1
|
Diskin C, Day EA, Henry ÓC, Toller-Kawahisa JE, O’Neill LAJ. 4-Octyl Itaconate and Dimethyl Fumarate Induce Secretion of the Anti-Inflammatory Protein Annexin A1 via NRF2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1032-1041. [PMID: 37578391 PMCID: PMC10476164 DOI: 10.4049/jimmunol.2200848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Annexin A1 is a key anti-inflammatory effector protein that is involved in the anti-inflammatory effects of glucocorticoids. 4-Octyl itaconate (4-OI), a derivative of the endogenous metabolite itaconate, which is abundantly produced by LPS-activated macrophages, has recently been identified as a potent anti-inflammatory agent. The anti-inflammatory effects of 4-OI share a significant overlap with those of dimethyl fumarate (DMF), a derivate of another Krebs cycle metabolite fumarate, which is already in use clinically for the treatment of inflammatory diseases. In this study we show that both 4-OI and DMF induce secretion of the 33-kDa form of annexin A1 from murine bone marrow-derived macrophages, an effect that is much more pronounced in LPS-stimulated cells. We also show that this 4-OI- and DMF-driven annexin A1 secretion is NRF2-dependent and that other means of activating NRF2 give rise to the same response. Lastly, we demonstrate that the cholesterol transporter ABCA1, which has previously been implicated in annexin A1 secretion, is required for this process in macrophages. Our findings contribute to the growing body of knowledge on the anti-inflammatory effects of the Krebs cycle metabolite derivatives 4-OI and DMF.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Emily A. Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Órlaith C. Henry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Juliana E. Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Luke A. J. O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
2
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
3
|
Therapeutic Potential of Annexin A1 Modulation in Kidney and Cardiovascular Disorders. Cells 2021; 10:cells10123420. [PMID: 34943928 PMCID: PMC8700139 DOI: 10.3390/cells10123420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Renal and cardiovascular disorders are very prevalent and associated with significant morbidity and mortality. Among diverse pathogenic mechanisms, the dysregulation of immune and inflammatory responses plays an essential role in such disorders. Consequently, the discovery of Annexin A1, as a glucocorticoid-inducible anti-inflammatory protein, has fueled investigation of its role in renal and cardiovascular pathologies. Indeed, with respect to the kidney, its role has been examined in diverse renal pathologies, including acute kidney injury, diabetic nephropathy, immune-mediated nephropathy, drug-induced kidney injury, kidney stone formation, and renal cancer. Regarding the cardiovascular system, major areas of investigation include the role of Annexin A1 in vascular abnormalities, atherosclerosis, and myocardial infarction. Thus, this review briefly describes major structural and functional features of Annexin A1 followed by a review of its role in pathologies of the kidney and the cardiovascular system, as well as the therapeutic potential of its modulation for such disorders.
Collapse
|
4
|
Roberts LM, Schwarz B, Speranza E, Leighton I, Wehrly T, Best S, Bosio CM. Pulmonary infection induces persistent, pathogen-specific lipidomic changes influencing trained immunity. iScience 2021; 24:103025. [PMID: 34522865 PMCID: PMC8426275 DOI: 10.1016/j.isci.2021.103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
Resolution of infection results in development of trained innate immunity which is typically beneficial for defense against unrelated secondary infection. Epigenetic changes including modification of histones via binding of various polar metabolites underlie the establishment of trained innate immunity. Therefore, host metabolism and this response are intimately linked. However, little is known regarding the influence of lipids on the development and function of trained immunity. Utilizing two models of pulmonary bacterial infection combined with multi-omic approaches, we identified persistent, pathogen-specific changes to the lung lipidome that correlated with differences in the trained immune response against a third unrelated pathogen. Further, we establish the specific cellular populations in the lung that contribute to this altered lipidome. Together these results expand our understanding of the pulmonary trained innate immune response and the contributions of host lipids in informing that response. Pathogens exert differential effects on pulmonary efferocytosis post-infection Differences in efferocytosis are mediated by macrophage subsets Unique immune lipid mediator milieus are linked to these macrophage subsets Changes in the lipid landscape impact trained immunity to an unrelated infection
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | - Emily Speranza
