1
|
Gul AR, Bal J, Xu P, Ghosh S, Yun T, Kailasa SK, Kim YH, Park TJ. Serodiagnosis of multiple cancers using an extracellular protein kinase A autoantibody-based lateral flow platform. Biosens Bioelectron 2024; 246:115902. [PMID: 38056339 DOI: 10.1016/j.bios.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Extracellular protein kinase A autoantibody (ECPKA-AutoAb) has been suggested as a universal cancer biomarker due to its higher amounts in serum of several types of cancer patients than that of normal individuals. Herein, we first developed a lateral flow immunoassay (LFIA) tool, using a sandwich format, toward ECPKA-AutoAb in human serum. For this format, 3G2 as a capture antibody was identified using hybridoma technique and a series of screenings where it showed superior capacity to recognize Enzo PKA catalytic subunit alpha (Cα), compared to other PKA antibodies and antigens. Using these components, we performed sandwich ELISA toward a mimic and real sample of ECPKA-AutoAb. As per the results, limit of detection (LOD) was found to be 135 ng/mL and ECPKA-AutoAb levels were higher in various cancer patients than in normal individuals like previous studies. Based on these results, we applied this sandwich format into LFIA tool and found that the LOD of the fabricated LFIA tool showed about 3.8 ng/mL using spiked PKA-Ab, which is significantly improved compared to the LOD of sandwich ELISA. Also, the developed LFIA tool demonstrated a remarkable ability to detect significant differences in ECPKA-AutoAb levels between normal and cancer patients within 15 min, showing a potential for point-of-care (PoC) detection. One interesting point is that our LFIA strip contains an additional conjugation pad II, named because of its position behind the conjugation pad, in which PKA Cα is dried, enabling a sandwich format.
Collapse
Affiliation(s)
- Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jyotiranjan Bal
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ping Xu
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Taehyun Yun
- KNAX Ltd., D-1414, (Hanam Techno Valley U1 Center) 947, Hanam-daero, Hanam-si, Gyeonggi-do, 12982, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujrat, India
| | - Yeong Hyeock Kim
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
De Rasmo D, Cormio A, Cormio G, Signorile A. Ovarian Cancer: A Landscape of Mitochondria with Emphasis on Mitochondrial Dynamics. Int J Mol Sci 2023; 24:ijms24021224. [PMID: 36674740 PMCID: PMC9865899 DOI: 10.3390/ijms24021224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer (OC) represents the main cause of death from gynecological malignancies in western countries. Altered cellular and mitochondrial metabolism are considered hallmarks in cancer disease. Several mitochondrial aspects have been found altered in OC, such as the oxidative phosphorylation system, oxidative stress and mitochondrial dynamics. Mitochondrial dynamics includes cristae remodeling, fusion, and fission processes forming a dynamic mitochondrial network. Alteration of mitochondrial dynamics is associated with metabolic change in tumour development and, in particular, the mitochondrial shaping proteins appear also to be responsible for the chemosensitivity and/or chemoresistance in OC. In this review a focus on the mitochondrial dynamics in OC cells is presented.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Gennaro Cormio
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
3
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
4
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
5
|
Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol 2020; 9:32. [PMID: 33292604 PMCID: PMC7684908 DOI: 10.1186/s40164-020-00191-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is the first discovered second messenger, which plays pivotal roles in cell signaling, and regulates many physiological and pathological processes. cAMP can regulate the transcription of various target genes, mainly through protein kinase A (PKA) and its downstream effectors such as cAMP-responsive element binding protein (CREB). In addition, PKA can phosphorylate many kinases such as Raf, GSK3 and FAK. Aberrant cAMP-PKA signaling is involved in various types of human tumors. Especially, cAMP signaling may have both tumor-suppressive and tumor-promoting roles depending on the tumor types and context. cAMP-PKA signaling can regulate cancer cell growth, migration, invasion and metabolism. This review highlights the important roles of cAMP-PKA-CREB signaling in tumorigenesis. The potential strategies to target this pathway for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Hongying Zhang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Bhang DH, Choi US, Kim BG, Lee SN, Lee S, Roh HS, Chung WJ, Jeon KO, Song WJ, Youn HY, Baek KH. Characteristics of extracellular cyclic AMP-dependent protein kinase as a biomarker of cancer in dogs. Vet Comp Oncol 2017; 15:1585-1589. [PMID: 28185388 DOI: 10.1111/vco.12304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Early and proper diagnosis of cancer is the most critical factor for the survival and treatment of veterinary cancer patients. In this study, we evaluated extracellular cyclic AMP-dependent protein kinase A (ECPKA) level in serum as a useful cancer biomarker in dogs. METHODS ECPKA levels were detected in sera from dogs with cancers (n = 48), benign tumours (n = 18), and non-tumour diseases (n = 102) as well as healthy control dogs (n = 54) utilizing enzyme-linked immunosorbent assay (ELISA). RESULTS Sera from dogs bearing various types of cancer exhibited markedly increased levels of ECPKA by up to 7.1-, 8.8-, and 10.9-fold compared with those from dogs harbouring benign tumours, dogs with non-tumour diseases, and healthy control dogs, respectively (P < .0001). In addition, serum ECPKA level did not show statistically significant correlation with gender, breed, or age of dogs or their non-cancerous disease conditions. CONCLUSION Our data strongly propose that detection of serum ECPKA level is a potential and specific diagnostic tool for cancer in dogs.
Collapse
Affiliation(s)
- D H Bhang
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - U S Choi
- Department of Veterinary Clinical Pathology and Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - B G Kim
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - S-N Lee
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - S Lee
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - H-S Roh
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - W-J Chung
- Ray Veterinary Medical Center, Seoul, Republic of Korea
| | - K O Jeon
- Department of Internal Veterinary Medicine, BK21 Plus Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - W J Song
- Department of Internal Veterinary Medicine, BK21 Plus Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - H-Y Youn
- Department of Internal Veterinary Medicine, BK21 Plus Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - K-H Baek
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Hussain M, Tang F, Liu J, Zhang J, Javeed A. Dichotomous role of protein kinase A type I (PKAI) in the tumor microenvironment: a potential target for 'two-in-one' cancer chemoimmunotherapeutics. Cancer Lett 2015; 369:9-19. [PMID: 26276720 DOI: 10.1016/j.canlet.2015.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
An emerging trend in cancer chemoimmunotherapeutics is to develop 'two-in-one' therapies, which directly inhibit tumor growth and progression, as well as enhance anti-tumor immune surveillance. Protein kinase A (PKA) is a cAMP-dependent protein kinase that mediates signal transduction of G-protein coupled receptors (GPCRs). The regulatory subunit of PKA exists in two isoforms, RI and RII, which distinguish the PKA isozymes, PKA type I (PKAI) and PKA type II (PKAII). The differential expression of both PKA isozymes has long been linked to growth regulation and differentiation. RI/PKAI is particularly implicated in cellular proliferation and neoplastic transformation. Emerging experimental and pre-clinical data also indicate that RI/PKAI plays a key role in tumor-induced immune suppression. More briefly, RI/PKAI possesses a dichotomous role in the tumor microenvironment: not only contributes to tumor growth and progression, but also takes part in tumor-induced suppression of the innate and adaptive arms of anti-tumor immunosurveillance. This review specifically discusses this dichotomous role of RI/PKAI with respect to 'two-in-one' chemoimmunotherapeutic manipulation. The reviewed experimental and pre-clinical data provide the proof of concept validation that RI/PKAI may be regarded as an attractive target for a new, single-targeted, 'two hit' chemoimmunotherapeutic approach against cancer.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Fei Tang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Aqeel Javeed
- Immunopharmacology Laboratory, Department of Pharmacology & Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling. Oncotarget 2015; 5:7549-62. [PMID: 25277189 PMCID: PMC4202143 DOI: 10.18632/oncotarget.2273] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.
