1
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
2
|
Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea. Cells 2019; 8:cells8101266. [PMID: 31627326 PMCID: PMC6830339 DOI: 10.3390/cells8101266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Exploring the development of the hearing organ helps in the understanding of hearing and hearing impairments and it promotes the development of the regenerative approaches-based therapeutic efforts. The role of supporting cells in the development of the organ of Corti is much less elucidated than that of the cochlear sensory receptor cells. The use of our recently published method of single-cell electroporation loading of a fluorescent Ca2+ probe in the mouse hemicochlea preparation provided an appropriate means to investigate the Deiters’ cells at the subcellular level in two different cochlear turns (apical, middle). Deiters’ cell’s soma and process elongated, and the process became slimmer by maturation without tonotopic preference. The tonotopically heterogeneous spontaneous Ca2+ activity less frequently occurred by maturation and implied subcellular difference. The exogenous ATP- and UTP-evoked Ca2+ responses were maturation-dependent and showed P2Y receptor dominance in the apical turn. By monitoring the basic structural dimensions of this supporting cell type as well as its spontaneous and evoked purinergic Ca2+ signaling in the hemicochlea preparation in different stages in the critical postnatal P5-25 developmental period for the first time, we showed that the soma and the phalangeal process of the Deiters’ cells go through age- and tonotopy-dependent changes in the morphometric parameters and purinergic signaling.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50., 1077 Budapest, Hungary.
| | - Ádám Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., 1083 Budapest, Hungary.
| |
Collapse
|
3
|
Cederholm JME, Ryan AF, Housley GD. Onset kinetics of noise-induced purinergic adaptation of the 'cochlear amplifier'. Purinergic Signal 2019; 15:343-355. [PMID: 31377959 PMCID: PMC6737159 DOI: 10.1007/s11302-019-09648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
A major component of slowly reversible hearing loss which develops with sustained exposure to noise has been attributed to release of ATP in the cochlea activating P2X2 receptor (P2X2R) type ATP-gated ion channels. This purinergic humoral adaptation is thought to enable the highly sensitive hearing organ to maintain function with loud sound, protecting the ear from acoustic overstimulation. In the study that established this hearing adaptation mechanism as reported by Housley et al. (Proc Natl Acad Sci U S A 110:7494-7499, 2013), the activation kinetics were determined in mice from auditory brainstem response (ABR) threshold shifts with sustained noise presentation at time points beyond 10 min. The present study was designed to achieve finer resolution of the onset kinetics of purinergic hearing adaptation, and included the use of cubic (2f1-f2) distortion product otoacoustic emissions (DPOAEs) to probe whether the active mechanical outer hair cell 'cochlear amplifier' contributed to this process. We show that the ABR and DPOAE threshold shifts were largely complete within the first 7.5 min of moderate broadband noise (85 dB SPL) in wildtype C57Bl/6J mice. The ABR and DPOAE adaptation rates were both best fitted by a single exponential function with ~ 3 min time constants. ABR and DPOAE threshold shifts with this noise were minimal in mice null for the P2rx2 gene encoding the P2X2R. The findings demonstrate a considerably faster purinergic hearing adaptation to noise than previously appreciated. Moreover, they strongly implicate the outer hair cell as the site of action, as the DPOAEs stem from active cochlear electromotility.
Collapse
Affiliation(s)
- Jennie M E Cederholm
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Allen F Ryan
- Departments of Surgery and Neurosciences, University of California San Diego, La Jolla, CA, USA
- Veterans Administration Medical Center, La Jolla, CA, USA
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
5
|
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151:109-118. [PMID: 30721767 DOI: 10.1016/j.brainresbull.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Purinergic signaling is deeply involved in the development, functions and protective mechanisms of the cochlea. Release of ATP and activation of purinergic receptors on sensory and supporting/epithelial cells play a substantial role in cochlear (patho)physiology. Both the ionotropic P2X and the metabotropic P2Y receptors are widely distributed on the inner and outer hair cells as well as on the different supporting cells in the organ of Corti and on other epithelial cells in the scala media. Among others, they are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics acting on outer hair cells and supporting cells. Cochlear blood flow is also regulated by purines. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy. Decreasing hearing sensitivity and increasing cochlear blood supply by pharmacological targeting of purinergic signaling in the cochlea are potential new therapeutic approaches in these hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Morton-Jones RT, Vlajkovic SM, Thorne PR, Cockayne DA, Ryan AF, Housley GD. Properties of ATP-gated ion channels assembled from P2X2 subunits in mouse cochlear Reissner's membrane epithelial cells. Purinergic Signal 2015; 11:551-60. [PMID: 26424615 DOI: 10.1007/s11302-015-9473-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
In the cochlea, Reissner's membrane separates the scala media endolymphatic compartment that sustains the positive endocochlear potential and ion composition necessary for sound transduction, from the scala vestibuli perilymphatic compartment. It is known that with sustained elevated sound levels, adenosine 5'-triphosphate (ATP) is released into the endolymph and ATP-gated ion channels on the epithelial cells lining the endolymphatic compartment shunt the electrochemical driving force, contributing to protective purinergic hearing adaptation. This study characterises the properties of epithelial cell P2X(2)-type ATP-activated membrane conductance in the mouse Reissner's membrane, which forms a substantial fraction of the scale media surface. The cells were found to express two isoforms (a and b) of the P2X(2) subunit arising from alternative splicing of the messenger RNA (mRNA) transcript that could contribute to the trimeric subunit assembly. The ATP-activated conductance demonstrated both immediate and delayed desensitisation consistent with incorporation of the combination of P2X(2) subunit isoforms. Activation by the ATP analogue 2meSATP had equipotency to ATP, whereas α,β-meATP and adenosine 5'-diphosphate (ADP) were ineffective. Positive allosteric modulation of the P2X(2) channels by protons was profound. This native conductance was blocked by the P2X(2)-selective blocker pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and the conductance was absent in these cells isolated from mice null for the P2rX2 gene encoding the P2X(2) receptor subunit. The activation and desensitisation properties of the Reissner's membrane epithelial cell ATP-gated P2X(2) channels likely contribute to the sensitivity and kinetics of purinergic control of the electrochemical driving force for sound transduction invoked by noise exposure.
Collapse
Affiliation(s)
| | - Srdjan M Vlajkovic
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Allen F Ryan
- Departments of Surgery and Neurosciences, VA Medical Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Reduced P2x(2) receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signal 2010; 6:263-72. [PMID: 20806017 DOI: 10.1007/s11302-010-9195-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/28/2010] [Indexed: 02/07/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) has profound effects on the cochlea, including an effect on the regulation of the endocochlear potential (EP). Noise-induced release of ATP into the endolymph activates a shunt conductance mediated by P2X(2) receptors in tissues lining the endolymphatic compartment, which reduces the EP and, consequentially, hearing sensitivity. This may be a mechanism of adaptation or protection from high sound levels. As inaction of such a process could contribute to hearing loss, this study examined whether the action of ATP on EP changes with age and noise exposure in the mouse. The EP and the endolymphatic compartment resistance (CoPR) were measured in mice (CBA/CaJ) aged between 3 and 15 months. The EP and CoPR declined slightly with age with an associated small, but significant, reduction in auditory brainstem response thresholds. ATP (100-1,000 muM) microinjected into the endolymphatic compartment caused a dose-dependent decline in EP correlated to a similar decrease in CoPR. This was blocked by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate, consistent with a P2X(2) receptor-mediated shunt conductance. There was no substantial difference in the ATP response with age. Noise exposure (octave-band noise 80-100 decibels sound pressure level (dBSPL), 48 h) in young animals induced an upregulation of the P2X(2) receptor expression in the organ of Corti and spiral limbus, most noticeably with the 90-dB exposure. This did not occur in the aged animals except following exposure at 90 dBSPL. The EP response to ATP was muted in the noise-exposed aged animals except following the 90-dB exposure. These findings provide some evidence that the adaptive response of the cochlea to noise may be reduced in older animals, and it is speculated that this could increase their susceptibility to noise-induced injury.
