensitive to various PUFAs, at the same time as the growth and viability of hormone-independent cells lines are strongly inhibited by most of the tested PUFAs, whether n–3 or n–6. We speculate that this difference may be at least partially responsible for the observed effects of specific dietary lipids in prostate cancer. The new data strengthen the case for dietary intervention as part of potential new therapeutic strategies seeking to impede prostate cancer progression.
Collapse
Affiliation(s)
- Brenden A. Bratton
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Ivan V. Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Wilma A. Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Fish intake and other dietary sources of omega-3 fatty acids have been shown to be associated with a reduced risk for some cancers. Although previous studies of head and neck cancer have reported associations with different dietary factors, including reduced risks for fruits and vegetables and putatively healthy dietary patterns, associations specific to fish intake are unclear. This study investigated the association between fish/shellfish intake and risk of squamous cell carcinoma of the head and neck (SCCHN) using data from the Carolina Head and Neck Cancer Epidemiology Study, a population-based case-control study conducted in 46 North Carolina counties with cases recruited from 2002 through 2006. Controls were frequency matched to the cases on age, sex, and race; the final sample size was 1039 cases and 1375 controls. Demographic, lifestyle, and dietary information were collected using an in-person interviewer-administered structured questionnaire. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with unconditional logistic regression. Patients whose fish/shellfish intake was among the highest tertile had a 20% lower odds of SCCHN compared with those in the lowest tertile (OR: 0.80; 95% CI: 0.60-1.07) after adjustment for the matching and other factors (income, energy intake, fruit intake, cigarette smoking, and alcohol intake). The inverse association was more pronounced for oral cavity and oropharyngeal tumors, for African Americans, and for females, but CIs were wide. To further investigate this potential risk reduction strategy for SCCHN, future studies should consider examining specific fish/shellfish, cooking practices, and other omega-3 fatty acid sources.
Collapse
|
19
|
Morris EV, Edwards CM. Bone marrow adiposity and multiple myeloma. Bone 2019; 118:42-46. [PMID: 29548987 DOI: 10.1016/j.bone.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
Abstract
Multiple Myeloma (MM) is an incurable haematological malignancy and is the second most common blood cancer in adults; it is caused by the clonal expansion of abnormal plasma cells within the bone marrow and characterized by osteolytic bone lesions, bone pain, renal disease, and immunodeficiency. MM cells infiltrate the bone marrow where they hijack the microenvironment to sustain growth and survival. The contribution to this process by resident bone cells is well defined. However, the role of bone marrow adipocytes is less clear. As one of the most abundant cell types in the bone marrow these cells are surprisingly understudied. However, in the last few decades they have been recognised as having endocrine function. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators, they influence the behaviour and function of neighbouring cells; and have the potential to dysregulate normal bone homeostasis. This review discusses how adipocytes contribute to the metastatic niche in multiple myeloma and cancers that metastasise to the bone and how these new discoveries may contribute to further understanding the mechanisms driving the devastating bone disease associated with MM.
Collapse
Affiliation(s)
- Emma V Morris
- Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK; Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Maly IV, Hofmann WA. Fatty Acids and Calcium Regulation in Prostate Cancer. Nutrients 2018; 10:nu10060788. [PMID: 29921791 PMCID: PMC6024573 DOI: 10.3390/nu10060788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a widespread malignancy characterized by a comparative ease of primary diagnosis and difficulty in choosing the individualized course of treatment. Management of prostate cancer would benefit from a clearer understanding of the molecular mechanisms behind the transition to the lethal, late-stage forms of the disease, which could potentially yield new biomarkers for differential prognosis and treatment prioritization in addition to possible new therapeutic targets. Epidemiological research has uncovered a significant correlation of prostate cancer incidence and progression with the intake (and often co-intake) of fatty acids and calcium. Additionally, there is evidence of the impact of these nutrients on intracellular signaling, including the mechanisms mediated by the calcium ion as a second messenger. The present review surveys the recent literature on the molecular mechanisms associated with the critical steps in the prostate cancer progression, with special attention paid to the regulation of these processes by fatty acids and calcium homeostasis. Testable hypotheses are put forward that integrate some of the recent results in a more unified picture of these phenomena at the interface of cell signaling and metabolism.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
21
|
Senatorov IS, Moniri NH. The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochem Pharmacol 2018; 150:170-180. [PMID: 29452095 DOI: 10.1016/j.bcp.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
A dietary influence on cancer progression has been evident for many decades, and dietary fatty acids, particularly long chain mono- and polyunsaturated fatty acids, have been shown to play significant roles in influencing growth of a variety of human cancers. The discovery of the family of cell-surface free-fatty acid receptors, which include the long-chain fatty acid receptors FFA1 and FFA4, suggest that many of the effects of dietary fats could be receptor-mediated. FFA4 is ubiquitously expressed and has recently been shown to modulate a variety of important anti-inflammatory and metabolic processes. Since FFA4 is currently an attractive drug target for treatment of metabolic disorders such as diabetes and obesity, understanding its role in cancer progression is critical towards the drug discovery process. In this research update, the current body of knowledge on the role of this receptor in regulating cancer cell proliferation, migration, and invasion, as well as in vivo tumorigenesis is reviewed.