Collapse
|
9
|
Targeting protein kinase A in cancer therapy: an update. EXCLI JOURNAL 2014; 13:843-55. [PMID: 26417307 PMCID: PMC4464521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022]
Abstract
Protein Kinase A (PKA) is a well known member of the serine-threonin protein kinase superfamily. PKA, also known as cAMP-dependent protein kinase, is a multi-unit protein kinase that mediates signal transduction of G-protein coupled receptors through its activation upon cAMP binding. The widespread expression of PKA subunit genes, and the myriad of mechanisms by which cAMP is regulated within a cell suggest that PKA signaling is one of extreme importance to cellular function. It is involved in the control of a wide variety of cellular processes from metabolism to ion channel activation, cell growth and differentiation, gene expression and apoptosis. Importantly, since it has been implicated in the initiation and progression of many tumors, PKA has been proposed as a novel biomarker for cancer detection, and as a potential molecular target for cancer therapy. Here, we highlight some features of cAMP/PKA signaling that are relevant to cancer biology and present an update on targeting PKA in cancer therapy.
Collapse
|
10
|
Brown SH, Cheng CY, Saldanha SA, Wu J, Cottam HB, Sankaran B, Taylor SS. Implementing fluorescence anisotropy screening and crystallographic analysis to define PKA isoform-selective activation by cAMP analogs. ACS Chem Biol 2013; 8:2164-72. [PMID: 23978166 PMCID: PMC3827627 DOI: 10.1021/cb400247t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates many proteins, most notably cAMP-dependent protein kinase (PKA). PKA holoenzymes (comprised of two catalytic (C) and two regulatory (R) subunits) regulate a wide variety of cellular processes, and its functional diversity is amplified by the presence of four R-subunit isoforms, RIα, RIβ, RIIα, and RIIβ. Although these isoforms all respond to cAMP, they are functionally nonredundant and exhibit different biochemical properties. In order to understand the functional differences between these isoforms, we screened cAMP derivatives for their ability to selectively activate RI and RII PKA holoenzymes using a fluorescence anisotropy assay. Our results indicate that RIα holoenzymes are selectively activated by C8-substituted analogs and RIIβ holoenzymes by N6-substituted analogs, where HE33 is the most prominent RII activator. We also solved the crystal structures of both RIα and RIIβ bound to HE33. The RIIβ structure shows the bulky aliphatic substituent of HE33 is fully encompassed by a pocket comprising of hydrophobic residues. RIα lacks this hydrophobic lining in Domain A, and the side chains are displaced to accommodate the HE33 dipropyl groups. Comparison between cAMP-bound structures reveals that RIIβ, but not RIα, contains a cavity near the N6 site. This study suggests that the selective activation of RII over RI isoforms by N6 analogs is driven by the spatial and chemical constraints of Domain A and paves the way for the development of potent noncyclic nucleotide activators to specifically target PKA iso-holoenyzmes.
Collapse
Affiliation(s)
- Simon H.J. Brown
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037–0654,School of Health Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Cecilia Y. Cheng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037–0654
| | - S. Adrian Saldanha
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037–0654
| | - Jian Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037–0654
| | - Howard B Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037–0654
| | - Banumathi Sankaran
- Lawrence Berkeley National Lab, Advanced Light Source, Berkeley, CA 94720
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037–0654,Department of Pharmacology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92037–0654,To whom correspondence should be addressed: . Telephone: (858) 534-3677. Fax: (858) 534-8193
| |
Collapse
|
11
|
Tsigginou A, Bimpaki E, Nesterova M, Horvath A, Boikos S, Lyssikatos C, Papageorgiou C, Dimitrakakis C, Rodolakis A, Stratakis C, Antsaklis A. PRKAR1A gene analysis and protein kinase A activity in endometrial tumors. Endocr Relat Cancer 2012; 19:457-62. [PMID: 22461635 PMCID: PMC4034123 DOI: 10.1530/erc-11-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PRKAR1A codes for the type 1a regulatory subunit (RIα) of the cAMP-dependent protein kinase A (PKA), an enzyme with an important role in cell cycle regulation and proliferation. PKA dysregulation has been found in various tumors, and PRKAR1A-inactivating mutations have been reported in mostly endocrine neoplasias. In this study, we investigated PKA activity and the PRKAR1A gene in normal and tumor endometrium. Specimens were collected from 31 patients with endometrial cancer. We used as controls 41 samples of endometrium that were collected from surrounding normal tissues or from women undergoing gynecological operations for other reasons. In all samples, we sequenced the PRKAR1A-coding sequence and studied PKA subunit expression; we also determined PKA activity and cAMP binding. PRKAR1A mutations were not found. However, PKA regulatory subunit protein levels, both RIα and those of regulatory subunit type 2b (RIIβ), were lower in tumor samples; cAMP binding was also lower in tumors compared with normal endometrium (P<0.01). Free PKA activity was higher in tumor samples compared with that of control tissue (P<0.01). There are significant PKA enzymatic abnormalities in tumors of the endometrium compared with surrounding normal tissue; as these were not due to PRKAR1A mutations, other mechanisms affecting PKA function ought to be explored.