- Lymphocyte Biology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.,Innate Immunity and Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Ian Leighton
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | - Tara Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | - Sonja Best
- Innate Immunity and Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
5
|
Luckey AM, Robertson IH, Lawlor B, Mohan A, Vanneste S. Sex Differences in Locus Coeruleus: A Heuristic Approach That May Explain the Increased Risk of Alzheimer's Disease in Females. J Alzheimers Dis 2021; 83:505-522. [PMID: 34334399 DOI: 10.3233/jad-210404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article aims to reevaluate our approach to female vulnerability to Alzheimer's disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOEɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Ian H Robertson
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anusha Mohan
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Pantaleão L, Rocha GHO, Reutelingsperger C, Tiago M, Maria-Engler SS, Solito E, Farsky SP. Connections of annexin A1 and translocator protein-18 kDa on toll like receptor stimulated BV-2 cells. Exp Cell Res 2018; 367:282-290. [DOI: 10.1016/j.yexcr.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 01/27/2023]
|
7
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem 2017; 397:981-93. [PMID: 27447237 DOI: 10.1515/hsz-2016-0200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
Inflammation is essential to protect the host from exogenous and endogenous dangers that ultimately lead to tissue injury. The consequent tissue repair is intimately associated with the fate of the inflammatory response. Restoration of tissue homeostasis is achieved through a balance between pro-inflammatory and anti-inflammatory/pro-resolving mediators. In chronic inflammatory diseases such balance is compromised, resulting in persistent inflammation and impaired healing. During the last two decades the glucocorticoid-regulated protein Annexin A1 (AnxA1) has emerged as a potent pro-resolving mediator acting on several facets of the innate immune system. Here, we review the therapeutic effects of AnxA1 on tissue healing and repairing together with the molecular targets responsible for these complex biological properties.
Collapse
|
9
|
Stief TW. Thrombin Generation by Exposure of Blood to Endotoxin: A Simple Model to Study Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2016; 12:137-61. [PMID: 16708116 DOI: 10.1177/107602960601200202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pathologic disseminated intravascular coagulation (PDIC) is a serious complication in sepsis. In an in-vitro system consisting of incubation of fresh citrated blood with lipopolysaccharides (LPS) or glucans and subsequent plasma recalcification plasmatic thrombin was quantified. Five hundred microliters of freshly drawn citrated blood of healthy donors were incubated with up to 800 ng/mL LPS ( Escherichia coli) or up to 80 μg/mL Zymosan A (ZyA; Candida albicans) for 30 minutes at room temperature (RT). The samples were centrifuged, and 30 μL plasma were recalcified with 1 volume or less of CaCl2 (25 μmoles Ca2+/mL plasma). After 0 to 12 minutes (37°C), 20 μL 2.5 M arginine, pH 8.6, were added. Thirty microliters 0.9 m M HD-CHG-Ala-Arg-pNA in 2.3 M arginine were added, and the absorbance increase at 405 nm was determined. Fifty microliters plasma were also incubated with 5 μL 250 m M CaCl2 for 5, 10, or 15 minutes (37°C). Fifty microliters 2.5 M arginine stops coagulation, and 50 μL 0.77 m M HD-CHG-Ala-Arg-pNA in 2.3 M arginine starts the thrombin detection. The standard was 1 IU/mL thrombin in 7% human albumin instead of plasma. Arginine was also added in the endotoxin exposure time (EET) or in the plasma coagulation reaction time (CRT). Tissue factor (TF)-antigen and soluble CD14 were determined. LPS at blood concentrations greater than 10 ng/mL or ZyA at greater than 1 μg/mL severalfold enhance thrombin generation, when the respective plasmas are recalcified. After 30 minutes EET at RT, the thrombin activity at 12 minutes CRT generated by the addition of 200 ng/mL LPS or 20 μg/mL ZyA is approximately 200 mIU/mL compared to approximately 20 mIU/mL without addition of endotoxin, or compared to about 7 mIU/mL thrombin at 0 minutes CRT. Arginine added to blood or to plasma inhibits thrombin generation; the inhibitory concentration 50% (IC 50) is approximately 15 m M plasma concentration. Endotoxin incubation of blood increases neither TF nor sCD14. This assay allows the study of the hemostasis alteration in PDIC, particularly in PDIC by sepsis. The thrombin generated by blood plus endotoxin incubation and plasma recalcification suggests that the contact phase of coagulation; e.g., triggered by cell components of (phospholipase-) lysed cells such as monocyte or endothelium DNA or phospholipid-vesicles (microparticles), is of primary pathologic importance in sepsis-PDIC. Arginine at plasma concentrations of 10 to 50 m M might be a new therapeutic for sepsis-PDIC.