Collapse
Affiliation(s)
- Ilya S Senatorov
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
22
|
Chatterjee AD, Roy D, Guevara P, Pal R, Naryan M, Roychowdhury S, Das S. Arachidonic Acid Induces the Migration of MDA-MB-231 Cells by Activating Raft-associated Leukotriene B4 Receptors. CLINICAL CANCER DRUGS 2018; 5:28-41. [PMID: 30443489 PMCID: PMC6233886 DOI: 10.2174/2212697x05666180418145601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood. OBJECTIVE The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration. METHODS Migrations of breast cancer cells were examined with the help of wound-healing assays. AA-induced eicosanoid synthesis was monitored by RP-HPLC. Cellular localizations of lipoxygenase and lipid rafts were assessed by immunoblot and confocal microscopy. RESULTS AA treatment stimulated the synthesis of leukotriene B4 (LTB4) and HETE-8, but lowered the levels of prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and HETE-5 in MDA-MB-231 cells. Further analysis indicated that AA increased the expression of 5-lipoxygenase (5-LOX) in this cell line and inhibiting its expression by small molecule inhibitors lowered the production of LTB4 and reduced migration. In contrast, MCF-7 cells did not show any appreciable changes in eicosanoid synthesis, 5-LOX expression, or cellular migration. CONCLUSION Our results suggest that AA treatment activates the BLT1 receptor (present in membrane microdomains) and stimulates the synthesis of LTB4 production, which is likely to be associated with the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Atasi De Chatterjee
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Debarshi Roy
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Priscilla Guevara
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Rituraj Pal
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Mahesh Naryan
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Siddhartha Das
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
23
|
Roumeguère T, Sfeir J, El Rassy E, Albisinni S, Van Antwerpen P, Boudjeltia KZ, Farès N, Kattan J, Aoun F. Oxidative stress and prostatic diseases. Mol Clin Oncol 2017; 7:723-728. [PMID: 29181163 PMCID: PMC5700279 DOI: 10.3892/mco.2017.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Prostatic diseases are a common health problem among males in Western countries, and include chronic prostatic diseases, which have an unclear pathogenesis and few treatment options. In vitro and in vivo studies describe oxidative stress as a major pathway involved in the occurrence of benign prostatic hyperplasia, prostatic cancer and chronic prostatitis. Thus, the oxidative stress cascade is a potential target for the treatment of prostatic diseases. This paper presents a systematic review of the available data concerning the association between oxidative stress and the most common chronic prostatic diseases, and describes the available treatment options that act upon this pathway.
