1
|
Saini V, Do Y, Yam JWP, Wong YH. Elevated extracellular vesicular Nm23-H1 subdues the pro-migratory potential of breast cancer cell-derived extracellular vesicles. Cell Signal 2024; 120:111203. [PMID: 38723736 DOI: 10.1016/j.cellsig.2024.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Metastasis is a key determinant in cancer mortality which is often associated with decreased levels of Nm23-H1, a well-established metastasis suppressor. Despite lacking a secretion signal peptide, Nm23-H1 has been reported to be present in the extracellular space and enclosed within extracellular vesicles (EVs). While the presence of Nm23-H1 proteins in EVs released by cancer cells has been observed through proteomics profiling, the role of vesicular Nm23-H1 remains unclear. Here, we investigated the function of vesicular Nm23-H1 using MDA-MB-231 (highly metastatic, low Nm23-H1) and MCF-7 (low/non-metastatic, high Nm23-H1) breast cancer cell models. Our findings confirm that Nm23-H1 is indeed encapsulated within EVs, and its levels can be manipulated through overexpression and knockdown approaches. Functional assays revealed that EVs derived from MDA-MB-231 cells that contained high levels of Nm23-H1 exhibit impaired pro-migratory properties, suggesting that vesicular Nm23-H1 may act as a metastasis suppressor. Furthermore, EVs with increased levels of Nm23-H1 altered the transcript levels of multiple cancer-related genes in recipient cells and stimulated type I interferon signaling through STAT1 phosphorylation. These results suggest the existence of an unconventional signaling pathway mediated by the uptake of EVs enriched with Nm23-H1, which may contribute to the anti-metastatic effect of Nm23-H1 in the tumor microenvironment. Additionally, our study demonstrates that elevated Nm23-H1 levels can impact the abundance of various other proteins encapsulated within breast cancer cell-derived EVs, such as SUSD2 (Sushi Domain Containing 2) which can also modulate metastasis.
Collapse
Affiliation(s)
- Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Galceran F, Digirolamo FA, Rengifo M, Reigada C, Saye M, Maciel BJ, Estecho IG, Errasti AE, Pereira CA, Miranda MR. Identifying inhibitors of Trypanosoma cruzi nucleoside diphosphate kinase 1 as potential repurposed drugs for Chagas' disease. Biochem Pharmacol 2023; 216:115766. [PMID: 37634596 DOI: 10.1016/j.bcp.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease, an endemic and neglected disease. The treatment is limited to only two drugs, benznidazole (BZL) and nifurtimox (NFX), introduced more than fifty years ago and no new advances have been made since then. Nucleoside diphosphate kinases (NDPK) are key metabolic enzymes which have gained interest as drug targets of pathogen organisms. Taking advantage of the computer-assisted drug repurposing approaches, in the present work we initiate a search of potential T. cruzi nucleoside diphosphate kinase 1 (TcNDPK1) inhibitors over an ∼ 12,000 compound structures database to find drugs targeted to this enzyme with trypanocidal activity. Four medicines were selected and evaluated in vitro, ketorolac (KET, an anti-inflamatory), dutasteride (DUT, used to treat benign prostatic hyperplasia), nebivolol and telmisartan (NEB and TEL, used to treat high blood pressure). The four compounds were weak inhibitors and presented different trypanocidal effect on epimastigotes, trypomastigotes and intracellular stages. NEB and TEL were the most active drugs with increased effect on intracellular stages, (IC50 = 2.25 µM and 13.21 µM respectively), and selectivity indexes of 13.01 and 8.59 respectively, showing comparable effect to BZL, the first line drug for Chagas' disease treatment. In addition, both presented positive interactions when combined with BZL. Finally, transgenic epimastigotes with increased expression of TcNDPK1 were more resistant to TEL and NEB, suggesting that TcNDPK1 is at least one of the molecular targets. In view of the results, NEB and TEL could be repurposed medicines for Chagas' disease therapy.
Collapse
Affiliation(s)
- Facundo Galceran
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Marcos Rengifo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Saye
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Belen J Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ivana G Estecho
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea E Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Extracellular Vesicle-Mediated Metastasis Suppressors NME1 and NME2 Modify Lipid Metabolism in Fibroblasts. Cancers (Basel) 2022; 14:cancers14163913. [PMID: 36010906 PMCID: PMC9406105 DOI: 10.3390/cancers14163913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Communication between cancer and stromal cells involves paracrine signalling mediated by extracellular vesicles (EVs). EVs transmit essential factors among cells of the tumour microenvironment. EVs derived from both cancer and stromal cells have been implicated in tumour progression. In this study, we focused on the first identified metastasis suppressor NME1, and on its close homolog NME2, and investigated their function in EVs in the interplay between cancer and stromal cells. Abstract Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
Collapse
|
5
|
Luo T, Jiang JG. Anticancer Effects and Molecular Target of Theaflavins from Black Tea Fermentation in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15052-15065. [PMID: 34878780 DOI: 10.1021/acs.jafc.1c05313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black tea is one of the most popular beverages in the world, and numerous epidemiological studies have shown that drinking black tea is good for health. As a natural tea pigment formed during the fermentation of black tea, the content of theaflavins accounts for only 2-6% of the dry weight of black tea, but they have a great impact on the color and taste of black tea soup. Recently, a large number of studies have shown that theaflavins have a significant anticancer effect. In this Perspective, we first state the physical and chemical properties, separation and purification methods, and biological formation pathways of theaflavins and analyze their safety and oral bioavailability and the structure-activity relationship of their antioxidant and anticancer activities; then, we describe in detail their anticancer effect in vitro and in vivo and highlight their various molecular targets involved in cancer inhibition. The anticancer molecular targets of theaflavins are mainly cell-cycle regulatory proteins, apoptosis-related proteins, cell-migration-related proteins, and growth transcription factors. Finally, the possibility of developing new health-care food based on theaflavins is discussed. This Perspective is expected to provide a theoretical basis for the anticancer application of theaflavins in the future.