Collapse
|
8
|
ATP-mediated potassium recycling in the cochlear supporting cells. Purinergic Signal 2010; 6:221-9. [PMID: 20806014 DOI: 10.1007/s11302-010-9184-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
Abstract
UNLABELLED Gap junction-mediated K(+) recycling in the cochlear supporting cell has been proposed to play a critical role in hearing. However, how potassium ions enter into the supporting cells to recycle K(+) remains undetermined. In this paper, we report that ATP can mediate K(+) sinking to recycle K(+) in the cochlear supporting cells. We found that micromolar or submicromolar levels of ATP could evoke a K(+)-dependent inward current in the cochlear supporting cells. At negative membrane potentials and the resting membrane potential of -80 mV, the amplitude of the ATP-evoked inward current demonstrated a linear relationship to the extracellular concentration of K(+), increasing as the extracellular concentration of K(+) increased. The inward current also increased as the concentration of ATP was increased. In the absence of ATP, there was no evoked inward current for extracellular K(+) challenge in the cochlear supporting cells. The ATP-evoked inward current could be inhibited by ionotropic purinergic (P2X) receptor antagonists. Application of pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 50 microM) or pre-incubation with an irreversible P2X7 antagonist oxidized ATP (oATP, 0.1 mM) completely abolished the ATP-evoked inward current at the negative membrane potential. ATP also evoked an inward current at cell depolarization, which could be inhibited by intracellular Cs(+) and eliminated by positive holding potentials. Our data indicate that ATP can activate P2X receptors to recycle K(+) in the cochlear supporting cells at the resting membrane potential under normal physiological and pathological conditions. This ATP-mediated K(+) recycling may play an important role in the maintenance of cochlear ionic homeostasis. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11302-010-9184-9) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Aminoglycoside-induced phosphatidylserine externalization in sensory hair cells is regionally restricted, rapid, and reversible. J Neurosci 2008; 28:9939-52. [PMID: 18829952 DOI: 10.1523/jneurosci.1124-08.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasma membrane. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labeled with externally applied annexin V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin V labeling reveals that the aminoglycoside antibiotic neomycin induces rapid PS externalization, specifically on the apical surface of hair cells. PS externalization is observed within approximately 75 s of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application, indicating that blebbing is accompanied by membrane addition to the hair cell surface. PS externalization and membrane blebbing can, nonetheless, occur independently. Pretreating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a phosphatidylinositol 4,5-biphosphate (PIP2)-binding pleckstrin homology domain, can reduce neomycin-induced PS externalization, suggesting that neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. After neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear, and surface-bound annexin V is internalized, distributing throughout the supranuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalized annexin V, however, remains below the apical surface, thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the periphery of the hair cell.
Collapse
|
10
|
|
11
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
12
|
Vlajkovic SM, Abi S, Wang CJH, Housley GD, Thorne PR. Differential distribution of adenosine receptors in rat cochlea. Cell Tissue Res 2007; 328:461-71. [PMID: 17285327 DOI: 10.1007/s00441-006-0374-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/22/2006] [Indexed: 12/21/2022]
Abstract
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Cochlea/metabolism
- Gene Expression Regulation
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
13
|
Piazza V, Ciubotaru CD, Gale JE, Mammano F. Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 2006; 41:77-86. [PMID: 16828497 DOI: 10.1016/j.ceca.2006.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/09/2006] [Accepted: 05/14/2006] [Indexed: 11/26/2022]
Abstract
Extracellular ATP is a key neuromodulator of visual and auditory sensory epithelia. In the rat cochlea, pharmacological dissection indicates that ATP, acting through a highly sensitive purinergic/IP(3)-mediated signaling pathway with (little or) no involvement of ryanodine receptors, is the principal paracrine mediator implicated in the propagation of calcium waves through supporting and epithelial cells. Measurement of sensitivity to UTP and other purinergic agonists implicate P2Y(2) and P2Y(4) as the main P2Y receptor isoforms involved in these responses. Ca2+ waves, elicited under highly reproducible conditions by carefully controlling dose (1 microM) and timing of focal agonist application (0.2s), extended over radial distance greater than 160 microm from the source, identical to those activated by damaging single outer hair cells. Altogether, these results indicate that intercellular calcium waves are a robust phenomenon that confers a significant ability for cell-cell communication in the mammalian cochlea. Further ongoing research will reveal the roles that such Ca2+ waves play in the inner ear.
Collapse
Affiliation(s)
- Valeria Piazza
- Venetian Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, via G. Orus 2, 35129 Padua, Italy
| | | | | | | |
Collapse
|
14
|
Bobbin RP, Salt AN. ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani. Hear Res 2006; 205:35-43. [PMID: 15953513 DOI: 10.1016/j.heares.2005.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 02/16/2005] [Indexed: 11/26/2022]
Abstract
ATP receptor agonists and antagonists alter cochlear mechanics as measured by changes in distortion product otoacoustic emissions (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano-electrical transduction and the operating point of the outer hair cells (OHCs). This hypothesis was tested by monitoring the effect of ATP-gamma-S on the operating point of the OHCs. Guinea pigs anesthetized with urethane and with sectioned middle ear muscles were used. The cochlear microphonic (CM) was recorded differentially (scala vestibuli referenced to scala tympani) across the basal turn before and after perfusion (20 min) of the perilymph compartment with artificial perilymph (AP) and ATP-gamma-S dissolved in AP. The operating point was derived from the cochlear microphonics (CM) recorded in response low frequency (200 Hz) tones at high level (106, 112 and 118 dB SPL). The analysis procedure used a Boltzmann function to simulate the CM waveform and the Boltzmann parameters were adjusted to best-fit the calculated waveform to the CM. Compared to the initial perfusion with AP, ATP-gamma-S (333 microM) enhanced peak clipping of the positive peak of the CM (that occurs during organ of Corti displacements towards scala tympani), which was in keeping with ATP-induced displacement of the transducer towards scala tympani. CM waveform analysis quantified the degree of displacement and showed that the changes were consistent with the stimulus being centered on a different region of the transducer curve. The change of operating point meant that the stimulus was applied to a region of the transducer curve where there was greater saturation of the output on excursions towards scala tympani and less saturation towards scala vestibuli. A significant degree of recovery of the operating point was observed after washing with AP. Dose response curves generated by perfusing ATP-gamma-S (333 microM) in a cumulative manner yielded an EC(50) of 19.8 microM. The ATP antagonist PPADS (0.1 mM) failed to block the effect of ATP-gamma-S on operating point, suggesting the response was due to activation of metabotropic and not ionotropic ATP receptors. Multiple perfusions of AP had no significant effect (118 and 112 dB) or moved the operating point slightly (106 dB) in the direction opposite of ATP-gamma-S. Results are consistent with an ATP-gamma-S induced transducer change comparable to a static movement of the organ of Corti or reticular lamina towards scala tympani.
Collapse
Affiliation(s)
- Richard P Bobbin
- Kresge Hearing Research Laboratory, Department of Otolaryngology, Louisiana State University School of Medicine, New Orleans, LA 70112-2234, USA.
| | | |
Collapse
|
15
|
Bobbin RP, Bledsoe SC. Asphyxia and depolarization increase adenosine levels in perilymph. Hear Res 2006; 205:110-4. [PMID: 15953520 DOI: 10.1016/j.heares.2005.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 03/10/2005] [Indexed: 11/27/2022]
Abstract
Extracellular adenosine has been suggested as a modulator of cochlear function. To date the release of adenosine into the extracellular spaces of the cochlea has not been demonstrated. Therefore, experiments were designed to examine whether adenosine release into perilymph could be detected in response to depolarization by high potassium concentrations or in response to asphyxia. For this purpose, the perilymph compartment of guinea pigs was perfused with an artificial perilymph and the effluent assayed for ATP, ADP, AMP and adenosine. Results indicate that potassium induced a slight, significant increase and asphyxia induced a very large, significant increase in adenosine levels in perilymph effluent. No changes in the levels of the other compounds were measured. It is concluded that depolarization and asphyxia can induce the release of adenosine into perilymph.