Collapse
Affiliation(s)
- Thierry Roumeguère
- Department of Urology, University Clinics of Brussels, Université Libre de Bruxelles, Erasme Hôpital, 187793 Bruxelles, Belgium.,Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Joseph Sfeir
- Department of Urology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Elie El Rassy
- Department of Oncology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Simone Albisinni
- Department of Urology, University Clinics of Brussels, Université Libre de Bruxelles, Erasme Hôpital, 187793 Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Nassim Farès
- Research Laboratory of Physiology and PathoPhysiology, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Joseph Kattan
- Department of Oncology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Fouad Aoun
- Department of Urology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon.,Department of Urology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium
| |
Collapse
|
24
|
Aucoin M, Cooley K, Knee C, Fritz H, Balneaves LG, Breau R, Fergusson D, Skidmore B, Wong R, Seely D. Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review. Integr Cancer Ther 2017; 16:32-62. [PMID: 27365385 PMCID: PMC5736071 DOI: 10.1177/1534735416656052] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The use of natural health products in prostate cancer (PrCa) is high despite a lack of evidence with respect to safety and efficacy. Fish-derived omega-3 fatty acids possess anti-inflammatory effects and preclinical data suggest a protective effect on PrCa incidence and progression; however, human studies have yielded conflicting results. METHODS A search of OVID MEDLINE, Pre-MEDLINE, Embase, and the Allied and Complementary Medicine Database (AMED) was completed for human interventional or observational data assessing the safety and efficacy of fish-derived omega-3 fatty acids in the incidence and progression of PrCa. RESULTS Of 1776 citations screened, 54 publications reporting on 44 studies were included for review and analysis: 4 reports of 3 randomized controlled trials, 1 nonrandomized clinical trial, 20 reports of 14 cohort studies, 26 reports of 23 case-control studies, and 3 case-cohort studies. The interventional studies using fish oil supplements in patients with PrCa showed no impact on prostate-specific antigen levels; however, 2 studies showed a decrease in inflammatory or other cancer markers. A small number of mild adverse events were reported and interactions with other interventions were not assessed. Cohort and case-control studies assessing the relationship between dietary fish intake and the risk of PrCa were equivocal. Cohort studies assessing the risk of PrCa mortality suggested an association between higher intake of fish and decreased risk of prostate cancer-related death. CONCLUSIONS Current evidence is insufficient to suggest a relationship between fish-derived omega-3 fatty acid and risk of PrCa. An association between higher omega-3 intake and decreased PrCa mortality may be present but more research is needed. More intervention trials or observational studies with precisely measured exposure are needed to assess the impact of fish oil supplements and dietary fish-derived omega-3 fatty acid intake on safety, PrCa incidence, treatment, and progression.
Collapse
Affiliation(s)
- Monique Aucoin
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Christopher Knee
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Rodney Breau
- Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Becky Skidmore
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Chkourko Gusky H, Diedrich J, MacDougald OA, Podgorski I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes Rev 2016; 17:1015-1029. [PMID: 27432523 PMCID: PMC5056818 DOI: 10.1111/obr.12450] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the metastatic niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells.
Collapse
Affiliation(s)
- H Chkourko Gusky
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - O A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - I Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
26
|
Mechanisms underlying the association between obesity and Hodgkin lymphoma. Tumour Biol 2016; 37:13005-13016. [PMID: 27465553 DOI: 10.1007/s13277-016-5198-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
A solid body of knowledge indicates that overweight and obese subjects are prone to develop cancer, aggressive disease, and death more than their lean counterparts. While obesity has been causally associated with various cancers, only a limited number of studies beheld the link with classical Hodgkin lymphoma (HL). Contemporary meta-analysis and prospective studies confirmed the association of body mass index with HL. Besides epidemiological evidence, excess adiposity is known to influence tumor behavior through adipokines, adipose-derived stem cell migration, and metabolism regulation, and by modulating immunoinflammatory response. Nevertheless, the obesity paradox has been described in few cancers. Considering that adipose tissue is an immunomodulatory organ, and that inflammation is the cornerstone of HL pathophysiology, the rationale for being causally related due to endocrine/paracrine interactions cannot be negligible. In this hypothesis-generating review, we explore the biologically plausible links between excess adiposity and HL in light of recent basic and clinical data, in order to create a basis for understanding the underlying mechanisms and foster applied research. The establishment of an association of excess adiposity with HL will determine public health preventive measures to fight obesity and eventually novel therapeutic approaches in HL patients.
Collapse
|
27
|
The role of bone marrow adipocytes in bone metastasis. J Bone Oncol 2016; 5:121-123. [PMID: 27761371 PMCID: PMC5063230 DOI: 10.1016/j.jbo.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
Adipocytes are a significant component of the bone marrow microenvironment. Although bone marrow adipocytes were first identified more than 100 years ago, it is only in recent years that an understanding of their complex physiological role is emerging. Bone marrow adipocytes act as local regulators of skeletal biology and homeostasis, with recent studies suggesting that marrow adipose tissue is metabolically active, and can function as an endocrine organ. As such, bone marrow adipocytes have the potential to interact with tumour cells, influencing both tumour growth and bone disease. This review discusses the current evidence for the role of bone marrow adipocytes in tumour growth within the bone marrow microenvironment and the development of the associated bone disease. Bone marrow adipocytes are a metabolically active source of lipids and adipokines. Marrow adipocytes increase with age, but their role in bone metastasis is ill-defined. Marrow adipocytes have tumour-promoting and -suppressive effects in bone metastasis.
Collapse
|
28
|
|
29
|
Herroon MK, Diedrich JD, Podgorski I. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells. Front Endocrinol (Lausanne) 2016; 7:84. [PMID: 27458427 PMCID: PMC4933721 DOI: 10.3389/fendo.2016.00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022] Open
Abstract
Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte-tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate tumor cells with adipocytes. Our models underline the importance of using the appropriate culture conditions to mimic physiological interactions between marrow adipocytes and metastatic tumor cells. These systems have a potential to be utilized for analyses of various factors that may be regulated by the adipocytes in bone. Their application likely extends beyond metastatic prostate cancer to other tumors that colonize the bone marrow microenvironment.