Collapse
Affiliation(s)
- Ting Luo
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
7
|
Duan S, Nordmeier S, Byrnes AE, Buxton ILO. Extracellular Vesicle-Mediated Purinergic Signaling Contributes to Host Microenvironment Plasticity and Metastasis in Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:E597. [PMID: 33435297 PMCID: PMC7827112 DOI: 10.3390/ijms22020597] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis accounts for over 90% of cancer-related deaths, yet the mechanisms guiding this process remain unclear. Secreted nucleoside diphosphate kinase A and B (NDPK) support breast cancer metastasis. Proteomic evidence confirms their presence in breast cancer-derived extracellular vesicles (EVs). We investigated the role of EV-associated NDPK in modulating the host microenvironment in favor of pre-metastatic niche formation. We measured NDPK expression and activity in EVs isolated from triple-negative breast cancer (MDA-MB-231) and non-tumorigenic mammary epithelial (HME1) cells using flow cytometry, western blot, and ATP assay. We evaluated the effects of EV-associated NDPK on endothelial cell migration, vascular remodeling, and metastasis. We further assessed MDA-MB-231 EV-induced proteomic changes in support of pre-metastatic lung niche formation. NDPK-B expression and phosphotransferase activity were enriched in MDA-MB-231 EVs that promote vascular endothelial cell migration and disrupt monolayer integrity. MDA-MB-231 EV-treated mice demonstrate pulmonary vascular leakage and enhanced experimental lung metastasis, whereas treatment with an NDPK inhibitor or a P2Y1 purinoreceptor antagonist blunts these effects. We identified perturbations to the purinergic signaling pathway in experimental lungs, lending evidence to support a role for EV-associated NDPK-B in lung pre-metastatic niche formation and metastatic outgrowth. These studies prompt further evaluation of NDPK-mediated EV signaling using targeted genetic silencing approaches.
Collapse
Affiliation(s)
- Suzann Duan
- Department of Pharmacology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
- Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Senny Nordmeier
- Department of Pharmacology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Aidan E Byrnes
- Department of Pharmacology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Iain L O Buxton
- Department of Pharmacology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
8
|
Hunt JP, Barnett RJ, Robinson H, Soltani M, Nelson JAD, Bundy BC. Rapid sensing of clinically relevant glutamine concentrations in human serum with metabolically engineered E. coli-based cell-free protein synthesis. J Biotechnol 2020; 325:389-394. [PMID: 32961202 DOI: 10.1016/j.jbiotec.2020.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Bioavailable glutamine (Gln) is critical for metabolism, intestinal health, immune function, and cell signaling. Routine measurement of serum Gln concentrations could facilitate improved diagnosis and treatment of severe infections, anorexia nervosa, chronic kidney disease, diabetes, and cancer. Current methods for quantifying tissue Gln concentrations rely mainly on HPLC, which requires extensive sample preparation and expensive equipment. Consequently, patient Gln levels may be clinically underutilized. Cell-free protein synthesis (CFPS) is an emerging sensing platform with promising clinical applications, including detection of hormones, amino acids, nucleic acids, and other biomarkers. In this work, in vitro E. coli amino acid metabolism is engineered with methionine sulfoximine to inhibit glutamine synthetase and create a CFPS Gln sensor. The sensor features a strong signal-to-noise ratio and a detection range ideally suited to physiological Gln concentrations. Furthermore, it quantifies Gln concentration in the presence of human serum. This work demonstrates that CFPS reactions which harness the metabolic power of E. coli lysate may be engineered to detect clinically relevant analytes in human samples. This approach could lead to transformative point-of-care diagnostics and improved treatment regimens for a variety of diseases including cancer, diabetes, anorexia nervosa, chronic kidney disease, and severe infections.
Collapse
Affiliation(s)
- J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - R Jordan Barnett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Hannah Robinson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - J Andrew D Nelson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
9
|
Ahlawat J, Neupane R, Deemer E, Sreenivasan ST, Narayan M. Chitosan-Ellagic Acid Nanohybrid for Mitigating Rotenone-induced Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18964-18977. [PMID: 32216327 DOI: 10.1021/acsami.9b21215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antioxidants derived from nature, such as ellagic acid (EA), demonstrated high potency to mitigate neuronal oxidative stress and related pathologies, including Parkinson's disease. However, the application of EA is limited due to its toxicity at moderate doses and poor solubility, cellular permeability, and bioavailability. Here, we introduce a sustainably resourced, green nanoencasement strategy to overcome the limitations of EA and derive synergistic effects to prevent oxidative stress in neuronal cells. Chitosan, with its high biocompatibility, potential antioxidant properties, and flexible surface chemistry, was chosen as the primary component of the nanoencasement in which EA is immobilized. Using a rotenone model to mimic intracellular oxidative stress, we examined the effectiveness of EA and chitosan to limit cell death. Our studies indicate a synergistic effect between EA and chitosan in mitigating rotenone-induced reactive oxygen species death. Our analysis suggests that chitosan encapsulation of EA reduces the inherent cytotoxicity of the polyphenol (a known anticancer molecule). Furthermore, its encapsulation permits its delivery via a rapid burst phase and a relatively slow phase making the nanohybrid suitable for drug release over extended time periods.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rabin Neupane
- Department of Industrial Pharmacy, The University of Toledo, Toledo, Ohio 43606, United States
| | - Eva Deemer
- Department of Material Science and Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Bunce CM, Khanim FL. The 'known-knowns', and 'known-unknowns' of extracellular Nm23-H1/NDPK proteins. J Transl Med 2018; 98:602-608. [PMID: 29339833 DOI: 10.1038/s41374-017-0012-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
Nucleoside diphosphate kinases (NDPKs/NDK/NME) are a multifunctional class of proteins conserved throughout evolution. Whilst many of the functions of NDPKs have been identified as intracellular, extracellular eukaryotic and prokaryotic NDPK proteins are also detected in multiple systems and have been implicated in both normal physiology and disease. This review provides an overview of where the field stands on our developing understanding of how NDPK proteins get out of cells, the physiological role of extracellular NDPKs, and how extracellular NDPKs may signal to cells. We will also discuss some of the unanswered questions, the 'known-unknowns' that particularly warrant further investigation.