Collapse
Affiliation(s)
- Richard P Bobbin
- Kresge Hearing Research Laboratory, Department of Otolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2234, USA.
| | | |
Collapse
|
16
|
Koshimizu TA, Kretschmannova K, He ML, Ueno S, Tanoue A, Yanagihara N, Stojilkovic SS, Tsujimoto G. Carboxyl-terminal splicing enhances physical interactions between the cytoplasmic tails of purinergic P2X receptors. Mol Pharmacol 2006; 69:1588-98. [PMID: 16467187 DOI: 10.1124/mol.105.019802] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purinergic P2X receptors are ion-conducting channels composed of three subunits, each having two transmembrane domains and intracellular amino (N) and carboxyl (C) termini. Although alternative splicing extensively modifies the C-terminal sequences of P2X subunits, the direct influence of such post-transcriptional modifications on receptor architecture and function remains poorly understood. In this study, we focused on mouse pituitary P2X2 receptors. In this tissue, progressive splicing of the P2X2a C terminus generated two functional subunit variants, P2X2b and P2X2e, which exhibited accelerated desensitization rates and attenuated calcium signals when the receptors were in homomeric states. To measure the intersubunit interaction in living cells, the efficient transfer of bioluminescent resonance energy between luciferase and fluorescent proteins attached to the N- or C-subunit termini of these subunits was used. The constitutive interactions between the full-length C termini of P2X2a receptor were detected by a significant increase in fluorescence/luminescence intensity ratio compared with negative controls. Moreover, interactions between C termini and between C- and N termini of adjacent subunits were significantly enhanced in homomeric and heteromeric receptors containing P2X2b or P2X2e subunits. Finally, deletion of two amino acids at the splicing junction, but not at the C-terminal end of the P2X2b receptor, resulted in the enhancement of channel desensitization and luminescence resonance energy transfer. These results indicate that C-terminal structure plays a critical role in the cytoplasmic intersubunit interactions and suggest that the extent of subunit interactions before ATP application could contribute to the subsequent channel activity and conformation changes associated with agonist-dependent desensitization.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University Faculty of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao HB, Yu N, Fleming CR. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 2005; 102:18724-9. [PMID: 16344488 PMCID: PMC1317927 DOI: 10.1073/pnas.0506481102] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Connexin gap junctions play an important role in hearing function, but the mechanism by which this contribution occurs is unknown. Connexins in the cochlea are expressed only in supporting cells; no connexin expression occurs in auditory sensory hair cells. A gap junctional channel is formed by two hemichannels. Here, we show that connexin hemichannels in the cochlea can release ATP at levels that account for the submicromolar concentrations measured in the cochlear fluids in vivo. The release could be increased 3- to 5-fold by a reduction of extracellular Ca2+ or an increase in membrane stress, and blocked by gap junctional blockers. We also demonstrated that extracellular ATP at submicromolar levels apparently affected outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining cochlear sensitivity to sound stimulation in mammals. ATP reduced OHC electromotility and the slope factor of the voltage dependence and shifted the operating point to reduce the active amplifier gain. ATP also reduced the generation of distortion products. Immunofluorescent staining showed that purinergic receptors P2x2 and P2x7 were distributed on the OHC surface. Blockage of P2 receptors eliminated the effect of ATP on the OHC electromotility. The data revealed that there is a hemichannel-mediated, purinergic intercellular signaling pathway between supporting cells and hair cells in the cochlea to control hearing sensitivity. The data also demonstrated a potential source of ATP in the cochlea.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Department of Surgery-Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293, USA.
| | | | | |
Collapse
|
18
|
Zhao HB. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 2005; 21:1859-68. [PMID: 15869481 PMCID: PMC2548270 DOI: 10.1111/j.1460-9568.2005.04031.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract A gap junction is composed of two hemichannels and possesses a relatively large pore size ( approximately 10-15 A), allowing passage of ions and molecules up to 1 kDa. Here, we report that connexin hemichannels and gap junctions in the guinea pig cochlea had significant charge selectivity among permeating molecules. In coincubation with anionic and cationic fluorescent dyes, hemichannel permeability in isolated cochlear supporting cells showed significant charge selectivity; 31% of cells had only cationic dye influx and 6% of cells had only anionic dye influx. Charge-selective influx contrary to dye size was also found, indicating charge as a dominant determinant in permeability. The cell-cell gap junctional permeability was consistent with hemichannel permeability and also showed strong charge selectivity; the permeation of anionic dyes was slower than that of cationic probes in the cochlear sensory epithelium. With a combination of immunofluorescent staining for connexin26 (Cx26) and Cx30, which are the predominant connexin isoforms in the cochlea, Cx26 was demonstrated to correlate with anionic permeability. The data indicated that cochlear gap junctions have strong charge selectivity in molecular permeability and metabolic communication. Cx26 mutation may induce specific, irreparable impairment in intercellular signalling and energy and nutrient supplies in the cochlea, causing cell degeneration and hearing loss, given that many important cell-signalling and nutrient and energy molecules (e.g. IP3, ATP, cAMP and cGMP) are anions.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Department of Surgery--Otolaryngology, University of Kentucky Medical Center, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
19
|
Han JZ, Lin W, Chen YZ. Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A. Acta Pharmacol Sin 2005; 26:199-204. [PMID: 15663899 DOI: 10.1111/j.1745-7254.2005.00539.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM In our previous observations, adenosine triphosphate (ATP) was found to evoke immediate elevations in intracellular free calcium concentration ([Ca2+]i) in HT4 neuroblastoma cells of mice. We tried to see if a brief pretreatment of glucocorticoids could inhibit the Ca2+ response and reveal the underlying signaling mechanism. METHODS Measurement of [Ca2+]i was carried out using the dual-wavelength fluorescence method with Fura-2 as the indicator. RESULTS Pre-incubation of HT4 cells for 5 min with corticosterone (B) or bovine serum albumin conjugated corticosterone (B-BSA) inhibited the peak [Ca2+]i increments in a concentration-dependent manner. Cortisol and dexamethasone had a similar action, while deoxycorticosterone and cholesterol were ineffective. Both extracellular Ca2+ influx and internal Ca2+ release contributed to ATP-induced [Ca2+]i elevation. The brief treatment with only B attenuated Ca2+ influx. Furthermore, the [Ca2+]i elevation induced by the P2X receptor agonist adenosine 5'-(beta, gamma-methylene) triphosphate (beta, gamma-meATP) was also suppressed. The rapid inhibitory effect of B can be reproduced by forskolin 1 mmol/L and blocked by H89 20 mmol/L. Neither nuclear glucocorticoid receptor antagonist mifepristone nor protein kinase C inhibitors influenced the rapid action of B. CONCLUSION Our results suggest that glucocorticoids modulate P2X receptor-medicated Ca2+ influx through a membrane-initiated, non-genomic and PKA-dependent pathway in HT4 cells.
Collapse
Affiliation(s)
- Jian-Zhong Han
- Neuroscience Research Institute and Department of Neurobiology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | |
Collapse
|
20
|
Abstract
Extracellular ATP triggers catecholamine secretion from PC12 cells by activating ionotropic purine receptors. Repeated stimulation by ATP leads to habituation of the secretory response. In this paper, we use amperometric detection to monitor the habituation of PC12 cells to multiple stimulations of ATP or its agonist. Cells habituate to 30 microm ATP slower than they do to 300 or 600 microm ATP. Modifying external Mg2+ affects the response of cells to 30 microm ATP, but does not affect habituation, suggesting that habituation does not necessarily correspond to either stimulus intensity or cellular response. Mg2+ affects the initial response of PC12 cells to 2MeSATP in a manner similar to ATP. Increasing external [Mg2+] to 3.0 mm, however, eliminates habituation to 2MeSATP. This habituation can be partially restored by costimulation with 100 microm UTP. Background application of UTP increases habituation to both ATP and 2MeSATP. This suggests that ATP-sensitive metabotropic (P2Y) receptors play a role in the habituation process. Finally, although Ca2+ influx through voltage-operated calcium channels does not appear to contribute to secretion during ATP stimulation, blocking these channels with nicardipine increases habituation. This suggests a role for voltage-operated calcium channels in the habituation process.
Collapse
Affiliation(s)
- J Russel Keath
- Department Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
21
|
Abstract
The effects of ATP (adenosine 5' triphosphate) analogs on gross cochlear potentials and single primary afferent discharge properties were studied by intracochlear perfusion in anesthetized guinea pigs. ATP-gamma-S was most potent, with betagammamethylene-ATP and Bz-ATP being significantly less effective. These data are consistent with the notion that purinergic receptors activated by scala tympani perfusion contain subunits of the P2X(2) variant. The relative ineffectiveness of Bz-ATP (a P2X(7) agonist) suggests that while this variant has been reported to be expressed in the cochlea, it may not play a major functional role under normal conditions. Changes in the threshold of the gross DC receptor potential (summating potential, SP) and the compound action potential (CAP) were consistent with a combination of effects on both early and final stages of the transduction process, as reported by previous workers. Effects of ATP-gamma-S on single-neuron spontaneous firing rates varied according to the initial spontaneous rate of each primary afferent. Effects on single-neuron tuning curves were consistent with an action mainly on the outer hair cell transduction with betagammamethylene-ATP (elevation of tuning curve tips), but with ATP-gamma-S changes in sensitivity across the full extent of the tuning curve indicated an additional action on inner hair cell-afferent neurotransmission. In agreement with previous reports on ATP-gamma-S, it was found that all ATP analogs produced significant increases in the DC potential in scala media (endocochlear potential, EP). However, the relationship between changes in EP (a major component of the driving force on ions through hair cells) and the alterations in gross and single unit measures of cochlear activity was not clear.