Collapse
Affiliation(s)
| | - Jonathan Driscoll Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
- *Correspondence: Izabela Podgorski,
| |
Collapse
|
30
|
Diedrich J, Gusky HC, Podgorski I. Adipose tissue dysfunction and its effects on tumor metabolism. Horm Mol Biol Clin Investig 2015; 21:17-41. [PMID: 25781550 DOI: 10.1515/hmbci-2014-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments.
Collapse
|
31
|
Tamma SM, Shorter B, Toh KL, Moldwin R, Gordon B. Influence of polyunsaturated fatty acids on urologic inflammation. Int Urol Nephrol 2015; 47:1753-61. [DOI: 10.1007/s11255-015-1108-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/03/2015] [Indexed: 01/03/2023]
|
32
|
Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2015; 10:e0136542. [PMID: 26325577 PMCID: PMC4556657 DOI: 10.1371/journal.pone.0136542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.
Collapse
|
33
|
Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. BIOMED RESEARCH INTERNATIONAL 2015; 2015:143109. [PMID: 26301240 PMCID: PMC4537707 DOI: 10.1155/2015/143109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer.
Collapse
|
34
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 2015; 32:353-68. [PMID: 25802102 DOI: 10.1007/s10585-015-9714-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/12/2015] [Indexed: 01/25/2023]
Abstract
Increased bone marrow adiposity is a common feature of advanced age, obesity and associated metabolic pathologies. Augmented numbers of marrow adipocytes positively correlate with dysregulated bone remodeling, also a well-established complication of metastatic disease. We have shown previously that marrow adiposity accelerates prostate tumor progression in the skeleton and promotes extensive destruction of the bone; however, the factors behind adipocyte-driven osteolysis in the skeletal tumor microenvironment are not currently known. In this study, utilizing in vivo diet-induced models of bone marrow adiposity, we reveal evidence for positive correlation between increased marrow fat content, bone degradation by ARCaP(M) and PC3 prostate tumors, and augmented levels of host-derived CXCL1 and CXCL2, ligands of CXCR2 receptor. We show by in vitro osteoclastogenesis assays that media conditioned by bone marrow adipocytes is a significant source of CXCL1 and CXCL2 proteins. We also demonstrate that both the adipocyte-conditioned media and the recombinant CXCL1 and CXCL2 ligands efficiently accelerate osteoclast maturation, a process that can be blocked by neutralizing antibodies to each of the chemokines. We further confirm the contribution of CXCR2 signaling axis to adiposity-driven osteoclastogenesis by blocking fat cell-induced osteoclast differentiation with CXCR2 antagonist or neutralizing antibodies. Together, our results link CXCL1 and CXCL2 chemokines with bone marrow adiposity and implicate CXCR2 signaling in promoting effects of marrow fat on progression of skeletal tumors in bone.
Collapse
Affiliation(s)
- Aimalie L Hardaway
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | | | | | | |
Collapse
|
35
|
Yung R, Rawling T, Murray M, Ching LM. Liquid Chromatography-Tandem Mass Spectrometry Assay Suitable for Quantifying Omega-3 Epoxy-Fatty Acid Analogs in Mouse Brain and Plasma. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.982870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Raymond Yung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tristan Rawling
- School of Pharmacy, Graduate School of Health, The University of Technology, Sydney, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM, Meier KE. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 2014; 352:380-94. [PMID: 25491146 DOI: 10.1124/jpet.114.218974] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Omega-3 fatty acids (n-3 FAs) are proposed to have many beneficial effects on human health. However, the mechanisms underlying their potential cancer preventative effects are unclear. G protein-coupled receptors (GPCRs) of the free fatty acid receptor (FFAR) family, FFA1/GPR40 and FFA4/GPR120, specifically bind n-3 FAs as agonist ligands. In this study, we examined the effects of n-3 FAs in human prostate cancer cell lines. Initial studies established that the long-chain n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid, inhibit proliferation of DU145 cells in response to lysophosphatidic acid (LPA), a mitogenic lipid mediator. When added alone to serum-starved DU145 cells, EPA transiently activates signaling events, including p70S6K phosphorylation. However, when added 15 minutes prior to LPA, EPA suppresses LPA-induced activating phosphorylations of ERK, FAK, and p70S6K, and expression of the matricellular protein CCN1. The rapid onset of the inhibitory action of EPA suggested involvement of a GPCR. Further studies showed that DU145 and PC-3 cells express mRNA and protein for both FFA4 and FFA1. TUG-891 (4-[(4-fluoro-4'-methyl[1,1'-biphenyl]-2-yl)methoxy]-benzenepropanoic acid), a selective agonist for FFA4, exerts inhibitory effects on LPA- and epidermal growth factor-induced proliferation and migration, similar to EPA, in DU145 and PC-3 cells. The effects of TUG-891 and EPA are readily reversible. The FFA1/FFA4 agonist GW9508 (4-[[(3-phenoxyphenyl)methyl]amino]-benzenepropranoic acid) likewise inhibits proliferation at doses that block FFA4. Knockdown of FFA4 expression prevents EPA- and TUG-891-induced inhibition of growth and migration. Together, these results indicate that activation of FFA4 initiates signaling events that can inhibit growth factor-induced signaling, providing a novel mechanism for suppression of cancer cell proliferation.