Collapse
Affiliation(s)
- Chris M Bunce
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Farhat L Khanim
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer. J Transl Med 2018; 98:571-581. [PMID: 29449633 DOI: 10.1038/s41374-017-0011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023] Open
Abstract
The understanding of protein-protein interactions is crucial in order to generate a second level of functional genomic analysis in human disease. Within a cellular microenvironment, protein-protein interactions generate new functions that can be defined by single or multiple modes of protein interactions. We outline here the clinical importance of targeting of the Nme-1 (NDPK-A)-Prune-1 protein complex in cancer, where an imbalance in the formation of this protein-protein complex can result in inhibition of tumor progression. We discuss here recent functional data using a small synthetic competitive cell-permeable peptide (CPP) that has shown therapeutic efficacy for impairing formation of the Nme-1-Prune-1 protein complex in mouse preclinical xenograft tumor models (e.g., breast, prostate, colon, and neuroblastoma). We thus believe that further discoveries in the near future related to the identification of new protein-protein interactions will have great impact on the development of new therapeutic strategies against various cancers.
Collapse
|
12
|
Romani P, Ignesti M, Gargiulo G, Hsu T, Cavaliere V. Extracellular NME proteins: a player or a bystander? J Transl Med 2018; 98:248-257. [PMID: 29035383 DOI: 10.1038/labinvest.2017.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Marilena Ignesti
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Tien Hsu
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA.,National Central University, Department of Biomedical Sciences and Technology, Jhongli, Taiwan
| | - Valeria Cavaliere
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| |
Collapse
|
13
|
Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017; 90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
While platelets are traditionally recognized to play a predominant role in hemostasis and thrombosis, increasing evidence verifies its involvement in malignancies. As a component of the tumor microenvironment, platelets influence carcinogenesis, tumor metastasis and chemotherapy efficiency. Platelets status is thus predictable as a hematological biomarker of cancer prognosis and a hot target for therapeutic intervention. On the other hand, the role of circulating tumor cells (CTCs) as an inducer of platelet activation and aggregation has been well acknowledged. The cross-talk between platelets and CTCs is reciprocal on that the CTCs activate platelets while platelets contribute to CTCs' survival and dissemination. This review covers some of the current issues related to the loop between platelets and tumor aggression, including the manners of tumor cells in "educating" platelets and biofunctional alterations of platelets upon tumor "education". We also highlight the potential clinical applications on the interplay between tumors and platelets. Further studies with well-designed prospective multicenter trials may contribute to clinical "liquid biopsy" diagnosis by evaluating the global changes of platelets.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
14
|
Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J. Transfusion-related immunomodulation and cancer. Transfus Apher Sci 2017; 56:336-340. [PMID: 28606449 DOI: 10.1016/j.transci.2017.05.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood and blood-component therapy triggers immunological reactions in recipients. Transfusion-related immunomodulation [TRIM] is an important complex biological immune reaction to transfusion culminating in immunosuppression. The mechanisms underlying TRIM include the presence of residual leukocytes and apoptotic cells, the transfusion of immunosuppressive cytokines either present in donor components or generated during blood processing, the transfer of metabolically active growth factor-loaded microparticles and extracellular vesicles and the presence of free hemoglobin or extracellular vesicle-bound hemoglobin. TRIM variables include donor-specific factors as well as processing variables. TRIM may explain, at least in part, the controversial negative clinical outcomes observed in cancer patients receiving transfusion in the context of curative-intent surgeries. The use of novel technologies including metabolomics and proteomics on stored blood may pave the way for a deeper understanding of TRIM in general and its impact on cancer progression.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada.
| | - David Sheridan
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Thierry Burnouf
- Graduate Institute of Biological Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
15
|
Zhou Q, Bennett LL, Zhou S. Multifaceted ability of naturally occurring polyphenols against metastatic cancer. Clin Exp Pharmacol Physiol 2016; 43:394-409. [DOI: 10.1111/1440-1681.12546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Qingyu Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| | | | - Shufeng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| |
Collapse
|
16
|
Goubran H, Sabry W, Kotb R, Seghatchian J, Burnouf T. Platelet microparticles and cancer: An intimate cross-talk. Transfus Apher Sci 2015; 53:168-72. [DOI: 10.1016/j.transci.2015.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Fernandes AS, Flórido A, Saraiva N, Cerqueira S, Ramalhete S, Cipriano M, Cabral MF, Miranda JP, Castro M, Costa J, Oliveira NG. Role of the Copper(II) Complex Cu[15]pyN5 in Intracellular ROS and Breast Cancer Cell Motility and Invasion. Chem Biol Drug Des 2015; 86:578-88. [PMID: 25600158 DOI: 10.1111/cbdd.12521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.
Collapse
Affiliation(s)
- Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Ana Flórido
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Sara Cerqueira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Sérgio Ramalhete
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Madalena Cipriano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Fátima Cabral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
18
|
Elabela-apelin receptor signaling pathway is functional in mammalian systems. Sci Rep 2015; 5:8170. [PMID: 25639753 PMCID: PMC4313117 DOI: 10.1038/srep08170] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 01/01/2023] Open
Abstract
Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development.