Collapse
Affiliation(s)
- A. Tsigginou
- 1st Department of Obstetrics & Gynecology, Athens University Medical School, Alexandra Hospital, Athens, Greece
| | - E. Bimpaki
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
| | - M. Nesterova
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
| | - A. Horvath
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
| | - S. Boikos
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
| | - C. Lyssikatos
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
| | - C. Papageorgiou
- 1st Department of Obstetrics & Gynecology, Athens University Medical School, Alexandra Hospital, Athens, Greece
| | - C. Dimitrakakis
- 1st Department of Obstetrics & Gynecology, Athens University Medical School, Alexandra Hospital, Athens, Greece
- Developmental Endocrinology Branch, NICHD, NIH, CRC, Bethesda, MD, USA
| | - A. Rodolakis
- 1st Department of Obstetrics & Gynecology, Athens University Medical School, Alexandra Hospital, Athens, Greece
| | - C.A. Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), NIH, Bethesda, MD20892, USA
- To whom correspondence should be addressed: Constantine Stratakis, MD, D(med)Sci Section on Endocrinology & Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), NICHD, NIH, Building 10, CRC, Room 1-3330, 10 Center Dr., MSC1103, Bethesda, Maryland 20892, tel.. 301-496-4686/496-6683, fax 301-301-402-0574/480-0378,
| | - A. Antsaklis
- 1st Department of Obstetrics & Gynecology, Athens University Medical School, Alexandra Hospital, Athens, Greece
| |
Collapse
|
12
|
Rodriguez FJ, Stratakis CA, Evans DG. Genetic predisposition to peripheral nerve neoplasia: diagnostic criteria and pathogenesis of neurofibromatoses, Carney complex, and related syndromes. Acta Neuropathol 2012; 123:349-67. [PMID: 22210082 DOI: 10.1007/s00401-011-0935-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/12/2011] [Accepted: 12/23/2011] [Indexed: 02/07/2023]
Abstract
Neoplasms of the peripheral nerve sheath represent essential clinical manifestations of the syndromes known as the neurofibromatoses. Although involvement of multiple organ systems, including skin, central nervous system, and skeleton, may also be conspicuous, peripheral nerve neoplasia is often the most important and frequent cause of morbidity in these patients. Clinical characteristics of neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) have been extensively described and studied during the last century, and the identification of mutations in the NF1 and NF2 genes by contemporary molecular techniques have created a separate multidisciplinary field in genetic medicine. In schwannomatosis, the most recent addition to the neurofibromatosis group, peripheral nervous system involvement is the exclusive (or almost exclusive) clinical manifestation. Although the majority of cases of schwannomatosis are sporadic, approximately one-third occur in families and a subset of these has recently been associated with germline mutations in the tumor suppressor gene SMARCB1/INI1. Other curious syndromes that involve the peripheral nervous system are associated with predominant endocrine manifestations, and include Carney complex and MEN2b, secondary to inactivating mutations in the PRKAR1A gene in a subset, and activating mutations in RET, respectively. In this review, we provide a concise update on the diagnostic criteria, pathology and molecular pathogenesis of these enigmatic syndromes in relation to peripheral nerve sheath neoplasia.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Division of Neuropathology, Department of Pathology, Johns Hopkins University, 720 Rutland Avenue, Ross Building, 512B, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
13
|
McKenzie AJ, Campbell SL, Howe AK. Protein kinase A activity and anchoring are required for ovarian cancer cell migration and invasion. PLoS One 2011; 6:e26552. [PMID: 22028904 PMCID: PMC3197526 DOI: 10.1371/journal.pone.0026552] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show--for the first time--that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J. McKenzie
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Shirley L. Campbell
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
14
|
Follin-Arbelet V, Hofgaard PO, Hauglin H, Naderi S, Sundan A, Blomhoff R, Bogen B, Blomhoff HK. Cyclic AMP induces apoptosis in multiple myeloma cells and inhibits tumor development in a mouse myeloma model. BMC Cancer 2011; 11:301. [PMID: 21767374 PMCID: PMC3161033 DOI: 10.1186/1471-2407-11-301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 07/18/2011] [Indexed: 01/29/2023] Open
Abstract
Background Multiple myeloma is an incurable disease requiring the development of effective therapies which can be used clinically. We have elucidated the potential for manipulating the cAMP signaling pathway as a target for inhibiting the growth of multiple myeloma cells. Methods As a model system, we primarily used the murine multiple myeloma cell line MOPC315 which can be grown both in vivo and in vitro. Human multiple myeloma cell lines U266, INA-6 and the B-cell precursor acute lymphoblastic leukemia cell line Reh were used only for in vitro studies. Cell death was assessed by flow cytometry and western blot analysis after treatment with cAMP elevating agents (forskolin, prostaglandin E2 and rolipram) and cAMP analogs. We followed tumor growth in vivo after forskolin treatment by imaging DsRed-labelled MOPC315 cells transplanted subcutaneously in BALB/c nude mice. Results In contrast to the effect on Reh cells, 50 μM forskolin more than tripled the death of MOPC315 cells after 24 h in vitro. Forskolin induced cell death to a similar extent in the human myeloma cell lines U266 and INA-6. cAMP-mediated cell death had all the typical hallmarks of apoptosis, including changes in the mitochondrial membrane potential and cleavage of caspase 3, caspase 9 and PARP. Forskolin also inhibited the growth of multiple myeloma cells in a mouse model in vivo. Conclusions Elevation of intracellular levels of cAMP kills multiple myeloma cells in vitro and inhibits development of multiple myeloma in vivo. This strongly suggests that compounds activating the cAMP signaling pathway may be useful in the field of multiple myeloma.
Collapse
Affiliation(s)
- Virginie Follin-Arbelet
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Alternative promoter usage and differential expression of multiple transcripts of mouse Prkar1a gene. Mol Cell Biochem 2011; 357:263-74. [DOI: 10.1007/s11010-011-0897-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/19/2011] [Indexed: 01/08/2023]
|
16
|
Stakkestad Ø, Larsen ACV, Kvissel AK, Eikvar S, Ørstavik S, Skålhegg BS. Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform. BMC BIOCHEMISTRY 2011; 12:7. [PMID: 21303506 PMCID: PMC3060122 DOI: 10.1186/1471-2091-12-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/08/2011] [Indexed: 12/16/2022]
Abstract
Background Protein kinase A type I (PKAI) and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R) subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB) in vivo. Results We show that PKAI when expressed at equal levels as PKAII was significantly (p < 0.01) more efficient in inducing Cre-luciferace activity at saturating concentrations of cAMP. This result was obtained regardless of catalytic subunit identity. Conclusion We suggest that differential effects of PKAI and PKAII in inducing Cre-luciferace activity depend on R and not C subunit identity.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, P,O, Box 1046 Blindern, N- 0316 OSLO, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Naviglio S, Di Gesto D, Illiano F, Chiosi E, Giordano A, Illiano G, Spina A. Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J Cell Physiol 2010; 225:801-9. [PMID: 20589829 DOI: 10.1002/jcp.22288] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT-5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA-MB-231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3. Interestingly, intracellular cAMP elevation upon forskolin pretreatment completely abrogated both ERK1/2 and STAT3 phosphorylation in response to leptin and was accompanied by a consistent CREB phosphorylation. Notably, leptin plus forskolin cotreatments resulted in a strong decrease of both PKA regulatory RIα and catalytic subunits protein levels. Importantly, pretreatment with the PKA inhibitor KT-5720 blocked the forskolin-induced CREB phosphorylation and prevented both the inhibition by forskolin of leptin-induced ERK1/2 and STAT3 phosphorylation and the PKA subunits down-regulation induced by the combination of leptin and forskolin. Altogether, our results indicate that leptin-dependent signaling pathways are influenced by cAMP elevation and identify PKA as relevantly involved in the pharmacological antitumor interaction between leptin and cAMP elevating drugs in MDA-MB-231 cells. We propose a molecular model by which PKA confers its effects. Potential therapeutic applications by our data will be discussed.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Carney complex (CNC) is a rare multiple familial neoplasia syndrome that is characterized by multiple types of skin tumors and pigmented lesions, endocrine neoplasms, myxomas and schwannomas and is inherited in an autosomal dominant manner. Clinical and pathologic diagnostic criteria are well established. Over 100 pathogenic variants in the regulatory subunit type 1A (RI-A) of the cAMP-dependent protein kinase (PRKAR1A) have been detected in approximately 60% of CNC patients, most leading to R1A haploinsufficiency. Other CNC-causing genes remain to be identified. Recent studies provided some genotype-phenotype correlations in CNC patients carrying PRKAR1A-inactivating mutations, which provide useful information for genetic counseling and/or prognosis; however, CNC remains a disease with significant clinical heterogeneity. Recent mouse and in vitro studies have shed light into how R1A haploinsufficiency causes tumors. PRKAR1A defects appear to be weak tumorigenic signals for most tissues; Wnt signaling activation and cell cycle dysregulation appear to be important mediators of the tumorigenic effect of a defective R1A.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- Pediatric Endocrinology Unit, Groupe Hospitalier Cochin-Saint Vincent de Paul, Paris Descartes University, 82, Avenue Denfert Rochereau, 75014 Paris, France.