Collapse
Affiliation(s)
- T Sueta
- Department of Otorhinolaryngology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Sensory innervation of the viscera serves a number of important functions, including regulation of visceral motility and secretory activity, and transmission of visceral sensations, including pain. There are many ways in which the sensitivity of visceral sensory neurones might be modulated, and these are discussed. Altered sensory neurone responsiveness may contribute to pathophysiological states such as irritable bowel syndrome, and the mechanisms leading to sensory neurone sensitisation offer novel targets for the treatment of such disorders.
Collapse
Affiliation(s)
- S B McMahon
- Centre for Neuroscience Research, Kings College London, London Bridge, UK.
| |
Collapse
|
23
|
Gómez-Villafuertes R, Pintor J, Gualix J, Miras-Portugal MT. GABA modulates presynaptic signalling mediated by dinucleotides on rat synaptic terminals. J Pharmacol Exp Ther 2004; 308:1148-57. [PMID: 14711934 DOI: 10.1124/jpet.103.061564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diadenosine pentaphosphate (Ap(5)A) elicits Ca(2+) transients in isolated rat midbrain synaptic terminals acting through specific ionotropic dinucleotide receptors. The activation of GABA(B) receptors by baclofen changes the sigmoidal concentration-response curve for Ap(5)A (EC(50) = 44 microM) into biphasic curves. Thus, when GABA(B) receptors are activated, the curve shows a high-affinity component in the picomolar range (EC(50) = 77 pM) and a low-affinity component in the micromolar range (EC(50) = 17 microM). In addition, in the presence of GABA or baclofen, Ap(5)A calcium responses are increased up to 50% over the control values. Saclofen, a specific antagonist of GABA(B) receptors, blocks the potentiatory effect of baclofen. As occurs with Ap(5)A, GABA(B) receptors are also capable to modulate diguanosine pentaphosphate (Gp(5)G)-induced calcium responses. The combination of immunocytochemical and microfluorimetric techniques carried out on single synaptic terminals have shown that in the presence of baclofen, 64% of the terminals responding to 100 microM Ap(5)A are also able to respond to 100 nM Ap(5)A. This value is close to the percentage of synaptic terminals responding to Ap(5)A and labeled with the anti-GABA(B) receptor antibody (69%). The activity of cyclic AMP-dependent protein kinase (PKA) seems to be involved in the potentiatory effect of GABA(B) receptors on Ap(5)A calcium responses, because PKA activation by forskolin or dibutiryl cyclic AMP blocks the potentiatory effect of baclofen, whereas PKA inhibition facilitates calcium signaling mediated by Ap(5)A. These results demonstrate that the activation of presynaptic GABA(B) receptors is able to modulate dinucleotide responses in synaptic terminals.
Collapse
Affiliation(s)
- R Gómez-Villafuertes
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
25
|
McMahon SB, Jones NG. Plasticity of pain signaling: Role of neurotrophic factors exemplified by acid-induced pain. ACTA ACUST UNITED AC 2004; 61:72-87. [PMID: 15362154 DOI: 10.1002/neu.20093] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute noxious stimuli activate a specialized neuronal detection system that generates sensations of pain and, generally, adaptive behavioral responses. More persistent noxious stimuli notably those associated with some chronic injuries and disease states not only activate the pain-signaling system but also dramatically alter its properties so that weak stimuli produce pain. These hyperalgesic states arise from at least two distinct broad classes of mechanisms. These are peripheral and central sensitization associated with increased responsiveness of peripheral nociceptor terminals and dorsal horn neurons, respectively. Here we review the key features of these sensitized states and discuss the role of one neurotrophic factor, nerve growth factor, as a peripheral mediator of sensitization and of another factor, brain-derived neurotrophic factor, as a mediator of central sensitization. We use as a specific example the pain induced by acid stimuli. We review the neurobiology of such pain states, and discuss how acid stimuli both initiate sensitization and how the neuronal processing of acid stimuli is subject to sensitization.
Collapse
Affiliation(s)
- Stephen B McMahon
- London Pain Consortium, Kings College London, Center for Neuroscience Research, Hodgkin Building, London Bridge, London SE1 1UL, UK.
| | | |
Collapse
|
26
|
Abstract
Thapsigargin, a drug that inhibits sarco-endoplasmic reticulum Ca(2+) ATPases (SERCAs), was infused into the perilymph compartment of the guinea pig cochlea in increasing concentrations (0.1-10 microM) while sound evoked cochlear potentials were monitored. Thapsigargin significantly suppressed the compound action potential of the auditory nerve, cochlear microphonics, and increased N(1) latency at low (56 dB SPL) and high intensity (92 dB SPL) levels of sound, suppressed low intensity sound evoked summating potential (SP) and greatly increased the magnitude of the high intensity sound evoked SP. At 10 microM, the drug suppressed the cubic distortion product otoacoustic emissions (2f(1)-f(2)=8 kHz, f(2)=12 kHz) evoked by both high and low intensity primaries (45, 60, 70 dB SPL). Thapsigargin (10 microM; 30 min) increased the endocochlear potential slightly (5 mV). In chronic animals, thapsigargin (10 microM; 60 min) destroyed many outer hair cells and some inner hair cells, especially in the basal turns. These effects are consistent with the hypothesis that the inhibition of the SERCAs affects the function of the cochlear amplifier and outer hair cells to a greater degree than it affects other functions of the cochlea.
Collapse
Affiliation(s)
- Richard P Bobbin
- Kresge Hearing Research Laboratory, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Health Sciences Center, 533 Bolivar Street, 5th Floor, New Orleans, LA 70112-2234, USA.
| | | | | |
Collapse
|
27
|
Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:7-32. [PMID: 12948585 DOI: 10.1016/s0005-2736(03)00210-4] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The charge of this invited review is to present a convincing case for the fact that cells release their ATP for physiological reasons. Many of our "purinergic" colleagues as well as ourselves have experienced resistance to this concept, because it is teleologically counter-intuitive. This review serves to integrate the three main tenets of extracellular ATP signaling: ATP release from cells, ATP receptors on cells, and ATP receptor-driven signaling within cells to affect cell or tissue physiology. First principles will be discussed in the Introduction concerning extracellular ATP signaling. All possible cellular mechanisms of ATP release will then be presented. Use of nucleotide and nucleoside scavengers as well as broad-specificity purinergic receptor antagonists will be presented as a method of detecting endogenous ATP release affecting a biological endpoint. Innovative methods of detecting released ATP by adapting luciferase detection reagents or by using "biosensors" will be presented. Because our laboratory has been primarily interested in epithelial cell physiology and pathophysiology for several years, the role of extracellular ATP in regulation of epithelial cell function will be the focus of this review. For ATP release to be physiologically relevant, receptors for ATP are required at the cell surface. The families of P2Y G protein-coupled receptors and ATP-gated P2X receptor channels will be introduced. Particular attention will be paid to P2X receptor channels that mediate the fast actions of extracellular ATP signaling, much like neurotransmitter-gated channels versus metabotropic heptahelical neurotransmitter receptors that couple to G proteins. Finally, fascinating biological paradigms in which extracellular ATP signaling has been implicated will be highlighted. It is the goal of this review to convert and attract new scientists into the exploding field of extracellular nucleotide signaling and to convince the reader that extracellular ATP is indeed a signaling molecule.