Collapse
|
19
|
Yokdang N, Nordmeier S, Speirs K, Burkin HR, Buxton ILO. Blockade of extracellular NM23 or its endothelial target slows breast cancer growth and metastasis. ACTA ACUST UNITED AC 2015; 2:192-200. [PMID: 26413311 DOI: 10.15761/icst.1000139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nucleoside Diphosphate Kinase (NDPK), described as NM23 a metastasis suppressor, is found in the culture medium of cancer cells lines suggesting that the kinase may have an extracellular role. We propose that extracellular NM23 released from breast cancers in vivo stimulates tumor cell migration, proliferation and endothelial cell angiogenesis in support of metastasis development. METHODS NM23 in the bloodstream of immunocompromised mice carrying human triple-negative breast cancers or in breast cancer patients was measured by ELISA. Primary and metastatic tumor development, the impact of blockade of NM23 and/or its stimulation of nucleotide receptors were measured using in vivo imaging. NM23 expression data in the Curtis breast dataset was examined to test our hypothesis that NM23 may play a mechanistic role in breast cancer development. RESULTS SCID mice carrying metastatic MDA-MB-231Luc+ triple-negative human breast tumor cells elaborate NM23 into the circulation correlated with primary tumor growth. Treatment of mice with the NM23 inhibitor ellagic acid (EA) or the purinergic receptor antagonist MRS2179 slowed primary tumor growth. At 16 weeks following implantation, lung metastases were reduced in mice treated with EA, MRS2179 or the combination. Expression of NM23 in the Curtis breast dataset confirmed a likely role for NM23 in tumor metastasis. CONCLUSIONS Extracellular NM23 may constitute both a biomarker and a therapeutic target in the management of breast cancer.
Collapse
Affiliation(s)
- Nucharee Yokdang
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Senny Nordmeier
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Katie Speirs
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| |
Collapse
|
20
|
Li Y, Tong Y, Wong YH. Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:243-56. [PMID: 25413836 DOI: 10.1007/s00210-014-1066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Substantial effort has been directed at elucidating the functions of the products of the Nm23 tumor metastasis suppressor genes over the past two decades, with the ultimate goal of exploring their translational potentials in changing cancer patients' outcomes. Much attention has been focused on the better-known Nm23-H1, but despite having high sequence similarity, Nm23-H2 functions differently in many aspects. Besides acting as a metastasis suppressor, compelling data suggest that Nm23-H2 may modulate various tumor-associated biological events to enhance tumorigenesis in human solid tumors and hematological malignancies. Linkage to tumorigenesis may occur through the ability of Nm23-H2 to regulate transcription, cell proliferation, apoptosis, differentiation, and telomerase activity. In this review, we examine the linkages of Nm23-H2 to tumorigenesis in terms of its biochemical and structural properties and discuss its potential role in various tumor-associated events.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
21
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
22
|
Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. CANCER GROWTH AND METASTASIS 2014; 7:9-18. [PMID: 24926201 PMCID: PMC4051818 DOI: 10.4137/cgm.s11285] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022]
Abstract
The presence of abnormal cells with malignant potential or neoplastic characteristics is a relatively common phenomenon. The interaction of these abnormal cells with their microenvironment is essential for tumor development, protection from the body's immune or defence mechanisms, later progression and the development of life-threatening or metastatic disease. The tumor microenvironment is a collective term that includes the tumor's surrounding and supportive stroma, the different effectors of the immune system, blood platelets, hormones and other humoral factors. A better understanding of the interplay between the tumor cells and its microenvironment can provide efficient tools for cancer management, as well as better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Hadi A Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, SK, Canada
| | - Rami R Kotb
- Medical Oncology, BC Cancer Agency, Victoria, BC
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julie Stakiw
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, SK, Canada
| | - Mohamed E Emara
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, SK, Canada
| | - Thierry Burnouf
- Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Abstract
The notion that breast cancers can survive in an individual patient in a dormant state only to grow as metastatic disease in the future, is in our view incontrovertibly established. Convincing too is the evidence that surgery to remove the primary tumor often terminates dormancy resulting in accelerated relapses. Accepting that many deaths due to breast cancer might be averted were we to understand the cellular mechanisms underlying escape from dormancy, we have examined the extracellular signals produced by breast cancers derived from women with metastatic breast disease. In this perspective, we explore the role of extracellular nucleotide signaling that we have proposed constitutes a pathological axis from the transformed tumor cell to the endothelium in the service of intravasation, dissemination, extravasation and angiogenesis. A role for the dinucleotide kinase NM23/NDPK (nucleoside diphosphate kinase) secreted by breast tumor cells in the generation of signals that stimulate vascular leakiness, anti-thrombosis, endothelial migration and growth, constitutes a mechanistic basis for escape from latency and offers putative therapeutic targets for breast cancer management not previously appreciated.
Collapse
|
24
|
Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol Nutr Food Res 2011; 56:14-29. [PMID: 22125182 DOI: 10.1002/mnfr.201100619] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths for women in the United States and the rest of the world. About 8% of women develop breast cancer during the course of their lives. Dietary habits are closely associated with both the risk and progression of breast cancer. Dietary agents have accumulated increasing importance with regards to the prevention and treatment of breast cancer. One such manner by which these compounds can target breast cancer development and progression is through interference with the angiogenic pathways. Angiogenesis is an intricate process that involves the development of new capillaries from previously existing blood vessels. Disruption of this pathway, therefore, provides a novel and effective avenue for therapeutic intervention of breast cancer. Various phytochemicals found in the diet kill breast cancer cells in vitro and prevent as well as suppress breast cancer progression in various preclinical animal models. This review examines the value of dietary phytoconstituents in the prevention and treatment of breast cancer through modulation of the intricate and complex process of angiogenesis. In addition, the potential benefits, challenges, and future directions of research on anti-angiogenic dietary phytochemicals in the prevention and intervention of breast cancer are also addressed.