Collapse
Affiliation(s)
- Ze Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Mandi M Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Zhihong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Chrystal B Quisenberry
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Louise C Fix
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Brianna M Galvan
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| |
Collapse
|
37
|
Yu XF, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: A meta-analysis of cohort studies. World J Gastroenterol 2014; 20:15398-15412. [PMID: 25386090 PMCID: PMC4223275 DOI: 10.3748/wjg.v20.i41.15398] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/16/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess quantitatively the relationship between fish intake and the incidence of gastrointestinal cancers in a meta-analysis of cohort studies.
METHODS: We searched MEDLINE, Embase, Science Citation Index Expanded, and the bibliographies of retrieved articles. Prospective cohort studies were included if they reported relative risks (RRs) and corresponding 95% confidence intervals (CIs) of various cancers with respect to fish intake. When RRs were not available in the published article, they were computed from the exposure distributions. Two investigators extracted the data independently and discrepancies were resolved by discussion with a third investigator. We performed random-effect meta-analyses and meta-regressions of study-specific incremental estimates to determine the risk of cancer associated with a 20-g/d increment of fish consumption.
RESULTS: Forty-two studies, comprising 27 independent cohorts, met our inclusion criteria. The studies included 2325040 participants and 24115 incident cases of gastrointestinal cancer, with an average follow-up of 13.6 years. Compared with individuals who did not eat, or seldom ate, fish, the pooled RR of gastrointestinal cancers was 0.93 (95%CI: 0.88-0.98) for regular fish consumers, 0.94 (0.89-0.99) for low to moderate fish consumers, and 0.91 (0.84-0.97) for high fish consumers. Overall, a 20-g increase in fish consumption per day was associated with a 2% reduced risk of gastrointestinal cancers (RR = 0.98; 95%CI: 0.96-1.01). In subgroup analyses, we noted that fish consumption was associated with reduced risk of colorectal (RR = 0.93; 95%CI: 0.87-0.99; P < 0.01), esophageal (RR = 0.91; 95%CI: 0.83-0.99; P < 0.05) and hepatocellular cancers (RR = 0.71; 95%CI: 0.48-0.95; P < 0.01).
CONCLUSION: This meta-analysis suggested that fish consumption may reduce total gastrointestinal cancer incidence. Inverse relationships were also detected between fish consumption and specific types of cancers.
Collapse
|
38
|
Abstract
Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease.
Collapse
|
39
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 2014; 33:527-43. [PMID: 24398857 PMCID: PMC4154371 DOI: 10.1007/s10555-013-9484-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.
Collapse
Affiliation(s)
- Aimalie L. Hardaway
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| | - Mackenzie K. Herroon
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| |
Collapse
|
40
|
Effects of Marine Phospholipids Extract on the Lipid Levels of Metastatic and Nonmetastatic Prostate Cancer Patients. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:249204. [PMID: 27351011 PMCID: PMC4897521 DOI: 10.1155/2014/249204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 01/22/2023]
Abstract
High intake of omega-3 fatty acids (n-3 FAs) from fish has shown to reduce metastatic progression of prostate cancer. This clinical trial investigated the influence of high n-3 FA intake (marine phospholipids, MPL) on the FA composition of blood lipids, lysophosphatidylcholine (LPC), and on lipoproteins in prostate cancer patients and elderly men without prostate cancer. MPL supplementation resulted in a significant increase of n-3 FAs (eicosapentaenoic and docosahexaenoic acid) in blood lipids, while arachidonic acid (n-6 FA) decreased significantly. Low density lipoprotein (LDL) and high density lipoprotein (HDL) increased significantly, but the LDL increase was observed only in subjects with an inactive tumour. Similarly, LPC plasma concentration increased significantly only in patients without tumour. The missing increase of LDL and LPC after MPL supplementation in patients with actively growing (metastasizing) prostate cancer suggests that tumour cells have an elevated demand for LDL and LPC. Due to the MPL-induced increase of n-3 FAs in these blood lipids, it can be assumed that especially actively growing and metastasizing prostate cancer cells are provided with elevated amounts of these antimetastatic n-3 FAs. A hypothetic model explaining the lower incidence of metastatic progression in prostate cancer patients with high fish consumption is presented.