Collapse
Affiliation(s)
- Erik M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
28
|
Abstract
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
Collapse
Affiliation(s)
- Yehoash Raphael
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Rm 9303, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0648, USA.
| | | |
Collapse
|
29
|
Spicer SS, Smythe N, Schulte BA. Ultrastructure indicative of ion transport in tectal, Deiters, and tunnel cells: differences between gerbil and chinchilla basal and apical cochlea. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:342-59. [PMID: 12629677 DOI: 10.1002/ar.a.10041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrastructural examination revealed an epithelium of about five tectal cells (TCs) roofing the outer tunnel (OT) in the mid to upper, but not the basal, region of gerbil and chinchilla cochlea. Structures in TCs that are apparently specialized for retrieval of K(+) released into tunnel fluid from outer hair cells (OHCs) include surface fimbriae in the gerbil and canalicular reticulum in the chinchilla. A tunnel roof of organelle-rich TCs appeared to be better equipped for ion resorption than a roof composed of organelle-poor Hensen cells (HCs). Fimbriae, filopodia, and the cell body of TCs descended to contact the third Deiters cell (DC3) in the gerbil, and the hypertrophied DC3 phalanx rose to contact TCs in the chinchilla, which suggests a solute exchange between TCs and DCs. Previously unrecognized structures that are speculated to provide ATP ligand for cochlear purinoreceptors occurred in the chinchilla DC and gerbil TC. The observation of a microtubule stalk in DCs indicated that they also function in cochlear mechanics. A newly delineated lateral tunnel cell (LTC) intervened between the DC3 and HC in both species. The apicomedial plasmalemma of all DCs fitted closely to the base of OHCs and enveloped afferent nerves. The morphologic specializations reported here provide further support for the proposed transcellular lateral flow route for K(+) currents generated by sound exposure and neural activity. The previously demonstrated expansion of Boettcher cells, outer sulcus cell roots, type Il and IV fibrocytes, and apical microvilli on HCs and Claudius cells (CCs) in the base of the cochlea is postulated here to mediate a basal parallel current that could supply the increased K(+) transport required for the basally elevated electric potential (EP).
Collapse
Affiliation(s)
- Samuel S Spicer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
30
|
Gómez-Villafuertes R, Pintor J, Gualix J, Miras-Portugal MT. GABAB receptor-mediated presynaptic potentiation of ATP ionotropic receptors in rat midbrain synaptosomes. Neuropharmacology 2003; 44:311-23. [PMID: 12604091 DOI: 10.1016/s0028-3908(02)00379-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleotides can activate ionotropic P2X receptors that induce calcium-responses in rat midbrain synaptosomes. In this report, we show that ATP elicits Ca(2+) responses producing a monophasic dose-response curve with an EC(50) value of 24.24+/-1.42 micro M. In the presence of gamma-aminobutyric acid (GABA), the ATP dose-response curve becomes biphasic with EC(50) values of 3.69+/-0.44 nM and 59.65+/-8.32 micro M. Moreover, the maximal calcium response induced by ATP is 52.1% higher than the control. This effect is mimicked or blocked by the specific GABA(B) receptor agonist and antagonist, baclofen and saclofen, respectively. Presynaptic GABA(B) receptors, identified by immunocytochemistry are present in 62% of the total synaptosomal population. Adenylate cyclase and protein kinase A cascades are involved in the potentiatory effects mediated by baclofen and their activation or inhibition modifies calcium signalling and synaptosomal cAMP levels. The potentiatory action of baclofen was confirmed by microfluorimetry performed on single synaptic terminals. In its presence, 86% of the terminals responding to 100 micro M ATP, are also able to respond to nanomolar concentrations (100 nM) of this nucleotide. This potentiatory effect is reduced to 32% in the presence of pertussis toxin. Our data suggest that the activity of P2X receptors is modulated by GABA(B) receptors in midbrain synaptosomes.
Collapse
Affiliation(s)
- R Gómez-Villafuertes
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Boyce AT, Schwiebert EM. Extracellular ATP-Gated P2X Purinergic Receptor Channels. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Abstract
The hypothesis that the release of Ca(2+) from ryanodine receptor activated Ca(2+) stores in vivo can affect the function of the cochlea was tested by examining the effects of caffeine (1-10 mM) and ryanodine (1-333 microM), two drugs that release Ca(2+) from these intracellular stores. The drugs were infused into the perilymph compartment of the guinea pig cochlea while sound (10 kHz) evoked cochlear potentials and distortion product otoacoustic emissions (DPOAEs; 2f(1)-f(2)=8 kHz, f(2)=12 kHz) were monitored. Caffeine significantly suppressed the compound action potential of the auditory nerve (CAP) at low intensity (56 dB SPL; 3.3 and 10 mM) and high intensity (92 dB SPL; 10 mM), increased N1 latency at high and low intensity (3 and 10 mM) and suppressed low intensity summating potential (SP; 10 mM) without an effect on high intensity SP. Ryanodine significantly suppressed the CAP at low intensity (100 and 333 microM) and at high intensity (333 microM), increased N1 latency at low intensity (33, 100 and 333 microM) and at high intensity (333 microM) and suppressed low intensity SP (100 and 333 microM) and increased high intensity SP (333 microM). The cochlear microphonic (CM) evoked by 10 kHz tone bursts was not affected by caffeine at high or low intensity, and ryanodine had no effect on it at low intensity but decreased it at high intensity (10, 33, 100 and 333 microM). In contrast, caffeine (10 mM) and ryanodine (33 and 100 microM) significantly increased CM evoked by l kHz tone bursts and recorded from the round window. Caffeine (10 mM) and ryanodine (100 microM) reversibly suppressed the cubic DPOAEs evoked by low intensity primaries. Overall, low intensity evoked responses were more sensitive and were suppressed to a greater extent by both drugs. This is consistent with the hypothesis that release of Ca(2+) from ryanodine receptor Ca(2+) stores, possibly in outer hair cells and supporting cells, affects the function of the cochlear amplifier.
Collapse
Affiliation(s)
- Richard P Bobbin
- Kresge Hearing Research Laboratories, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Health Sciences Center, 533 Bolivar Street, 5th Floor, New Orleans, LA 70112-2234, USA.
| |
Collapse
|
33
|
Vlajkovic SM, Thorne PR, Sévigny J, Robson SC, Housley GD. NTPDase1 and NTPDase2 immunolocalization in mouse cochlea: implications for regulation of p2 receptor signaling. J Histochem Cytochem 2002; 50:1435-42. [PMID: 12417608 DOI: 10.1177/002215540205001102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cellular, molecular, and physiological studies have demonstrated an important signaling role for ATP and related nucleotides acting via P2 receptors in the cochlea of the inner ear. Signal modulation is facilitated by ectonucleotidases, a heterologous family of surface-located enzymes involved in extracellular nucleotide hydrolysis. Our previous studies have implicated CD39/NTPDase1 and CD39L1/NTPDase2, members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, as major ATP-hydrolyzing enzymes in the tissues lining the cochlear endolymphatic and perilymphatic compartments. NTPDase1 hydrolyzes both nucleoside triphosphates and diphosphates. In contrast, NTPDase2 is a preferential nucleoside triphosphatase. This study characterizes expression of these E-NTPDases in the mouse cochlea by immunohistochemistry. NTPDase1 can be immunolocalized to the cochlear vasculature and neural tissues (primary auditory neurons in the spiral ganglion). In contrast, NTPDase2 immunolabeling was principally localized to synaptic regions of the sensory inner and outer hair cells, stereocilia and cuticular plates of the outer hair cells, supporting cells of the organ of Corti (Deiters' cells and inner border cells), efferent nerve fibers located in the intraganglionic spiral bundle, and in the outer sulcus and root region of the spiral ligament. This differential expression of NTPDase1 and 2 in the cochlea suggests spatial regulation of P2 receptor signaling, potentially involving different nucleotide species and hydrolysis kinetics.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Discipline of Audiology and Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
34
|
Abstract
In this study, membrane depolarization and multiple neurotransmitters (5-HT, acetylcholine, histamine, norepinephrine, epinephrine, glutamate, and ATP) were tested for the ability to elevate the intracellular free Ca2+ concentration ([Ca2+]i) in mouse HT4 neuroblastoma cells. Apart from ATP, none of the treatments gave rise to a detectable Ca2+ response, no matter whether the cells were subjected to temperature-induced neuronal differentiation. Our results provide pharmacological evidence for the co-existence in HT4 cells of both P2X and P2Y receptors, the activation of which by ATP led to Ca2+ influx and Ca2+ release, respectively. The P2Y receptor was found to couple to more than one type of G protein in the signaling pathway, causing the activation of phospholipase C (PLC) and Ca2+ mobilization from intracellular stores. cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) attenuated ATP-evoked [Ca2+]i elevations in different ways. However, no correlation was identified between neuronal differentiation and the ATP-evoked Ca2+ responses in HT4 cells. This work indicates that HT4 cells can serve as a good model to study P2 purinoceptor-associated signaling pathways.