Collapse
Affiliation(s)
- Sharon C Reuben
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | | | | |
Collapse
|
25
|
Extracellular NM23 Protein as a Therapeutic Target for Hematologic Malignancies. Adv Hematol 2011; 2012:879368. [PMID: 21941554 PMCID: PMC3175692 DOI: 10.1155/2012/879368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 01/19/2023] Open
Abstract
An elevated serum level of NM23-H1 protein is a poor prognostic factor in patients with various hematologic malignancies. The extracellular NM23-H1 protein promotes the in vitro growth and survival of acute myelogenous leukemia (AML) cells and inversely inhibits the in vitro survival of normal peripheral blood monocytes in primary culture at concentrations equivalent to the levels found in the serum of AML patients. The growth and survival promoting activity to AML cells is associated with cytokine production and activation of mitogen-activated protein kinases (MAPKs) and signal transducers and activators of transcription (STAT) signaling pathways. Inhibitors specific for MAPK signaling pathways inhibit the growth/survival-promoting activity of NM23-H1. These findings indicate a novel biological action of extracellular NM23-H1 and its association with poor prognosis. These results suggest an important role of extracellular NM23-H1 in the malignant progression of leukemia and a potential therapeutic target for these malignancies.
Collapse
|
26
|
Huang ST, Yang RC, Wu HT, Wang CN, Pang JHS. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation. PLoS One 2011; 6:e18986. [PMID: 21573219 PMCID: PMC3087719 DOI: 10.1371/journal.pone.0018986] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 03/23/2011] [Indexed: 11/27/2022] Open
Abstract
Background Ellagic acid (EA), a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. Methods and Principal Findings The matrix metalloproteinases-2 (MMP-2) activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs) as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. Conclusions/Significance Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Rong-Chi Yang
- Chinese Herbal Pharmacy, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Hsiao-Ting Wu
- Department of Chinese Medicine, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Nin Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jong-Hwei S. Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Yokdang N, Tellez JD, Tian H, Norvell J, Barsky SH, Valencik M, Buxton ILO. A role for nucleotides in support of breast cancer angiogenesis: heterologous receptor signalling. Br J Cancer 2011; 104:1628-40. [PMID: 21505453 PMCID: PMC3101911 DOI: 10.1038/bjc.2011.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Human breast carcinoma cells secrete an adenosine 5′-diphosphate transphosphorylase (sNDPK) known to induce endothelial cell tubulogenesis in a P2Y receptor-dependent manner. We examined sNDPK secretion and its effects on human endothelial cells. Methods: Nucleoside diphosphate kinase (NDPK) secretion was measured by western blot and enzyme-linked immunosorbent assay, while transphosphorylase activity was measured using the luciferin-luciferase ATP assay. Activation of MAPK was determined by western blot analysis, immunofluorescence and endothelial cell proliferation and migration. Results: A panel of breast cancer cell lines with origin as ductal carcinoma, adenocarcinoma or medullary carcinoma, secrete sNDPK-A/B. Addition of purified NDPK-B to endothelial cultures activated VEGFR-2 and Erk1/2, both of which were blocked by inhibitors of NDPK and P2Y receptors. Activation of VEGFR-2 and ErK1/2 by 2-methylthio-ATP (2MeS-ATP) was blocked by pretreatment with the P2Y1-specific antagonist MRS2179, the proto-oncogene non-receptor tyrosine kinase (Src) inhibitor PP2 or the VEGFR-2 antagonist SU1498. Nucleoside diphosphate kinase-B stimulates cell growth and migration in a concentration-dependent manner comparable to the effect of vascular endothelial growth factor. Treatment of endothelial cells with either NDPK-B or 2MeS-ATP induced migration, blocked by P2Y1, Src or VEGFR-2 antagonists. Conclusion: sNDPK supports angiogenesis. Understanding the mechanism of action of sNDPK and P2Y1 nucleotide signalling in metastasis and angiogenesis represent new therapeutic targets for anti-angiogenic therapies to benefit patients.
Collapse
Affiliation(s)
- N Yokdang
- Department of Pharmacology, Centre for Molecular Medicine, University of Nevada School of Medicine, Mail Stop 573, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang PH, Ko JL, Yang SF, Lin LY. Implication of human nonmetastatic clone 23 Type 1 and its downstream gene lipocalin 2 in metastasis and patient's survival of cancer of uterine cervix. Int J Cancer 2011; 129:2380-9. [DOI: 10.1002/ijc.25936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/16/2010] [Accepted: 12/30/2010] [Indexed: 11/11/2022]
|
29
|
Abstract
Traditionally viewed as major cellular components in hemostasis and thrombosis, the contribution of platelets to the progression of cancer is an emerging area of research interest. Complex interactions between tumor cells and circulating platelets play an important role in cancer growth and dissemination, and a growing body of evidence supports a role for physiologic platelet receptors and platelet agonists in cancer metastases and angiogenesis. Platelets provide a procoagulant surface facilitating amplification of cancer-related coagulation, and can be recruited to shroud tumor cells, thereby shielding them from immune responses, and facilitate cancer growth and dissemination. Experimental blockade of key platelet receptors, such as GP1b/IX/V, GPIIbIIIa and GPVI, has been shown to attenuate metastases. Platelets are also recognized as dynamic reservoirs of proangiogenic and anti-angiogenic proteins that can be manipulated pharmacologically. A bidirectional relationship between platelets and tumors is also seen, with evidence of 'tumor conditioning' of platelets. The platelet as a reporter of malignancy and a targeted delivery system for anticancer therapy has also been proposed. The development of platelet inhibitors that influence malignancy progression and clinical testing of currently available antiplatelet drugs represents a promising area of targeted cancer therapy.