| | | |
Collapse
|
19
|
Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs 2010; 19:117-31. [PMID: 20001559 DOI: 10.1517/13543780903485642] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD For many cancers, there has been a shift from management with traditional, nonspecific cytotoxic chemotherapies to treatment with molecule-specific targeted therapies that are used either alone or in combination with traditional chemotherapy and radiation therapy. Accumulating data suggest that multi-targeted agents may produce greater benefits than those observed with single-targeted therapies, may have acceptable tolerability profiles, and may be active against a broader range of tumour types. Thus, regulation of cyclic nucleotide signalling is properly regarded as a composite of multiple component pathways involved in diverse aspects of tumour cell function. The impairment of cAMP and/or cGMP generation by overexpression of PDE isoforms that has been described in various cancer pathologies, and the effects of PDE inhibitors in tumour models in vitro and in vivo, may offer promising insight into future cancer treatments because of the numerous advantages of PDE inhibitors. AREAS COVERED IN THIS REVIEW In this review, we focus on the expression and regulation of cyclic nucleotide phosphodiesterases (PDEs) in tumour progression and provide evidence that PDE inhibitors may be effective agents for treating cancer; the review covers literature from the past several years. WHAT THE READER WILL GAIN PDEs have been studied in a variety of tumours; data have suggested that the levels of PDE activity are elevated and, therefore, the ratio of cGMP to cAMP is affected. In addition, PDE inhibitors may be potential targets for tumour cell growth inhibition and induction of apoptosis. This review explores the prospects of targeting PDEs with therapeutic agents for cancer, as well as the shortcomings of this approach such as dose-limiting side effects, toxicity/efficacy ratio and selectivity towards tumour tissue. In addition, it includes opinions and suggestion for developing PDE inhibition for cancer treatment from initial concept to potential therapeutic application and final relevance in clinical use. TAKE HOME MESSAGE Impaired cAMP and/or cGMP generation upon overexpression of PDE isoforms has been described in various cancer pathologies. Inhibition of selective PDE isoforms, which raises the levels of intracellular cAMP and/or cGMP, induces apoptosis and cell cycle arrest in a broad spectrum of tumour cells and regulates the tumour microenvironment. Therefore, the development and clinical application of inhibitors specific for individual PDE isoenzymes may selectively restore normal intracellular signalling, providing antitumour therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Rajkumar Savai
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodelling, Bad Nauheim, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Naviglio S, Caraglia M, Abbruzzese A, Chiosi E, Di Gesto D, Marra M, Romano M, Sorrentino A, Sorvillo L, Spina A, Illiano G. Protein kinase A as a biological target in cancer therapy. Expert Opin Ther Targets 2009; 13:83-92. [PMID: 19063708 DOI: 10.1517/14728220802602349] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND cAMP is a second messenger that plays a role in intracellular signal transduction of various stimuli. a major function of cAMP in eukaryotes is activation of cAMP-dependent protein kinase (PKA). PKA is the best understood member of the serine-threonine protein kinase superfamily, and is involved in the control of a variety of cellular processes. since it has been implicated in the initiation and progression of many tumors, PKA has been suggested as a novel molecular target for cancer therapy. OBJECTIVE/METHODS Here, after describing some features of cAMP/PKA signaling that are relevant to cancer biology, we review targeting of PKA in cancer therapy, also discussing PKA as a biomarker for cancer detection and monitoring of therapy. RESULTS/CONCLUSIONS PKA is an increasingly relevant biological target in the therapy and management of cancer.
Collapse
Affiliation(s)
- Silvio Naviglio
- Second University of Naples, Medical School, Department of Biochemistry and Biophysics, Via L. De Crecchio 7, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vincent-Dejean C, Cazabat L, Groussin L, Perlemoine K, Fumey G, Tissier F, Bertagna X, Bertherat J. Identification of a clinically homogenous subgroup of benign cortisol-secreting adrenocortical tumors characterized by alterations of the protein kinase A (PKA) subunits and high PKA activity. Eur J Endocrinol 2008; 158:829-39. [PMID: 18505904 DOI: 10.1530/eje-07-0819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The cAMP/protein kinase A (PKA) pathway plays an important role in endocrine tumorigenesis. PKA is a heterotetramer with two regulatory subunits (four genes: PRKAR1A, PRKAR1B, PRKAR2A, PRKAR2B) and two catalytic subunits. Inactivating PRKAR1A mutations have been observed in Carney complex and a subset of adrenocortical tumors (ACT). This study was designed to search for other alterations of PKA in ACT, and to establish their correlation with the clinical characteristics. METHODS In this study, 35 ACT (10 non-secreting adrenocortical adenomas (ACA-NS), 13 cortisol-secreting adenomas (ACA-S), and 12 malignant s (ACC)) were studied. PKA subunits were studied by western blot and RT-qPCR. The PKA activity was measured. RESULTS A subgroup of ACA-S with a 96% R2B protein decrease by comparison with normal adrenal (4.1%+/-4 vs 100%+/-19, P<0.001) was identified, ACA-S2 (6/13). By contrast, no differences were observed in ACC and ACA-NS. The level of R1A mRNA was decreased in ACA-S (P<0.001), but not the level of R2B mRNA. No mutation of the R2B gene was detected in ACA-S2. The ACA-S2 group with loss of R2B protein showed a threefold higher basal PKA activity than the ACA with normal R2B protein (3.37+/-0.31 vs 1.00+/-0.20, P<0.0001). The ACA-S2 tumors with the loss of the R2B protein presented a homogenous phenotype and were all small benign cortisol-secreting tumors. CONCLUSION This loss of PRKAR2B protein due to a post-transcriptional mechanism in ACA-S is a new mechanism of cAMP pathway dysregulation in adrenocortical tumorigenesis. It defines a new subtype of secreting adenomas with high basal PKA activity presenting a homogenous clinical phenotype.
Collapse
Affiliation(s)
- C Vincent-Dejean
- INSERM U567, CNRS UMR8104, Endocrinology, Metabolism and Cancer Department, Institut Cochin, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mantovani G, Lania AG, Bondioni S, Peverelli E, Pedroni C, Ferrero S, Pellegrini C, Vicentini L, Arnaldi G, Bosari S, Beck-Peccoz P, Spada A. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: relationship with cell proliferation. Exp Cell Res 2007; 314:123-30. [PMID: 17904549 DOI: 10.1016/j.yexcr.2007.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/29/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
Abstract
The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n=16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n=5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.