Collapse
Affiliation(s)
- Jian-Zhong Han
- Department of Neurobiology, College of Pharmacy, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | | | | |
Collapse
|
35
|
Kirk DL. Interaction between adenosine triphosphate and mechanically induced modulation of electrically evoked otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:2749-2758. [PMID: 12083210 DOI: 10.1121/1.1448315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It was shown previously that electrically evoked otoacoustic emissions (EEOAEs) can be amplitude modulated by low-frequency bias tones and enhanced by application of adenosine triphosphate (ATP) to scala media. These effects were attributed, respectively, to the mechano-electrical transduction (MET) channels and ATP-gated ion channels on outer hair cell (OHC) stereocilia, two conductance pathways that appear to be functionally independent and additive in their effects on ionic current through the OHC. In the experiments described here, the separate influences of ATP and MET channel bias on EEOAEs did not combine linearly. Modulated EEOAEs increased in amplitude, but lost modulation at the phase and frequency of the bias tone (except at very high sound levels) after application of ATP to scala media, even though spectral components at the modulation sideband frequencies were still present. Some sidebands underwent phase shifts after ATP. In EEOAEs modulated by tones at lower sound levels, substitution of the original phase values restored modulation to the waveform, which then resembled a linear summation of the separate effects of ATP and low-frequency bias. While the physiological meaning of this procedure is not clear, the result raises the possibility that a secondary effect of ATP on one or more nonlinear stages in the transduction process, which may have caused the phase shifts, obscured linear summation at lower sound levels. In addition, "acoustic enhancement" of the EEOAE may have introduced nonlinear interaction at higher levels of the bias tones.
Collapse
Affiliation(s)
- Desmond L Kirk
- Department of Physiology, The University of Western Australia, Crawley, Australia
| |
Collapse
|
36
|
Abstract
Deiters' cells, a type of supporting cell in the sensory epithelium of the cochlea, the organ of Corti, have been found to have P2X and P2Y adenosine triphosphate (ATP) receptors on their surfaces. Activation of these receptors may alter the mechanical properties of Deiters' cells and thus of the organ itself. ATP was applied to Deiters' cells isolated from guinea pig cochlea and the tip of the cells' stalk monitored for an ATP induced movement. Application of 100 microM ATP to the cell body of isolated Deiters' cells induced a small, reversible movement of the cells' stalk whereas application of bathing media did not. Results suggest that in vivo endogenous extracellular ATP released from unidentified locations could alter cochlear mechanics.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Guinea Pigs
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hearing/drug effects
- Hearing/physiology
- Labyrinth Supporting Cells/cytology
- Labyrinth Supporting Cells/drug effects
- Labyrinth Supporting Cells/metabolism
- Microscopy, Video
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Purinergic/drug effects
- Receptors, Purinergic/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
Collapse
Affiliation(s)
- R P Bobbin
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Health Sciences Center, 533 Bolivar Street, 5th Floor; New Orleans, LA 70112-2234, USA
| |
Collapse
|
37
|
Abstract
Increasing attention is being given to the role of neurotransmitters and other signaling substances in the damage induced by intense sound to the cochlea. Adenosine triphosphate (ATP) is one example of a putative neurotransmitter that may alter cochlear mechanics during sound exposure. The purpose of the present study was to test the hypothesis that endogenous extracellular ATP has a role in the generation of the changes in cochlear mechanics induced by moderate intense sound exposure. Guinea pigs were exposed to either: (1) a perilymphatic administration of pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 1 mM), an ATP antagonist; (2) a moderately intense sound (6 kHz tone, 95 dB SPL, 15 min); or (3) a combination of the PPADS and the sound. The effects on the cubic distortion product otoacoustic emissions (DPOAEs; 2f1-f2) were monitored using three sets of equal level primaries (f1=9.25 kHz, f2=10.8 kHz, 2f1-f2=7.7 kHz; f1=7.2 kHz, f2=8.4 kHz, 2f1-f2=6 kHz; f1=5.55 kHz, f2=6.5 kHz, 2f1-f2=4.6 kHz). PPADS alone had no effect on the cubic DPOAEs monitored. The intense sound alone suppressed all three cubic DPOAEs. The combination of PPADS with the intense sound induced a suppression of the cubic DPOAEs that was equal to or greater than induced by the intense sound alone at f2=10.8 kHz but was equal to or less than induced by the intense sound at f2=8.4 and 6.5 kHz. After washing the PPADS out of the cochlea with artificial perilymph, all three cubic DPOAEs were suppressed less in the PPADS with intense sound treatment group than in the intense sound alone group. The PPADS appeared to provide protection from the intense sound. Results are consistent with the hypothesis that extracellular ATP is involved in the changes in cochlear mechanics induced by moderately intense sound exposure.
Collapse
Affiliation(s)
- R P Bobbin
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, 533 Bolivar Street, 5th floor, New Orleans, LA 70112-2234, USA.
| |
Collapse
|
38
|
Substance P abolishes the facilitatory effect of ATP on spontaneous glycine release in neurons of the trigeminal nucleus pars caudalis. J Neurosci 2001. [PMID: 11312282 DOI: 10.1523/jneurosci.21-09-02983.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycine release was facilitated by the activation of presynaptic ATP receptors (P(2X)-type) in a preparation of dissociated trigeminal nucleus pars caudalis neurons in which the native synaptic boutons were preserved. The action of ATP was completely blocked by substance P (SP) without alteration of the miniature IPSC (mIPSC) amplitude distribution. SP itself had no effect on mIPSC frequency or amplitude. The inhibitory effect of SP on ATP action was blocked by CP99994, indicating that the SP receptors are of the neurokinin-1 type. The ATP-induced facilitation of the mIPSC frequency was unaffected by Cd(2+). Moreover, SP did not inhibit the increase in mIPSC frequency induced high K(+) application, suggesting that SP did not modulate voltage-dependent calcium channels or subsequent steps in the release process. KT5720 and phorbol 12-myristate 13-acetate did not block SP action, indicating that neither the cAMP-protein kinase A nor the protein kinase C pathway mediates the SP effects. However, in the presence of N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7), SP was no longer able to inhibit the ATP-induced stimulation of mIPSC frequency. 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine also suppressed the SP action, suggesting that SP modulates P(2X) receptors via a Ca(2+)/calmodulin-dependent protein kinase II-mediated pathway. In conventional whole-cell mode, the presence of W-7 in the patch pipette did not affect the SP inhibitory action. Thus, SP is not likely to be generating its modulation through the production of a retrograde signal (involving calmodulin) from the postsynaptic cell to the presynaptic boutons. These results are the first demonstration of the modulation of one presynaptic receptor by another. Because SP inhibits the ATP stimulation of glycine release, SP may play a significant role in hyperalgesia or chronic pain.
Collapse
|
39
|
Wang ZM, Katsurabayashi S, Rhee JS, Brodwick M, Akaike N. Substance P abolishes the facilitatory effect of ATP on spontaneous glycine release in neurons of the trigeminal nucleus pars caudalis. J Neurosci 2001; 21:2983-91. [PMID: 11312282 PMCID: PMC6762565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Glycine release was facilitated by the activation of presynaptic ATP receptors (P(2X)-type) in a preparation of dissociated trigeminal nucleus pars caudalis neurons in which the native synaptic boutons were preserved. The action of ATP was completely blocked by substance P (SP) without alteration of the miniature IPSC (mIPSC) amplitude distribution. SP itself had no effect on mIPSC frequency or amplitude. The inhibitory effect of SP on ATP action was blocked by CP99994, indicating that the SP receptors are of the neurokinin-1 type. The ATP-induced facilitation of the mIPSC frequency was unaffected by Cd(2+). Moreover, SP did not inhibit the increase in mIPSC frequency induced high K(+) application, suggesting that SP did not modulate voltage-dependent calcium channels or subsequent steps in the release process. KT5720 and phorbol 12-myristate 13-acetate did not block SP action, indicating that neither the cAMP-protein kinase A nor the protein kinase C pathway mediates the SP effects. However, in the presence of N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7), SP was no longer able to inhibit the ATP-induced stimulation of mIPSC frequency. 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine also suppressed the SP action, suggesting that SP modulates P(2X) receptors via a Ca(2+)/calmodulin-dependent protein kinase II-mediated pathway. In conventional whole-cell mode, the presence of W-7 in the patch pipette did not affect the SP inhibitory action. Thus, SP is not likely to be generating its modulation through the production of a retrograde signal (involving calmodulin) from the postsynaptic cell to the presynaptic boutons. These results are the first demonstration of the modulation of one presynaptic receptor by another. Because SP inhibits the ATP stimulation of glycine release, SP may play a significant role in hyperalgesia or chronic pain.