Collapse
Affiliation(s)
- N M Bambace
- Division of Hematology and Oncology, Department of Medicine, University of Vermont, Burlington, VT 05401, USA
| | | |
Collapse
|
30
|
The Role of Lipocalin 2 and its Concernment With Human Nonmetastatic Clone 23 Type 1 and p53 in Carcinogenesis of Uterine Cervix. Reprod Sci 2011; 18:447-55. [DOI: 10.1177/1933719110395407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Pan MH, Chiou YS, Wang YJ, Ho CT, Lin JK. Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct 2011; 2:101-10. [PMID: 21779554 DOI: 10.1039/c0fo00174k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The consumption of green tea has long been associated with a reduced risk of cancer development. (-)-Epicatechin-3-gallate (ECG) or (-)-epigallocatechin-3-gallate (EGCG) are the major antioxidative polyphenolic compounds of green tea. They have been shown to exert growth-inhibitory potential of various cancer cells in culture and antitumor activity in vivo models. ECG or EGCG could interact with various molecules like proteins, transcription factors, and enzymes, which block multiple stages of carcinogenesis via regulating intracellular signaling transduction pathways. Moreover, ECG and EGCG possess pharmacological and physiological properties including induction of phase II enzymes, mediation of anti-inflammation response, regulation of cell proliferation and apoptosis effects and prevention of tumor angiogenesis, invasion and metastasis. Numerous review articles have been focused on EGCG, however none have been focused on ECG despite many studies supporting the cancer preventive potential of ECG. To develop ECG as an anticarcinogenic agent, more clear understanding of the cell signaling pathways and the molecular targets responsible for chemopreventive and chemotherapeutic effects are needed. This review summarizes recent research on the ECG-induced cellular signal transduction events which implicate in cancer management.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung 81143, Taiwan.
| | | | | | | | | |
Collapse
|
32
|
Ebselen is a potent non-competitive inhibitor of extracellular nucleoside diphosphokinase. Purinergic Signal 2010; 6:383-91. [PMID: 21437009 DOI: 10.1007/s11302-010-9203-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022] Open
Abstract
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer [γ(32)P]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of [(32)P]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of [γ(32)P]ATP to [(32)P]UTP, while inclusion of AMP resulted in conversion of [γ(32)P]ATP to [(32)P]ADP. Ebselen markedly reduced [(32)P]UTP formation but displayed negligible effect on (32)Pi or [(32)P]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC(50) = 6.9 ± 2 μM). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V(max) of the reaction (K(i) = 7.6 ± 3 μM), having negligible effect on K(M) values. Our study demonstrates that ebselen is a potent non-competitive inhibitor of extracellular NDPK.
Collapse
|
33
|
Hagiwara Y, Kasukabe T, Kaneko Y, Niitsu N, Okabe-Kado J. Ellagic acid, a natural polyphenolic compound, induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells. Int J Hematol 2010; 92:136-43. [DOI: 10.1007/s12185-010-0627-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 05/13/2010] [Accepted: 06/02/2010] [Indexed: 11/24/2022]
|
34
|
Purinergic mechanisms in breast cancer support intravasation, extravasation and angiogenesis. Cancer Lett 2010; 291:131-41. [PMID: 19926395 DOI: 10.1016/j.canlet.2009.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 12/30/2022]
Abstract
Several advances have recently expanded models of tumor growth and promoted the concept of tumor homeostasis, the hypothesis that primary tumors exert an anti-proliferative effect on both themselves and subclinical secondary metastases. Recent trials indicate that the characterization of tumor growth as uncontrolled is inconsistent with animal models, clinical models, and epidemiological models. There is a growing body of evidence which lends support to an updated concept of tumor growth: tumor homeostasis. In the case of breast cancer, if not all metastasizing tumors, these advances suggest an inconvenient truth. That is, if breast tumor cells metastasize to distant sites early in the tumorigenesis process, then removal of a breast tumor may hasten the development of its metastases. We explore the heretofore unappreciated notion that nucleotides generated by tumor cells following the secretion of an ADP-kinase can promote metastasis and support angiogenesis. Evidence is presented that blockade of the actions of nucleotides in the setting of newly diagnosed breast cancer may provide a useful adjunct to current anti-angiogenesis treatment.
Collapse
|
35
|
Ohshima Y, Tsukimoto M, Takenouchi T, Harada H, Suzuki A, Sato M, Kitani H, Kojima S. gamma-Irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells. Biochim Biophys Acta Gen Subj 2009; 1800:40-6. [PMID: 19854240 DOI: 10.1016/j.bbagen.2009.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined gamma-irradiation-induced ATP release and its mechanism in B16 melanoma. METHODS Extracellular ATP was measured by luciferin-luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X(7) receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X(7) receptor. RESULTS Cells were exposed to 0.5-8 Gy of gamma-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X(7) receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X(7) receptor-knockdown cells. Our results indicate that gamma-irradiation evokes ATP release from melanoma cells, and P2X(7) receptor channel plays a significant role in mediating the ATP release. GENERAL SIGNIFICANCE We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.
Collapse
Affiliation(s)
- Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Okabe-Kado J, Kasukabe T, Honma Y, Kobayashi H, Maseki N, Kaneko Y. Extracellular NM23 protein promotes the growth and survival of primary cultured human acute myelogenous leukemia cells. Cancer Sci 2009; 100:1885-94. [PMID: 19664043 PMCID: PMC11158594 DOI: 10.1111/j.1349-7006.2009.01276.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An elevated serum level of NM23-H1 protein is found in acute myelogenous leukemia (AML), and predicts a poor treatment outcome in AML patients. To investigate the potential pathological link between the elevated serum level of this protein and poor prognosis, we examined the extracellular effects of recombinant NM23-H1 protein on the in vitro growth and survival of primary cultured AML cells at concentrations equivalent to the levels found in the serum of AML patients. Extracellular NM23-H1 protein promoted the in vitro growth and survival of AML cells and this activity was associated with the cytokine production and activation of the MAPK and signal transducers and activators of transcription signaling pathways. Inhibitors specific to MAPK signaling pathways inhibited the growth- and survival-promoting activity of NM23-H1. These findings indicate the novel biological action of extracellular NM23-H1 and its association with poor prognosis, and suggest an important role for extracellular NM23-H1 in the malignant progression of leukemia and a potential therapeutic target for these malignancies.