Collapse
Affiliation(s)
- G Mantovani
- Department of Medical Sciences, University of Milan, Fondazione Policlinico IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang H, Li M, Lin W, Wang W, Zhang Z, Rayburn ER, Lu J, Chen D, Yue X, Shen F, Jiang F, He J, Wei W, Zeng X, Zhang R. Extracellular activity of cyclic AMP-dependent protein kinase as a biomarker for human cancer detection: distribution characteristics in a normal population and cancer patients. Cancer Epidemiol Biomarkers Prev 2007; 16:789-95. [PMID: 17416772 DOI: 10.1158/1055-9965.epi-06-0367] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The overexpression of cyclic AMP (cAMP)-dependent protein kinase (PKA) has been reported in patients with cancer, and PKA inhibitors have been tested in clinical trials as a novel cancer therapy. The present study was designed to characterize the population distribution of extracellular activity of cAMP-dependent protein kinase (ECPKA) and its potential value as a biomarker for cancer detection and monitoring of cancer therapy. The population distribution of ECPKA activity was determined in serum samples from a Chinese population consisting of a total of 603 subjects (374 normal healthy volunteers and 229 cancer patients). The serum ECPKA was determined by a validated sensitive radioassay, and its diagnostic values (including positive and negative predictive values) were analyzed. The majority of normal subjects (>70%) have undetectable or very low levels of serum ECPKA. In contrast, the majority of cancer patients (>85%) have high levels of ECPKA. The mean ECPKA activity in the sera of cancer patients was 10.98 units/mL, 5-fold higher than that of the healthy controls (2.15 units/mL; P < 0.001). In both normal subjects and cancer patients, gender and age had no significant influence on the serum ECPKA. Among factors considered, logistic analysis revealed that the disease (cancer) is the only factor contributing to the elevation of ECPKA activity in cancer patients. In conclusion, ECPKA may function as a cancer marker for various human cancers and can be used in cancer detection and for monitoring response to therapy with other screening or diagnostic techniques.
Collapse
Affiliation(s)
- Hui Wang
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, VH 113, Box 600, 1670 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to comment on the current findings on Carney complex, a dominantly inherited disease and a unique multiple endocrine neoplasia syndrome. RECENT FINDINGS Sequencing of the PRKAR1A gene in more than 150 kindreds has revealed a number of pathogenic mutations; in more than 90% of the cases, the sequence change was predicted to lead to a premature stop codon and, thus, mutant mRNAs were subject to nonsense-mediated mRNA decay. In Carney complex syndrome cells carrying these mutations, protein kinase A activity is irregularly stimulated by cAMP. Mutations that did not lead to a premature stop codon have also been described; these were also associated with abnormal protein kinase A activity. Animal models of the disease have been recently developed; they reproduced some of the stigmata of Carney complex syndrome but not all. Genetic testing of patients' family members has been introduced in recent years, leading to early detection and a better overall prognosis. SUMMARY New treatments have yet to be applied; the elucidation of the molecular pathways regulated by PRKAR1A holds the promise of leading to molecularly designed therapies.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology & Genetics (SEGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Kvissel AK, Ramberg H, Eide T, Svindland A, Skålhegg BS, Taskén KA. Androgen dependent regulation of protein kinase A subunits in prostate cancer cells. Cell Signal 2007; 19:401-9. [PMID: 16949795 DOI: 10.1016/j.cellsig.2006.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 11/28/2022]
Abstract
Neuroendocrine (NE) cells may play a role in prostate cancer progression. Both androgen deprivation and cAMP are well known inducers of NE differentiation (NED) in the prostate. Gene-expression profiling of LNCaP cells, incubated in androgen stripped medium, showed that the Cbeta isoform of PKA is up-regulated during NE differentiation. Furthermore, by using semi-quantitative RT-PCR and immunoblotting analysis, we observed that the Cbeta splice variants are differentially regulated during this process. Whereas the Cbeta2 splice variant is down-regulated in growth arrested LNCaP cells, the Cbeta1, Cbeta3 and Cbeta4 variants, as well as the RIIbeta subunit of PKA, are induced in NE-like LNCaP cells. The opposite effect of Cbeta expression could be mimicked by androgen stimulation, implying the Cbeta gene of PKA as a putative new target gene for the androgen receptor in prostate cancer. Moreover, to investigate expression of PKA subunits during prostate cancer progression, we did immunoblotting of several prostatic cell lines and normal and tumor tissue from prostate cancer patients. Interestingly, multiple Cbeta subunits were also observed in human prostate specimens, and the Cbeta2 variant was up-regulated in tumor cells. In conclusion, it seems that the Cbeta isoforms play different roles in proliferation and differentiation and could therefore be potential markers for prostate cancer progression.
Collapse
|
26
|
Loilome W, Yongvanit P, Wongkham C, Tepsiri N, Sripa B, Sithithaworn P, Hanai S, Miwa M. Altered gene expression in Opisthorchis viverrini-associated cholangiocarcinoma in hamster model. Mol Carcinog 2006; 45:279-87. [PMID: 16550611 DOI: 10.1002/mc.20094] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholangiocarcinoma (CCA) induced by liver fluke (Opisthorchis viverrini, Ov) infection is one of the most common and serious disease in northeast Thailand. To elucidate the molecular mechanism of cholangiocarcinogenesis induced by Ov infection, we employed a hamster model of CCA induced by Ov and N-nitrosodimethylamine and analyzed candidate genes involved in CCA using fluorescence differential display-PCR. Of 149 differentially amplified bands we identified, the upregulation of 23 transcripts and downregulation of 1 transcript related to CCA hamsters were confirmed by a reverse northern macroarray blot. The upregulated genes include signal transduction protein kinase A regulatory subunit Ialpha (Prkar1a), myristoylated alanine-rich protein kinase C substrate, transcriptional factor LIM-4-only domain, oxysterol-binding protein involved in lipid metabolism, splicing regulatory protein 9, ubiquitin conjugating enzyme involved in protein degradation, beta tubulin, beta actin, and collagen type VI. Quantitative real-time PCR confirmed that the expression of Prkar1a was significantly higher in CCA and its precursor lesion when compared with normal liver and normal gall bladder epithelia (P<0.05). Prkar1a expression tended to increase along with the progression of biliary transformation from hyperplasia and precancerous lesions to carcinoma. These findings contribute to our understanding of the processes involved in the molecular carcinogenesis of CCA in order to provide a unique perspective on the development of new chemotherapeutics in future.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Carney complex is a genetic condition in which affected individuals develop benign tumours in various tissues, including the heart. Most individuals with Carney complex have a mutation in the PRKAR1A gene, which encodes the regulatory R1alpha subunit of protein kinase A - a significant component of the cyclic-AMP signalling pathway. Genetically engineered mutant Prkar1a mouse models show an increased propensity to develop tumours, and have established a role for R1alpha in initiating tumour formation and, potentially, in maintaining cell proliferation. Ongoing investigations are exploring the intersection of R1alpha-dependent cell signalling with other gene products such as perinatal myosin, mutation of which can also cause cardiac myxomas.