Collapse
|
41
|
Ho VW, Hamilton MJ, Dang NHT, Hsu BE, Adomat HH, Guns ES, Weljie A, Samudio I, Bennewith KL, Krystal G. A low carbohydrate, high protein diet combined with celecoxib markedly reduces metastasis. Carcinogenesis 2014; 35:2291-9. [PMID: 25023988 DOI: 10.1093/carcin/bgu147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently demonstrated that both murine and human carcinomas grow significantly slower in mice on low carbohydrate (CHO), high protein diets than on isocaloric Western diets and that a further reduction in tumor growth rates occur when the low CHO diets are combined with the cyclooxygenase-2 inhibitor, celecoxib. Following upon these studies, we asked herein what effect low CHO, high protein diets, with or without celecoxib, might have on tumor metastasis. In the highly metastatic 4T1 mouse mammary tumor model, a 15% CHO, high protein diet supplemented with celecoxib (1 g/kg chow) markedly reduced lung metastases. Moreover, in longer-term studies using male Transgenic Adenocarcinoma of the Mouse Prostate mice, which are predisposed to metastatic prostate cancer, the 15% CHO diet, with and without celecoxib (0.3 g/kg chow), gave the lowest incidence of metastases, but a more moderate 25% CHO diet containing celecoxib led to the best survival. Metabolic studies with 4T1 tumors suggested that the low CHO, high protein diets may be forcing tumors to become dependent on amino acid catabolism for survival/growth. Taken together, our results suggest that a combination of a low CHO, high protein diet with celecoxib substantially reduces metastasis.
Collapse
Affiliation(s)
| | - Melisa J Hamilton
- The Terry Fox Laboratory and The Integrative Oncology Department, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Ngoc-Ha Thi Dang
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | | - Hans H Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | - Emma S Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | - Aalim Weljie
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | | - Kevin L Bennewith
- The Department of Biological Sciences and the Metabolomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | | |
Collapse
|
42
|
Prostate cancer and bone: the elective affinities. BIOMED RESEARCH INTERNATIONAL 2014; 2014:167035. [PMID: 24971315 PMCID: PMC4058249 DOI: 10.1155/2014/167035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022]
Abstract
The onset of metastases dramatically changes the prognosis of prostate cancer patients, determining increased morbidity and a drastic fall in survival expectancy. Bone is a common site of metastases in few types of cancer, and it represents the most frequent metastatic site in prostate cancer. Of note, the prevalence of tumor relapse to the bone appears to be increasing over the years, likely due to a longer overall survival of prostate cancer patients. Bone tropism represents an intriguing challenge for researchers also because the preference of prostate cancer cells for the bone is the result of a sequential series of targetable molecular events. Many factors have been associated with the peculiar ability of prostate cancer cells to migrate in bone marrow and to determine mixed osteoblastic/osteolytic lesions. As anticipated by the success of current targeted therapy aimed to block bone resorption, a better understanding of molecular affinity between prostate cancer and bone microenvironment will permit us to cure bone metastasis and to improve prognosis of prostate cancer patients.