Collapse
Affiliation(s)
- Junko Okabe-Kado
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Okabe-Kado J, Kasukabe T, Honma Y, Kobayashi H, Maseki N, Kaneko Y. Extracellular NM23-H1 protein inhibits the survival of primary cultured normal human peripheral blood mononuclear cells and activates the cytokine production. Int J Hematol 2009; 90:143-152. [PMID: 19655221 DOI: 10.1007/s12185-009-0384-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/14/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022]
Abstract
An elevated serum level of NM23-H1 protein is found in acute myelogenous leukemia (AML) and predicts a poor treatment outcome for AML patients. To investigate the potential pathological link between the elevated serum level of this protein and poor prognosis, we examined the extracellular effects of recombinant NM23-H1 protein on the in vitro survival of primary cultured normal peripheral blood mononuclear cells (PBMNC) at concentrations equivalent to the levels found in the serum of AML patients. Extracellular NM23-H1 protein inhibited the in vitro survival of PBMNC and promoted the production of various cytokines, such as GM-CSF and IL-1beta, which in fact promoted the growth of primary cultured AML cells. These findings indicate a novel biological action of extracellular NM23-H1 and its association with poor prognosis of patients with elevated serum levels of NM23-H1 protein. These results suggest an important role of extracellular NM23-H1 in the malignant progression of leukemia and a potential therapeutic target for these malignancies.
Collapse
Affiliation(s)
- Junko Okabe-Kado
- Research Institute for Clinical Oncology, Saitama Cancer Center, Komuro 818, Ina-machi, Kita-adachi-gun, Saitama, 362-0806, Japan.
| | - Takashi Kasukabe
- Research Institute for Clinical Oncology, Saitama Cancer Center, Komuro 818, Ina-machi, Kita-adachi-gun, Saitama, 362-0806, Japan
| | - Yoshio Honma
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | | | - Nobuo Maseki
- Hematology Clinic, Saitama Cancer Center Hospital, Saitama, Japan
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Komuro 818, Ina-machi, Kita-adachi-gun, Saitama, 362-0806, Japan.,Hematology Clinic, Saitama Cancer Center Hospital, Saitama, Japan
| |
Collapse
|
38
|
Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J. Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 2009. [PMID: 19377884 DOI: 10.1007/s11010-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity. The interacting proteins with Nm23-H1 can be classified into 3 groups. The first group of proteins can be classified as upstream kinases of Nm23-H1 such as CKI and Aurora-A/STK15. The second group of proteins acts as downstream effectors for the regulation of specific gene transcriptions, GTP-binding protein functions, and signal transduction in Erk signal cascade. The third group of proteins can be classified as bi-directionally influencing binding partners of Nm23-H1. As a result, the interactions with Nm23-H1 and binding partners have implications in the biochemical characterization involved in metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Hag Dong Kim
- School of Life Sciences & Biotechnology, and BioInstitute, Korea University, Seoul 136-713, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J. Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 2009; 329:167-73. [PMID: 19377884 DOI: 10.1007/s11010-009-0109-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Nm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity. The interacting proteins with Nm23-H1 can be classified into 3 groups. The first group of proteins can be classified as upstream kinases of Nm23-H1 such as CKI and Aurora-A/STK15. The second group of proteins acts as downstream effectors for the regulation of specific gene transcriptions, GTP-binding protein functions, and signal transduction in Erk signal cascade. The third group of proteins can be classified as bi-directionally influencing binding partners of Nm23-H1. As a result, the interactions with Nm23-H1 and binding partners have implications in the biochemical characterization involved in metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Hag Dong Kim
- School of Life Sciences & Biotechnology, and BioInstitute, Korea University, Seoul 136-713, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Rumjahn SM, Yokdang N, Baldwin KA, Thai J, Buxton ILO. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis. Br J Cancer 2009; 100:1465-70. [PMID: 19367276 PMCID: PMC2694426 DOI: 10.1038/sj.bjc.6604998] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
P2Y purine nucleotide receptors (P2YRs) promote endothelial cell tubulogenesis through breast cancer cell-secreted nucleoside diphosphate kinase (NDPK). We tested the hypothesis that activated P2Y(1) receptors transactivate vascular endothelial growth factor receptor (VEGFR-2) in angiogenic signaling. P2Y(1)R stimulation (10 microM 2-methyl-thio-ATP (2MS-ATP)) of angiogenesis is suppressed by the VEGFR-2 tyrosine kinase inhibitor, SU1498 (1 microM). Phosphorylation of VEGFR-2 by 0.0262 or 2.62 nM VEGF was comparable with 0.01 or 10 microM 2MS-ATP stimulation of the P2Y(1)R. 2MS-ATP, and VEGF stimulation increased tyrosine phosphorylation at tyr1175. 2MS-ATP (0.1-10 microM) also stimulated EC tubulogenesis in a dose-dependent manner. The addition of sub-maximal VEGF (70 pM) in the presence of increasing concentrations of 2MS-ATP yielded additive effects at 2MS-ATP concentrations <3 microM, whereas producing saturated and less than additive effects at > or =3 microM. We propose that the VEGF receptor can be activated in the absence of VEGF, and that the P2YR-VEGFR2 interaction and resulting signal transduction is a critical determinant of vascular homoeostasis and tumour-mediated angiogenesis.
Collapse
Affiliation(s)
- S M Rumjahn
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
41
|
Youn B, Kim HD, Kim J. Nm23-H1/nucleoside diphosphate kinase as a key molecule in breast tumor angiogenesis. Expert Opin Ther Targets 2009; 12:1419-30. [PMID: 18851697 DOI: 10.1517/14728222.12.11.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Neo-angiogenesis seems to be a critical feature of breast tumor growth, migration and metastasis. Inhibition of angiogenesis may provide information regarding treatment. Since angiogenesis is the result of complex processes, controlled by several angiogenic (pro- and/or -anti) factors and their receptors, multiple ways to prevent or retrogress tumor-induced angiogenesis have been proposed. The clinically significant activity of bevacizumab and other antiangiogenic treatments have attracted a great deal of interest. OBJECTIVE/METHODS We discuss biological aspects of breast cancer angiogenesis and nucleoside diphosphate kinase (NDPK) as a key molecule in this process. RESULTS/CONCLUSIONS In clinical and experimental trials, it was reported that NDPK is inversely related to breast cancer metastasis and angiogenesis. To inhibit the metastatic potential of cancer cells, Nm23-H1/NDP kinase appears to interact with many proteins involved in cellular signal transduction in angiogenesis and tumorigenesis, and therefore reduces the activation of the extracellular signal-regulated kinase (ERK)/MAPK in response to those signals.