Collapse
Affiliation(s)
- Z M Wang
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | |
Collapse
|
40
|
Lagostena L, Mammano F. Intracellular calcium dynamics and membrane conductance changes evoked by Deiters' cell purinoceptor activation in the organ of Corti. Cell Calcium 2001; 29:191-8. [PMID: 11162856 DOI: 10.1054/ceca.2000.0183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deiters' cells function as supporting cells for the sensory-motor outer hair cells of the mammalian cochlea and are interconnected by gap junctions. Here the electrical and Ca2+ responses of Deiters' cells evoked by purinergic stimulation were investigated in the organ of Corti, the auditory sensory epithelium. Adenosine 59-triphosphate (ATP, 50-100 microM) applied focally by pressure increased the intracellular free Ca2+ concentration ([Ca2+]i). At the same time ATP evoked an early inward current that was followed by an outward component, reflecting a sustained Ca2+-dependent reduction of the pre-stimulus offset current. These responses were maintained when Ca2+ was removed from the extracellular medium (0 [Ca2+]o), indicating a contribution to Ca2+ signalling from P2Y metabotropic receptors. UV photolysis of caged inositol 1,4,5-triphosphate (InsP3, 16 microM) produced Ca2+ responses similar to those evoked by exogenous ATP, accompanied by reduction of the offset current. In Deiters' cells uncoupled by octanol (1mM), ATP activated only the early inward current, suggesting that functional gap junctions are required in the late phase of the current responses. Following the delivery of UV flashes to pairs of Deiters' cells loaded with caged InsP3, the electrical coupling ratio (CR), monitored by double patch-clamp recordings, was strongly attenuated. These data support the idea that, by promoting inflow of cations and by controlling gap-junction conductance in a Ca2+-and InsP3-dependent way, ATP might serve a protective role in the cochlea.
Collapse
Affiliation(s)
- L Lagostena
- Biophysics Sector and INFM Unit, International School for Advanced Studies, via Beirut 2-4, Trieste, 34014, Italy
| | | |
Collapse
|
41
|
Abstract
1. Electrochemical homeostasis, sound transduction and auditory neurotransmission in the cochlea are influenced by extracellular purines and pyrimidines. 2. Evidence that ATP and related nucleotides influence inner ear function arises from a considerable number of cellular, molecular and physiological studies in vitro and in vivo. 3. With a full understanding of these processes, which include ionotropic (P2X receptor) and metabotropic (P2Y receptor) signal transduction pathways, signal termination involving ecto-nucleotidases and recycling via nucleoside transporters, exciting possibilities emerge for treating hearing disorders, such as Meniere's disease, tinnitus and sensorineural deafness.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, New Zealand.
| |
Collapse
|
42
|
Housley GD, Thorne PR. Purinergic signalling: an experimental perspective. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:139-45. [PMID: 10869712 DOI: 10.1016/s0165-1838(00)00116-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Investigation of the multiple roles of extracellular nucleotides in the cochlea has developed from analysis of ATP-activated conductances in single sensory hair cells. Molecular probes such as radiolabelled ATP analogues and radiolabelled mRNA for ATP-gated ion channel subunits (P2X receptors) rapidly revealed the extensive nature of ATP signalling in this sensory organ. This has provided a foundation for physiological investigations which put extracellular nucleotides at the centre of homeostatic regulation of the driving force for sound transduction, modulation of mechanical tuning, control of cochlear blood flow and auditory neurotransmission. The purinergic signal transduction pathways associated with these processes have several novel features of significance to the broader field of purinergic neuroscience. In turn, these studies have benefited from the recent experimental advances in the field of purinergic signalling, a significant component of which is associated with the work of Professor Geoffrey Burnstock.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
43
|
Järlebark LE, Housley GD, Thorne PR. Immunohistochemical localization of adenosine 5'-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J Comp Neurol 2000; 421:289-301. [PMID: 10813788 DOI: 10.1002/(sici)1096-9861(20000605)421:3<289::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Substantial in vitro and in vivo data support a role for extracellular adenosine 5;-triphosphate (ATP) and associated P2 receptors in cochlear function. However, the precise spatiotemporal distribution of the involved receptor protein(s) has not been determined. By using a specific antiserum and immunoperoxidase labeling, the tissue distribution of the P2X(2) subunit of the ATP-gated ion channel was investigated. Here, we describe the first extensive immunohistochemical mapping of P2X(2) receptor subunits in the adult and developing rat cochlea. In the adult, immunoreactivity was observed in most cells bordering on the endolymphatic compartment (scala media), particularly in the supporting cells. Hair cells were not immunostained by the P2X(2) antiserum, except for outer hair cell stereocilia. In addition, weak immunolabeling was observed in some spiral ganglion neurons. P2X(2) receptor subunit protein expression during labyrinthine ontogeny was detected first on embryonic day 19 in the spiral ganglion and in associated nerve fibers extending to the inner hair cells. Immunostaining also was observed underneath outer hair cells, and, by postnatal day 6 (P6), intense immunolabeling was seen in the synaptic regions of both types of hair cell. Supporting cells of the sensory epithelium were labeled at P0. This labeling became most prominent from the onset of cochlear function (P8-P12). Conversely, expression in the vascular stria declined from this time. By P21, the pattern of immunolabeling was similar to that found in the adult. The localization and timing of P2X(2) immunoreactivity suggest involvement of extracellular ATP and associated ATP-gated ion channels in important physiological events, such as inner ear ontogeny, sound transduction, cochlear micromechanics, electrochemical homeostasis, and auditory neurotransmission.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cochlea/growth & development
- Cochlea/metabolism
- Female
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/metabolism
- Ion Channels/metabolism
- Pregnancy
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Spiral Ganglion/growth & development
- Spiral Ganglion/metabolism
Collapse
Affiliation(s)
- L E Järlebark
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
44
|
Chen C, Parker MS, Barnes AP, Deininger P, Bobbin RP. Functional expression of three P2X(2) receptor splice variants from guinea pig cochlea. J Neurophysiol 2000; 83:1502-9. [PMID: 10712475 DOI: 10.1152/jn.2000.83.3.1502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP has been suggested to act as a neurotransmitter or a neuromodulator in the cochlea. The responses to ATP in different cell types of the cochlea vary in terms of the rate of desensitization and magnitude, suggesting that there may be different subtypes of P2X receptors distributed in the cochlea. Recently three ionotropic P2X(2) receptor splice variants, P2X(2-1), P2X(2-2), and P2X(2-3,) were isolated and sequenced from a guinea pig cochlear cDNA library. To test the hypothesis that these different splice variants could be expressed as functional homomeric receptors, the three P2X(2) receptor variants were individually and transiently expressed in human embryonic kidney cells (HEK293). The biophysical and pharmacological properties of these receptors were characterized using the whole cell patch-clamp technique. Extracellular application of ATP induced an inward current in HEK293 cells containing each of the three splice variants in a dose-dependent manner indicating the expression of homomeric receptors. Current-voltage (I-V) relationships for the ATP-gated current show that the three subtypes of the P2X(2) receptor had a similar reversal potential and an inward rectification index (I(50 mV)/I(-50 mV)). However, the ATP-induced currents in cells expressing P2X(2-1) and P2X(2-2) variants were large and desensitized rapidly whereas the current in those cells expressing the P2X(2-3) variant was much smaller and desensitized slower. The order of potency to ATP agonists was 2-MeSATP > ATP > alpha,beta -MeATP for all three expressed splice variants. The ATP receptor antagonists suramin and PPADS reduced the effects of ATP on all three variants. Results demonstrate that three P2X(2) splice variants from guinea pig cochlea, P2X(2-1), P2X(2-2), and P2X(2-3), can individually form nonselective cation receptor channels when these subunits are expressed in HEK293 cells. The distinct properties of these P2X(2) receptor splice variants may contribute to the differences in the response to ATP observed in native cochlear cells.