Collapse
Affiliation(s)
- David Wilkes
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, 525 East 68th Street, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Rayburn E, Wang W, Zhang R, Wang H. Antisense approaches in drug discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2006; 63:227-74. [PMID: 16265883 DOI: 10.1007/3-7643-7414-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elizabeth Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, VH 112, Box 600, 1670 University Blvd., Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Carney complex (CNC) is a unique multiple endocrine neoplasia syndrome (MIM 160980) which is characterized by unusual biochemical features (chronic hypersomatotropinemia and paradoxical responses of cortisol production to glucocorticoids) and multi-tissue involvement. The gene coding for the protein kinase A (PKA) type 1alpha regulatory subunit, PRKAR1A, had been mapped to 17q22-24, one of the genetic loci involved in CNC, and allelic analysis using probes from this chromosomal region revealed consistent changes in CNC tumors. Sequencing of the PRKAR1A gene in over 100 kindreds showed a number of mutations; in almost all cases, the sequence change was predicted to lead to a premature stop codon, and mutant mRNAs were subject to nonsense-mediated mRNA decay. In CNC cells, PKA activity assays showed increased stimulation by cAMP. Few mutations that did not lead to a premature stop codon have been described; they are also associated with increased PKA activity. PRKAR1A has been investigated in sporadic endocrine tumors; it does not appear to be mutated in pituitary adenomas, but both thyroid and adrenal neoplasms have been found to harbor somatic mutations of this gene. Animal models of the disease have been developed. CNC is the first human disease caused by mutations of one of the subunits of the PKA holoenzyme, a critical component of numerous cellular signaling systems. This has wide implications for cAMP involvement in endocrine tumorigenesis.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | |
Collapse
|
30
|
Kamrava M, Simpkins F, Alejandro E, Michener C, Meltzer E, Kohn EC. Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene 2005; 24:7084-93. [PMID: 16044162 DOI: 10.1038/sj.onc.1208857] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Granulin-epithelin precursor (GEP/progranulin) is an autocrine growth factor for ovarian cancer. We examined the production and function of GEP and report that: (1) GEP production is regulated by endothelin (ET-1), lysophosphatidic acid (LPA), and cAMP; (2) cAMP signals GEP production through exchange protein activated by cAMP (EPAC); (3) ET-1 and cAMP/EPAC induce GEP through ERK1/2; and (4) neutralization of GEP results in apoptosis. Exposure of HEY-A8 and OVCAR3 ovarian cancer cells to LPA and ET-1 yielded GEP production and secretion in a dose- and time-dependent fashion; neither stimulated significant concentrations of cAMP directly. Stimulation of cAMP production with pertussis and cholera toxin, or forskolin induced GEP in a PKA-independent fashion. EPAC, an intracellular cAMP receptor, is activated specifically by the cAMP analog, 8-CPT-2'-O-Me-cAMP (8-CPT); 8-CPT treatment stimulated GEP production and secretion. The MEK inhibitor, U0126, abrogated GEP production in response to ET-1 and 8-CPT, confirming involvement of MAPK. A partial inhibition of basal and stimulated GEP production was observed when cells were treated with a internal calcium chelator, BAPTA. Neutralizing anti-GEP antibody reversed basal as well as LPA, ET-1 and 8-CPT-induced ovarian cancer cell growth and induced apoptosis as demonstrated by caspase-3 and PARP cleavage, DNA fragmentation, and nuclear condensation. These results indicate that GEP is a growth and survival factor for ovarian cancer, induced by LPA and ET-1 and cAMP/EPAC through ERK1/2.
Collapse
Affiliation(s)
- Mitchell Kamrava
- Howard Hughes Medical Institute/National Institutes of Health Research Scholars Program, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
31
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part II): Intermediate signaling molecules. ACTA ACUST UNITED AC 2005; 5:247-57. [PMID: 16078861 DOI: 10.2165/00129785-200505040-00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This is the second part of a four-part review on potential therapeutic targeting of oncogenes. The previous part introduced the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes, which we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part I included a discussion of growth factors and tyrosine kinases. This portion of the review covers intermediate signaling molecules and the various strategies used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
32
|
Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S, Millimaggi D, Pavan A, Dolo V, Canevari S, Podo F. Alterations of Choline Phospholipid Metabolism in Ovarian Tumor Progression. Cancer Res 2005; 65:9369-76. [PMID: 16230400 DOI: 10.1158/0008-5472.can-05-1146] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholine-producing enzymes, and uptake of [methyl-14C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 +/- 0.9 and 5.2 +/- 2.4 nmol/10(6) cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 +/- 0.93 in EONT cells; average [phosphocholine] was 3- to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to < or =0.2. Two-dimensional (phosphocholine/total choline, [total choline]) and (glycerophosphocholine/total choline, [total choline]) maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12- to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 +/- 0.1 nmol/10(6) cells/h), accounting for a consistently elevated (5- to 15-fold) [methyl-14C]choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher ( approximately 5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up.
Collapse
Affiliation(s)
- Egidio Iorio
- Section of Molecular and Cellular Imaging, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bauer AJ, Stratakis CA. The lentiginoses: cutaneous markers of systemic disease and a window to new aspects of tumourigenesis. J Med Genet 2005; 42:801-10. [PMID: 15958502 PMCID: PMC1735945 DOI: 10.1136/jmg.2003.017806] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Familial lentiginosis syndromes cover a wide phenotypic spectrum ranging from a benign inherited predisposition to develop cutaneous lentigines unassociated with systemic disease, to associations with several syndromes carrying increased risk of formation of hamartomas, hyperplasias, and other neoplasms. The molecular pathways involved in the aetiology of these syndromes have recently been more clearly defined and several major cellular signalling pathways are probably involved: the protein kinase A (PKA) pathway in Carney complex (CNC), the Ras/Erk MAP kinase pathway in LEOPARD/Noonan syndromes, and the mammalian target of rapamycin pathway (mTOR) in Peutz-Jeghers syndrome and the diseases caused by PTEN mutations. Here we discuss the clinical presentation of these disorders and discuss the molecular mechanisms involved. The presence of lentigines in these diseases caused by diverse molecular defects is probably more than an associated clinical feature and likely reflects cross talk and convergence of signalling pathways of central importance to embryogenesis, neural crest differentiation, and end-organ growth and function of a broad range of tissues including those of the endocrine, reproductive, gastrointestinal, cardiac, and integument systems.
Collapse
Affiliation(s)
- A J Bauer
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
34
|
D'Souza T, Agarwal R, Morin PJ. Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 2005; 280:26233-40. [PMID: 15905176 DOI: 10.1074/jbc.m502003200] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Claudins are integral membrane proteins essential in the formation and function of tight junctions (TJs). Disruption of TJs, which have essential roles in cell permeability and polarity, is thought to contribute to epithelial tumorigenesis. Claudin-3 and -4 are frequently overexpressed in ovarian cancer, but the molecular pathways involved in the regulation of these proteins are unclear. Interestingly, several studies have demonstrated a role for phosphorylation in the regulation of TJ complexes, although evidence for claudin phosphorylation is scarce. Here, we showed that claudin-3 and -4 can be phosphorylated in ovarian cancer cells. In vitro phosphorylation assays using glutathione S-transferase fusion constructs demonstrated that the C terminus of claudin-3 is an excellent substrate for cAMP-dependent protein kinase (PKA). Using site-directed mutagenesis, we identified a PKA phosphorylation site at amino acid 192 in the C terminus of claudin-3. Overexpression of the protein containing a T192D mutation, mimicking the phosphorylated state, resulted in a decrease in TJ strength in ovarian cancer cell line OVCA433. Our results suggest that claudin-3 phosphorylation by PKA, a kinase frequently activated in ovarian cancer, may provide a mechanism for the disruption of TJs in this cancer. In addition, our findings may have general implications for the regulation of TJs in normal epithelial cells.