Collapse
|
43
|
Brown M, Roulson JA, Hart CA, Tawadros T, Clarke NW. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer. Br J Cancer 2014; 110:2099-108. [PMID: 24595005 PMCID: PMC3992515 DOI: 10.1038/bjc.2014.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Bone metastases in prostate cancer (CaP) result in CaP-related morbidity/mortality. The omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) and lipophilic statins affect metastasis-like behaviour in CaP cells, regulating the critical metastatic step of CaP migration to the bone marrow stroma. METHODS Microscopic analysis and measurement of adhesion and invasion of CaP cells through bone marrow endothelial cells (BMEC) was undertaken with AA stimulation and/or simvastatin (SIM) treatment. Amoeboid characteristics of PC-3, PC3-GFP and DU-145 were analysed by western blotting and Rho assays. RESULTS The CaP cell lines PC-3, PC3-GFP and DU-145 share the ability to migrate across a BMEC layer. Specific amoeboid inhibition decreased transendothelial migration (TEM). AA stimulates amoeboid characteristics, driven by Rho signalling. Selective knock-down of components of the Rho pathway (RhoA, RhoC, Rho-associated protein kinase 1 (ROCK1) and ROCK2) showed that Rho signalling is crucial to TEM. Functions of these components were analysed, regarding adhesion to BMEC, migration in 2D and the induction of the amoeboid phenotype by AA. TEM was reduced by SIM treatment of PC3-GFP and DU-145, which inhibited Rho pathway signalling. CONCLUSIONS AA-induced TEM is mediated by the induction of a Rho-driven amoeboid phenotype. Inhibition of this cell migratory process may be an important therapeutic target in high-risk CaP.
Collapse
Affiliation(s)
- M Brown
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - J-A Roulson
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - C A Hart
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - T Tawadros
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - N W Clarke
- 1] Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK [2] Department of Urology, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
44
|
Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 2013; 141:222-33. [PMID: 24140083 DOI: 10.1016/j.pharmthera.2013.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
Bone metastasis is a frequent occurrence in late stage solid tumors, including breast cancers, prostate or lung. However, the causes for this proclivity have only recently been elucidated. Significant progress has been made in the past decade toward understanding the molecular underpinnings of bone metastasis, and much of this research reveals a crucial role of the host stroma in each step of the metastatic cascade. Tumor-stromal interactions are crucial in engineering a pre-metastatic niche, accommodating metastatic seeding, and establishing the vicious cycle of bone metastasis. Current treatments in bone metastasis focus on latter steps of the metastatic cascade, with most treatments targeting the process of bone remodeling; however, emerging research identifies many other candidates as promising targets. Host stromal cells including platelets and endothelial cells are important in the early steps of metastatic homing, attachment and extravasation while a variety of immune cells, parenchymal cells and mesenchymal cells of the bone marrow are important in the establishment of overt, immune-suppressed metastatic lesions. Many participants during these steps have been identified and functionally validated. Significant contributors include integrins, (αvβ3, α2β1, α4β1), TGFβ family members, bone resident proteins (BSP, OPG, SPARC, OPN), RANKL, and PTHrP. In this review, we will discuss the contribution of host stromal cells to pre-metastatic niche conditioning, seeding, dormancy, bone-remodeling, immune regulation, and chemotherapeutic shielding in bone metastasis. Research exploring these interactions between bone metastases and stromal cells has yielded many therapeutic targets, and we will discuss both the current and future therapeutic avenues in treating bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
45
|
Mechanisms of omega-3 polyunsaturated fatty acids in prostate cancer prevention. BIOMED RESEARCH INTERNATIONAL 2013; 2013:824563. [PMID: 23762859 PMCID: PMC3676993 DOI: 10.1155/2013/824563] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/02/2013] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on several key areas where progress has been made recently to highlight the role of omega-3 polyunsaturated fatty acid in prostate cancer prevention.
Collapse
|
46
|
Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated Fatty acids on the hallmarks of cancer. J Lipids 2013; 2013:261247. [PMID: 23762563 PMCID: PMC3671553 DOI: 10.1155/2013/261247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, and docosahexaenoic acid have been shown to have multiple beneficial antitumour actions that affect the essential alterations that dictate malignant growth. In this review we explore the putative mechanisms of action of omega-3 polyunsaturated fatty acid in cancer protection in relation to self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion, and how these will hopefully translate from bench to bedside.
Collapse
Affiliation(s)
- J. A. Stephenson
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - O. Al-Taan
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - A. Arshad
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - B. Morgan
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - M. S. Metcalfe
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - A. R. Dennison
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| |
Collapse
|
47
|
Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 2013; 13:258-71. [PMID: 23486238 PMCID: PMC3707632 DOI: 10.1038/nrc3484] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The potent actions of pigment epithelium-derived factor (PEDF) on tumour-associated cells, and its extracellular localization and secretion, stimulated research on this multifunctional serpin. Such studies have identified several PEDF receptors and downstream signalling pathways. Known cellular PEDF responses have expanded from the initial discovery that PEDF induces retinoblastoma cell differentiation to its anti-angiogenic, antitumorigenic and antimetastatic properties. Although the diversity of PEDF activities seems to be complex, they are consistent with the varied mechanisms that regulate this multimodal factor. If PEDF is to be used for cancer management, a deeper appreciation of its many functions and mechanisms of action is needed.