Collapse
Affiliation(s)
- C Chen
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
45
|
Matsunobu T, Schacht J. Nitric oxide/Cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000731)423:3<452::aid-cne8>3.0.co;2-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Chen C, Bazan NG. Platelet-activating factor inhibits ionotropic GABA receptor activity in cultured hippocampal neurons. Neuroreport 1999; 10:3831-5. [PMID: 10716218 DOI: 10.1097/00001756-199912160-00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platelet-activating factor (PAF), one of the most potent bioactive lipids, has been implicated in modulating long-term potentiation (LTP) and neurotoxicity. In the CNS, glutamate and GABA are the major excitatory and inhibitory neurotransmitters, respectively. Previous work has focused on the effects of PAF on glutamatergic receptor responses. The purpose of the present study was to investigate the possible actions of PAF on ionotropic GABA receptor responses in primary cultured hippocampal neurons using the whole-cell and single channel patch clamp techniques. Extracellular application of PAF induced a reduction of the GABA gated Cl- current in a majority of cells (29 of 44 cells), while it caused an enhancement in 10 of 44 cells. A similar heterogeneous modulation of PAF on the GABA receptor activities was also observed in outside-out patch recordings. Moreover, the cell-attached single channel recordings showed that PAF decreased the GABA channel activity. Therefore, PAF may modulate synaptic activity by inhibiting GABA receptor channels. During seizures and neural injury, when enhanced synthesis of this lipid mediator takes place, the actions of PAF on inhibitory GABA receptors may contribute to synaptic dysfunction.
Collapse
Affiliation(s)
- C Chen
- Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
47
|
Muñoz DJ, Thorne PR, Housley GD. P2X receptor-mediated changes in cochlear potentials arising from exogenous adenosine 5'-triphosphate in endolymph. Hear Res 1999; 138:56-64. [PMID: 10575114 DOI: 10.1016/s0378-5955(99)00151-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have determined the presence of adenosine 5'-triphosphate (ATP) in the cochlear fluids and shown that extracellular ATP introduced into the endolymphatic compartment of the guinea pig cochlea has a significant dose-dependent suppressive effect on both endocochlear potential (EP) and cochlear microphonic (CM), which is mediated via P2 receptors. In the present study, the influence of P2 receptor agonists and antagonists on this suppressive effect was investigated to characterise the subtypes of P2 receptor mediating the ATP-induced effect on cochlear function. Using a double-barreled pipette attached to a pressure injector, small volumes (2-10 nl) of ATP (0.01-1 mM) and P2 receptor agonists or P2 receptor antagonists in artificial endolymph were introduced into the scala media of the first (basal) and third turns of the guinea pig cochlea, while the EP and CM were monitored. ATP and P2 receptor agonists (5x10(-14)-1x10(-11)cibacron blue. Neither adenosine nor uridine 5'-triphosphate (2x10(-13)-2x10(-11) moles) nor the P2 receptor antagonists on their own had any effect on EP and CM. The ATP effect on the potentials was greater at the third cochlear turn when compared to the first turn. These results provide evidence that in the endolymphatic compartment of the guinea pig, the extracellular ATP effect on cochlear function is likely mediated through an interaction with P2 receptors which assemble as ATP-gated ion channels.
Collapse
Affiliation(s)
- D J Muñoz
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
48
|
Abstract
In the organ of Corti ionotropic receptors for ATP (ATPRs) on cells that are bathed by perilymph have been suggested to modulate cochlear mechanics. The purpose of the present study was to test the hypothesis that endogenous extracellular ATP acting through ATPRs is involved in modulating cochlear mechanics during moderately intense sound exposure. Guinea pigs were exposed to either: (1) a perilymphatic administration of pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS, 1 mM), an ATP antagonist; (2) a moderately intense sound (6.7 kHz tone, 95 dB SPL, 15 min); or (3) a combination of both the PPADS and the sound. The effects on cochlear potentials (cochlear microphonic, CM; negative summating potential, SP; compound action potential of the auditory nerve, CAP; and N(1) latency) evoked by a 10 kHz tone pip were monitored. PPADS alone reduced the CAP and the SP and increased N(1) latency. The intense sound alone reduced the CAP and SP. The combination of PPADS with the intense tone induced reversible effects on cochlear potentials that were greater than induced by either treatment alone. The effect on N(1) latency and low intensity CM was a potentiation since the effect was greater than a simple addition of the effect of either treatment alone. The effects of the combination treatment on CAP, SP and high intensity CM were not different from additive. Results are consistent with the hypothesis that ATPRs in the organ of Corti are involved in modulating cochlear mechanics during moderately intense sound exposure.
Collapse
Affiliation(s)
- C LeBlanc
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans, LA 70112-2234, USA
| | | |
Collapse
|
49
|
Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 1999. [PMID: 10493739 DOI: 10.1523/jneurosci.19-19-08377.1999] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular ATP has multimodal actions in the cochlea affecting hearing sensitivity. ATP-gated ion channels involved in this process were characterized in the guinea pig cochlea. Voltage-clamped hair cells exhibited a P2 receptor pharmacology compatible with the assembly of ATP-gated ion channels from P2X(2) receptor subunits. Reverse transcription-PCR experiments confirmed expression of the P2X(2-1) receptor subunit mRNA isoform in the sensory epithelium (organ of Corti); a splice variant that confers desensitization, P2X(2-2), was the predominant subunit isoform expressed by primary auditory neurons. Expression of the ATP-gated ion channel protein was localized using a P2X(2) receptor subunit-specific antiserum. The highest density of P2X(2) subunit-like immunoreactivity in the cochlea occurred on the hair cell stereocilia, which faces the endolymph. Tissues lining this compartment exhibited significant P2X(2) receptor subunit expression, with the exception of the stria vascularis. Expression of ATP-gated ion channels at these sites provides a pathway for the observed ATP-induced reduction in endocochlear potential and likely serves a protective role, decoupling the "cochlear amplifier" in response to stressors, such as noise and ischemia. Within the perilymphatic compartment, immunolabeling on Deiters' cells is compatible with purinergic modulation of cochlear micromechanics. P2X(2) receptor subunit expression was also detected in spiral ganglion primary afferent neurons, and immunoelectron microscopy localized these subunits to postsynaptic junctions at both inner and outer hair cells. The former supports a cotransmitter role for ATP in a subset of type I spiral ganglion neurons, and latter represents the first characterization of a receptor for a fast neurotransmitter associated with the type II spiral ganglion neurons.
Collapse
|
50
|
Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Järlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 1999; 19:8377-88. [PMID: 10493739 PMCID: PMC6783052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1999] [Accepted: 07/16/1999] [Indexed: 02/14/2023] Open
Abstract
Extracellular ATP has multimodal actions in the cochlea affecting hearing sensitivity. ATP-gated ion channels involved in this process were characterized in the guinea pig cochlea. Voltage-clamped hair cells exhibited a P2 receptor pharmacology compatible with the assembly of ATP-gated ion channels from P2X(2) receptor subunits. Reverse transcription-PCR experiments confirmed expression of the P2X(2-1) receptor subunit mRNA isoform in the sensory epithelium (organ of Corti); a splice variant that confers desensitization, P2X(2-2), was the predominant subunit isoform expressed by primary auditory neurons. Expression of the ATP-gated ion channel protein was localized using a P2X(2) receptor subunit-specific antiserum. The highest density of P2X(2) subunit-like immunoreactivity in the cochlea occurred on the hair cell stereocilia, which faces the endolymph. Tissues lining this compartment exhibited significant P2X(2) receptor subunit expression, with the exception of the stria vascularis. Expression of ATP-gated ion channels at these sites provides a pathway for the observed ATP-induced reduction in endocochlear potential and likely serves a protective role, decoupling the "cochlear amplifier" in response to stressors, such as noise and ischemia. Within the perilymphatic compartment, immunolabeling on Deiters' cells is compatible with purinergic modulation of cochlear micromechanics. P2X(2) receptor subunit expression was also detected in spiral ganglion primary afferent neurons, and immunoelectron microscopy localized these subunits to postsynaptic junctions at both inner and outer hair cells. The former supports a cotransmitter role for ATP in a subset of type I spiral ganglion neurons, and latter represents the first characterization of a receptor for a fast neurotransmitter associated with the type II spiral ganglion neurons.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Adenosine Triphosphate/physiology
- Alternative Splicing
- Animals
- Auditory Perception/physiology
- Cilia/physiology
- Cilia/ultrastructure
- Cochlea/physiology
- Female
- Genetic Variation
- Guinea Pigs
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/physiology
- Hearing/physiology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ion Channels/genetics
- Ion Channels/physiology
- Male
- Organ of Corti/cytology
- Organ of Corti/physiology
- RNA, Messenger/genetics
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X2
- Reverse Transcriptase Polymerase Chain Reaction
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Transmission/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|