Collapse
Affiliation(s)
- Theresa D'Souza
- Laboratory of Cellular and Molecular Biology, Gerontology Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
35
|
Cho-Chung YS. Antisense and therapeutic oligonucleotides: toward a gene-targeting cancer clinic. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.11.1711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Lania AG, Mantovani G, Ferrero S, Pellegrini C, Bondioni S, Peverelli E, Braidotti P, Locatelli M, Zavanone ML, Ferrante E, Bosari S, Beck-Peccoz P, Spada A. Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res 2005; 64:9193-8. [PMID: 15604292 DOI: 10.1158/0008-5472.can-04-1847] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two regulatory subunits (R1 and R2) of protein kinase A (PKA) are differentially expressed in cancer cell lines and exert diverse roles in growth control. Recently, mutations of the PKA regulatory subunit 1A gene (PRKAR1A) have been identified in patients with Carney complex. The aim of this study was to evaluate the expression of the PKA regulatory subunits R1A, R2A, and R2B in a series of 30 pituitary adenomas and the effects of subunit activation on cell proliferation. In these tumors, neither mutation of PRKAR1A nor loss of heterozygosity was identified. By real-time PCR, mRNA of the three subunits was detected in all of the tumors, R1A being the most represented in the majority of samples. By contrast, immunohistochemistry documented low or absent R1A levels in all tumors, whereas R2A and R2B were highly expressed, thus resulting in an unbalanced R1/R2 ratio. The low levels of R1A were, at least in part, due to proteasome-mediated degradation. The effect of the R1/R2 ratio on proliferation was assessed in GH3 cells, which showed a similar unbalanced pattern of R subunits expression, and in growth hormone-secreting adenomas. The R2-selective cAMP analog 8-Cl cAMP and R1A RNA silencing, stimulated cell proliferation and increased Cyclin D1 expression, respectively, in human and rat adenomatous somatotrophs. These data show that a low R1/R2 ratio promoted proliferation of transformed somatotrophs and are consistent with the Carney complex model in which R1A inactivating mutations further unbalance this ratio in favor of R2 subunits. These results suggest that low expression of R1A protein may favor cAMP-dependent proliferation of transformed somatotrophs.
Collapse
Affiliation(s)
- Andrea G Lania
- Institute of Endocrine Sciences, Ospedale Maggiore, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The type 1alpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase (PKA) (coded by the PRKAR1A gene) is the main component of type I PKA, which regulates most of the serine-threonine kinase activity catalyzed by the PKA holoenzyme in response to cAMP. Carney complex (CNC), or the complex of spotty skin pigmentation, myxomas, and endocrine overactivity, is a multiple endocrine (and not only) neoplasia syndrome that is due to PRKAR1A-inactivating mutations. The R1alpha protein and PRKAR1A mRNA have been found to be up-regulated in a series of cell lines and human and rodent neoplasms, suggesting this molecule's involvement in tumorigenesis and its potential role in cell cycle regulation, growth, and/or proliferation. Alterations in PKA activity elicit a variety of effects depending on the tissue, developmental stage, degree of differentiation, and cAMP levels. In addition, RIalpha may have functions independent of PKA. The presence of inactivating germline mutations and the loss of its wild-type allele in some CNC lesions indicate that PRKAR1A might function as a tumor suppressor gene in these tissues, but could PRKAR1A be a classic tumor suppressor gene? Probably not, and this review explains why.
Collapse
Affiliation(s)
- Ioannis Bossis
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1862, USA
| | | |
Collapse
|
38
|
Yu S, Mei FC, Lee JC, Cheng X. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Biochemistry 2004; 43:1908-20. [PMID: 14967031 DOI: 10.1021/bi0354435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.
Collapse
Affiliation(s)
- Shaoning Yu
- Department of Human Biological Chemistry and Genetics, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
39
|
Farrow B, Rychahou P, Murillo C, O'connor KL, Iwamura T, Evers BM. Inhibition of pancreatic cancer cell growth and induction of apoptosis with novel therapies directed against protein kinase A. Surgery 2003; 134:197-205. [PMID: 12947318 DOI: 10.1067/msy.2003.220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pancreatic cancer is the most lethal abdominal malignancy. Expression of the RIalpha subunit of protein kinase A (PKA) has been associated with neoplastic transformation and mitogenic signaling. The effect of PKA inhibition on pancreatic cancer cell growth and apoptosis is unknown. In pancreatic cancer cells, we sought to determine (1) whether inhibition of PKA can inhibit growth or induce apoptosis, and (2) whether growth can be inhibited by silencing of RIalpha expression. METHODS Human pancreatic cancer cells (PANC-1, MIA PaCa-2, and SUIT-2) were treated with inhibitors of PKA (H89 or PKI) and cell growth, kinase activity, and induction of apoptosis measured. Small inhibitory RNA (siRNA) directed against the RIalpha subunit was synthesized and transfected into PANC-1 cells. RESULTS H89 decreased PKA activity and inhibited pancreatic cancer cell growth. Apoptosis was also induced by H89 in PANC-1 and MIA PaCa-2 cells. PANC-1 cells express high levels of the RIalpha subunit; transfection of siRNA decreased RIalpha protein expression and inhibited growth. CONCLUSIONS Inhibition of PKA in pancreatic cancer cells induces growth arrest and apoptosis; similar effects are noted in cells with siRNA used to block RIalpha expression. Inhibition of PKA may represent a novel therapeutic strategy for the adjuvant treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Buckminster Farrow
- Department of Surgery, the University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892-1750, USA.
| |
Collapse
|
42
|
Papageorgiou T, Stratakis CA. Ovarian tumors associated with multiple endocrine neoplasias and related syndromes (Carney complex, Peutz-Jeghers syndrome, von Hippel-Lindau disease, Cowden's disease). Int J Gynecol Cancer 2002; 12:337-47. [PMID: 12144681 DOI: 10.1046/j.1525-1438.2002.01147.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Despite the relatively high prevalence of ovarian cancer (1% of American women will develop this disease in their lifetime) and recent developments in its molecular genetic understanding (several proto-oncogenes, such as AKT2 and cKRAS, and tumor suppressor genes, such as BRCA1 and BRCA2, have been implicated), little is known about the presence of ovarian tumors and cancer in women already diagnosed with other familial multiple tumor syndromes. In this review, we focus on the possible association of ovarian tumors with multiple endocrine neoplasias (MENs) and their related syndromes, such as Carney complex (CNC), Peutz-Jeghers syndrome (PJS), von Hippel-Lindau disease (VHLD), and Cowden's disease (CD). These conditions recently have been molecularly elucidated, and some of the genes responsible for them (including STK11/LKB1 and PTEN, the genes responsible for PJS and CD, respectively) have already been investigated in series of sporadic ovarian lesions, mostly carcinomas. A brief description of each disease is followed by a literature search for affected patients with ovarian tumors; we review our own experience with CNC patients and ovarian tumors. An association between PJS and CNC and ovarian neoplasms seems likely; carcinoids of the ovary may occur in patients with MEN 1. Only few patients with CD and VHLD have any ovarian pathology, but PTEN, the CD gene has been investigated in sporadic ovarian tumors. The aim of the present report is to alert clinicians who care for patients with MENs, CNC, PJS, VHLD, CD, and other syndromes for possible associations between various types of ovarian tumors and these conditions.