Collapse
Affiliation(s)
- S Patricia Becerra
- National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
48
|
Hu Y, Sun H, O'Flaherty JT, Edwards IJ. 15-Lipoxygenase-1-mediated metabolism of docosahexaenoic acid is required for syndecan-1 signaling and apoptosis in prostate cancer cells. Carcinogenesis 2012; 34:176-82. [PMID: 23066085 DOI: 10.1093/carcin/bgs324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism impacts multiple intracellular signaling pathways in many cell types, but its role in prostate cancer cells is still unclear. Our previous studies have shown that the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) induces apoptosis in human prostate cancer cells by a syndecan-1 (SDC-1)-dependent mechanism. Here, we examined the contribution of lipoxygenase (LOX)- and cyclooxygenase (COX)-mediated DHA metabolism to this effect. Pan-LOX inhibitor (nordihydroguaiaretic acid), 15-LOX inhibitor (luteolin) or 15/12-LOX inhibitor (baicalein) blocked the induced effect of DHA on SDC-1 expression and apoptosis in human prostate cancer cells, whereas 5-LOX inhibitor, AA861, was ineffective. Human prostate cancer cells lines (PC3, LNCaP and DU145 cells) expressed two 15-LOX isoforms, 15-LOX-1 and 15-LOX-2, with higher 15-LOX-1 and lower 15-LOX-2 expressions compared with human epithelial prostate cells. Knockdown of 15-LOX-1 blocked the effect of DHA on SDC-1 expression and caspase-3 activity, whereas silencing 15-LOX-2, 5-LOX, COX-1, COX-2 or 12-LOX had no effect. Moreover, the ability of DHA to inhibit the activity of the PDK/Akt (T308) signaling pathway was abrogated by silencing 15-LOX-1. These findings demonstrate that 15-LOX-1-mediated metabolism of DHA is required for it to upregulate SDC-1 and trigger the signaling pathway that elicits apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
49
|
Ligand-independent activation of EphA2 by arachidonic acid induces metastasis-like behaviour in prostate cancer cells. Br J Cancer 2012; 107:1737-44. [PMID: 23037715 PMCID: PMC3493871 DOI: 10.1038/bjc.2012.457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: High intake of omega-6 polyunsaturated fatty acids (PUFA) has been associated with clinical progression in prostate cancer (CaP). This study investigates the signalling mechanism by which the omega-6 PUFA arachidonic acid (AA) induces prostatic cellular migration to bone marrow stroma. Methods: Western blot analysis of the PC-3, PC3-GFP, DU 145 and LNCaP cells or their lipid raft (LR) components post AA stimulation was conducted in association with assays for adhesion and invasion through the bone marrow endothelial monolayers. Results: Arachidonic acid increased transendothelial migration of PC3-GFP cells (adhesion 37%±0.08, P=0.0124; transmigration 270%±0.145, P=0.0008). Akt, Src and focal adhesion kinase (FAK) pathways were induced by AA and integrally involved in transendothelial migration. LR were critical in AA uptake and induced Akt activity. Ephrin receptor A2 (EphA2), localised in LR, is expressed in DU 145 and PC-3 cells. Arachidonic acid induced a rapid increase of EphA2 Akt-dependent/ligand-independent activation, while knockdown of the EphrinA1 ligand decreased AA induced transendothelial migration, with an associated decrease in Src and FAK activity. Arachidonic acid activated Akt in EphA2− LNCaP cells but failed to induce BMEC transendothelial invasion. Conclusion: Arachidonic acid induced stimulation of EphA2 in vitro is associated fundamentally with CaP epithelial migration across the endothelial barrier.
Collapse
|
50
|
Hägglöf C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers (Basel) 2012; 4:531-48. [PMID: 24213323 PMCID: PMC3712705 DOI: 10.3390/cancers4020531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a very common and highly unpredictable form of cancer. Whereas many prostate cancers are slow growing and could be left without treatment, others are very aggressive. Additionally, today there is no curative treatment for prostate cancer patients with local or distant metastasis. Identification of new, improved prognostic and diagnostic biomarkers for prostate cancer and the finding of better treatment strategies for metastatic prostate cancer is therefore highly warranted. Interactions between epithelium and stroma are known to be important already during prostate development and this interplay is critical also in development, progression of primary tumors and growth of metastases. It is therefore reasonable to expect that future biomarkers and therapeutic targets can be identified in the prostate tumor and metastasis stroma and this possibility should be further explored.
Collapse
Affiliation(s)
- Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå 90185, Sweden.
| | | |
Collapse
|