Collapse
Affiliation(s)
- BuHyun Youn
- Division of Biological Sciences, Pusan National University, College of Natural Sciences, Busan, 609-735, Korea
| | | | | |
Collapse
|
42
|
Kim HA, Lee RA, Moon BI, Choe KJ. Ellagic Acid Shows Different Anti-proliferative Effects Between the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. J Breast Cancer 2009. [DOI: 10.4048/jbc.2009.12.2.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| | - Kuk-Jin Choe
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| |
Collapse
|
43
|
Yokdang N, Buxton ND, Buxton ILO. Measurement of human breast tumor cell-secreted shNDPK-B in a murine breast cancer model suggests its role in metastatic progression. PROCEEDINGS OF THE WESTERN PHARMACOLOGY SOCIETY 2009; 52:88-91. [PMID: 20830314 PMCID: PMC2935590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human breast cancers metastasize early in tumorigenesis and distant lesions, though dormant are very likely extant at the time of diagnosis and treatment in the majority of cases. Removal of primary tumors by surgeons as an imperative of the current treatment approach, also removes inhibitory factors secreted by the primary tumor that had maintained the dormancy of the metastases. We have identified a factor secreted by human breast cancer cells that supports the formation of blood vessels and may be a principal early factor supporting the growth and development of metastases in human disease. Here we demonstrate for the first time that this factor, secreted (s) human (h) nucleoside diphosphate kinase type B (shNDPK-B), product of the nm23-h2 gene, can be detected specifically with high sensitivity (50 pg/ml; 2.5 pM) in an ELISA assay of our own design. We further demonstrate that shNDPK-B is released into the circulation in immunocompromized mice carrying the human breast carcinoma cell MDA-MB-231. These data support the hypothesis that shNDPK-B may be responsible for the early events in angiogenesis supporting both primary and metastatic tumor growth and development.
Collapse
Affiliation(s)
- Nucharee Yokdang
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89509
| | - Noah D. Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89509
| | - Iain L. O. Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89509
| |
Collapse
|
44
|
Buxton ILO. Inhibition of Nm23H2 gene product (NDPK-B) by angiostatin, polyphenols and nucleoside analogs. PROCEEDINGS OF THE WESTERN PHARMACOLOGY SOCIETY 2008; 51:30-34. [PMID: 19544670 PMCID: PMC2702708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human breast cancer cells (MDA-MB-435s) secrete a nucleoside diphosphate kinase (NDPK-B) as a phosphoprotein capable of converting diphosphate nucleosides to triphosphate nucleotides for one round in the absence of a phosphoryl donor. Incubation of the partially purified NDPK-B (Nm23-H2 by Western blot) from [gamma32P]Pi-labeled cells with non-radioactive ADP results in the formation of [gamma32P]ATP (Proc. West. Pharmacol. Soc. 44: 61-63, 2001). The presence of a secreted protein that can maintain ATP levels in the vicinity of capillary and lymph vessels may support cancer metastasis in several ways based on the known actions of ATP at P2Y receptors: facilitate intravasation of breast cancer cells that migrate from a solid tumor, support their extravasation at a distal site, and stimulate angiogenesis. The putative role of angiostatin (AS) as an ATP-synthase inhibitor led us to test the notion that AS blocks NDPK-B activity. Addition of commercial AS (kringles 1-4) did not alter enzyme activity. However, AS produced by us and never lyophilized, blocked NDPK activity in a dose-dependent fashion consistent with the notion that extracellular ATP generation by tumor cells may be important to the development of metastases. The ability of 0.5 mg/ml angiostatin to block NDPK-B activity to approximately 75% of control activity compared poorly with the polyphenol inhibitors of. The catechin gallates, theaflavins and ellagic acid inhibited NDPK-B completely with the rank order of potency: EA > theaflavins > EGCG > ECG > PAPS. Our results suggest that the biological activity of angiostatin as a putative metastasis inhibitor may be in part the result of nm23 inhibition and that the production, lyophilization, packaging or storage of commercial angiostatin leads to the alteration of its biological activity against NDPK-B. Ellagic acid is a potent (IC50 = 10.5 microM) NDPK-B inhibitor that may prove useful in elucidating the role of cancer-cell secreted NDPK-B in tumor development.
Collapse
Affiliation(s)
- Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
45
|
Rumjahn SM, Baldwin KA, Buxton ILO. P2y receptor-mediated angiogenesis via vascular endothelial growth factor receptor 2 signaling. PROCEEDINGS OF THE WESTERN PHARMACOLOGY SOCIETY 2007; 50:58-60. [PMID: 18605230 PMCID: PMC3056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pathological as well as physiological angiogenesis is known to be regulated by such factors as nucleotides and Vascular Endothelial Growth Factor (VEGF). Activated P2Y nucleotide receptors have been observed to associate and transactivate VEGF Receptor 2 (VEGFR2), suggesting a cooperation between nucleotide and VEGF signaling in angiogenesis. P2YR mediated VEGFR2 signaling therefore may be important in describing the angiogenic signaling of nucleotides such as ATP. Here, we provide evidence that supports the notion of P2YR-VEGFR2 signaling. The significant angiogenic effect of P2Y1/2 receptor agonists (100 microM ATP and 10 microM 2MS-ATP) on endothelial cell tubulogenesis was suppressed back to near control levels upon addition of 1 microM SU1498 (specific VEGFR2 tyrosine kinase inhibitor). We believe that this P2YR-VEFGR2 signaling is an important component of pathological, as well as physiological angiogenesis.
Collapse
Affiliation(s)
- Sharif M Rumjahn
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | |
Collapse
|