Collapse
Affiliation(s)
- T Papageorgiou
- Unit on Genetics & Endocrinology (UGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD)/NIH, Building 10, Room 10 N262, 10 Center Drive MSC 1862, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Neary CL, Cho-Chung YS. Nuclear translocation of the catalytic subunit of protein kinase A induced by an antisense oligonucleotide directed against the RIalpha regulatory subunit. Oncogene 2001; 20:8019-24. [PMID: 11753685 DOI: 10.1038/sj.onc.1204992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/08/2022]
Abstract
The regulatory (R) subunits of cAMP-dependent protein kinase (PKA) are implicated in the regulation of cell proliferation and differentiation. There are two isoforms of PKA that are distinguished by two types of R subunit, RI and RII. Evidence suggests that RI is associated with proliferation and RII is associated with cell differentiation. Previous work in this laboratory has demonstrated that depletion of the RIalpha subunit by treatment with an antisense oligonucleotide (ODN) induces differentiation in leukemia cells and growth arrest and apoptosis in epithelial cancer cells. Using the prostate cancer cell line PC3M as a model system, we have developed a cell line that overexpresses a retroviral vector construct containing the RIalpha antisense gene. This cell line has been characterized and the effectiveness of the construct determined. In the work presented here, we demonstrate by immunocytochemistry that treatment with RIalpha antisense ODN induces translocation of the Calpha subunit of PKA to the nucleus of PC3M prostate cancer cells. The translocation of Calpha triggered by exogenous antisense ODN treatment mirrors that observed in cells endogenously overexpressing the antisense gene. Triggering the nuclear translocation of the Calpha subunit of PKA in the cell may be an important mechanism of action of RIalpha antisense that regulates cell growth independent of adenylate cyclase and cellular cAMP levels. The nuclear localization of the Calpha subunit of PKA may be an essential step in revealing the mechanism whereby this critical kinase regulates cell growth.
Collapse
Affiliation(s)
- C L Neary
- Cellular Biochemistry Section, Basic Research Laboratories, The Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892-1750, USA
| | | |
Collapse
|
44
|
Cho YS, Kim MK, Cheadle C, Neary C, Becker KG, Cho-Chung YS. Antisense DNAs as multisite genomic modulators identified by DNA microarray. Proc Natl Acad Sci U S A 2001; 98:9819-23. [PMID: 11481453 PMCID: PMC55536 DOI: 10.1073/pnas.171314398] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antisense oligodeoxynucleotides can selectively block disease-causing genes, and cancer genes have been chosen as potential targets for antisense drugs to treat cancer. However, nonspecific side effects have clouded the true antisense mechanism of action and hampered clinical development of antisense therapeutics. Using DNA microarrays, we have conducted a systematic characterization of gene expression in cells exposed to antisense, either exogenously or endogenously. Here, we show that in a sequence-specific manner, antisense targeted to protein kinase A RIalpha alters expression of the clusters of coordinately expressed genes at a specific stage of cell growth, differentiation, and activation. The genes that define the proliferation-transformation signature are down-regulated, whereas those that define the differentiation-reverse transformation signature are up-regulated in antisense-treated cancer cells and tumors, but not in host livers. In this differentiation signature, the genes showing the highest induction include genes for the G proteins Rap1 and Cdc42. The expression signature induced by the exogenously supplied antisense oligodeoxynucleotide overlaps strikingly with that induced by endogenous antisense gene overexpression. Defining antisense DNAs on the basis of their effects on global gene expression can lead to identification of clinically relevant antisense therapeutics and can identify which molecular and cellular events might be important in complex biological processes, such as cell growth and differentiation.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Animals
- Cell Differentiation
- Cell Division
- Cyclic AMP-Dependent Protein Kinases/genetics
- DNA, Antisense/pharmacology
- DNA, Antisense/therapeutic use
- DNA, Complementary/genetics
- Drug Design
- Gene Expression Regulation, Neoplastic/drug effects
- Genetic Therapy
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Protein Subunits
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Thionucleotides/chemistry
- Tumor Cells, Cultured/transplantation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Y S Cho
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| | | | | | | | | | | |
Collapse
|
45
|
Nesterova M, Cho-Chung YS. Oligonucleotide sequence-specific inhibition of gene expression, tumor growth inhibition, and modulation of cAMP signaling by an RNA-DNA hybrid antisense targeted to protein kinase A RIalpha subunit. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:423-33. [PMID: 11198926 DOI: 10.1089/oli.1.2000.10.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The primary mediator of cAMP action in mammalian cells is cAMP-dependent protein kinase (PKA). There are two types of PKA, type I (PKA-I) and type II (PKA-II), which share a common catalytic subunit but contain distinct regulatory subunits, RI and RII, respectively. Evidence suggests that increased expression of RIalpha/PKA-I correlates with neoplastic cell growth. Here, we show that sequence-specific oligonucleotide inhibition of RIalpha expression results in inhibition of growth and modulation of cAMP signaling in cancer cells. The antisense promoted growth inhibition in a time-dependent, concentration-dependent, and sequence-dependent manner in human cancer cells in monolayer culture, and it inhibited colony formation in soft agar and tumor growth in nude mice. Among the cancer cells are LS-174T, HCT-15, and Colo-205 colon carcinoma cells; A-549 lung carcinoma cells; LNCaP prostate adenocarcinoma cells; Molt-4 leukemia cells; and Jurkat T lymphoma cells. Northern blot and immunoprecipitation analyses revealed that the growth inhibitory effect of the antisense correlated with a decrease in RIalpha expression at both the mRNA and protein levels. Pulse-chase experiments revealed that the antisense-directed inhibition of RIalpha expression resulted in compensatory changes in expression of the isoforms of R and C subunits and cAMP signaling in a cell type-specific manner. These results demonstrate that cAMP is ubiquitous in the regulation of cell growth and that the antisense oligonucleotide, which inhibits the synthesis of the RIalpha subunit of PKA, can be targeted to a single gene for treatment of cancer in a variety of cell types.
Collapse
Affiliation(s)
- M Nesterova
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| | | |
Collapse
|
46
|
Wang H, Cai Q, Zeng X, Yu D, Agrawal S, Zhang R. Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIalpha subunit of protein kinase A after oral administration. Proc Natl Acad Sci U S A 1999; 96:13989-94. [PMID: 10570186 PMCID: PMC24178 DOI: 10.1073/pnas.96.24.13989] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overexpression of the RIalpha subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of (35)S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIalpha subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.
Collapse
Affiliation(s)
- H Wang
- Division of Clinical Pharmacology, Department of Pharmacology, Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|