Collapse
Affiliation(s)
- T W Stief
- Department of Clinical Chemistry, University Hospital Giessen/Marburg, Germany.
| |
Collapse
|
10
|
Machado ID, Spatti M, Hastreiter A, Santin JR, Fock RA, Gil CD, Oliani SM, Perretti M, Farsky SHP. Annexin A1 Is a Physiological Modulator of Neutrophil Maturation and Recirculation Acting on the CXCR4/CXCL12 Pathway. J Cell Physiol 2016; 231:2418-27. [PMID: 26892496 DOI: 10.1002/jcp.25346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Neutrophil production and traffic in the body compartments is finely controlled, and the strong evidences support the role of CXCL12/CXCR4 pathway on neutrophil trafficking to and from the bone marrow (BM). We recently showed that the glucocorticoid-regulated protein, Annexin A1 (AnxA1) modulates neutrophil homeostasis and here we address the effects of AnxA1 on steady-state neutrophil maturation and trafficking. For this purpose, AnxA1(-/-) and Balb/C wild-type mice (WT) were donors of BM granulocytes and mesenchymal stem cells and blood neutrophils. In vivo treatments with the pharmacological AnxA1 mimetic peptide (Ac2-26) or the formyl peptide receptor (FPR) antagonist (Boc-2) were used to elucidate the pathway of AnxA1 action, and with the cytosolic glucocorticoid antagonist receptor RU 38486. Accelerated maturation of BM granulocytes was detected in AnxA1(-/-) and Boc2-treated WT mice, and was reversed by treatment with Ac2-26 in AnxA1(-/-) mice. AnxA1 and FPR2 were constitutively expressed in bone marrow granulocytes, and their expressions were reduced by treatment with RU38486. Higher numbers of CXCR4(+) neutrophils were detected in the circulation of AnxA1(-/-) or Boc2-treated WT mice, and values were rescued in Ac2-26-treated AnxA1(-/-) mice. Although circulating neutrophils of AnxA1(-/-) animals were CXCR4(+) , they presented reduced CXCL12-induced chemotaxis. Moreover, levels of CXCL12 were reduced in the bone marrow perfusate and in the mesenchymal stem cell supernatant from AnxA1(-/-) mice, and in vivo and in vitro CXCL12 expression was re-established after Ac2-26 treatment. Collectively, these data highlight AnxA1 as a novel determinant of neutrophil maturation and the mechanisms behind blood neutrophil homing to BM via the CXCL12/CXCR4 pathway. J. Cell. Physiol. 231: 2418-2427, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isabel Daufenback Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marina Spatti
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Araceli Hastreiter
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Roberto Santin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M, Solito E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51:212-222. [PMID: 26321046 DOI: 10.1016/j.bbi.2015.08.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood-brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.
Collapse
Affiliation(s)
- E Maggioli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S McArthur
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Biomedical Sciences, Faculty of Science & Technology, University of Westminster, New Cavendish Street, London W1W 6UW, UK
| | - C Mauro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Kieswich
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D H M Kusters
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands; Department of Pathology, University of Michigan Health System, 109 Zina Pitcher Place, 4062 BSRB, Ann Arbor, MI 48109-2200, United States
| | - C P M Reutelingsperger
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands
| | - M Yaqoob
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - E Solito
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
12
|
D'Acunto CW, Gbelcova H, Festa M, Ruml T. The complex understanding of Annexin A1 phosphorylation. Cell Signal 2013; 26:173-8. [PMID: 24103589 DOI: 10.1016/j.cellsig.2013.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022]
Abstract
Annexin A1 (ANXA1) is the first characterized member of the annexins superfamily. It binds the cellular membrane phospholipids in Ca(2+) regulated manner. Annexin A1 has been found in several tissues and many physiological roles as hormones secretion, vesiculation, inflammatory response, apoptosis and differentiation have been shown. Its subcellular localization and binding with many partner proteins are altered accordingly with its physiological role. The Annexin A1 membrane localization is crucial for binding to receptors, suggesting a paracrine and juxtacrine extracellular action. Annexin A1 is subjected to several post-translational modifications. In particular the protein is phosphorylated on several residues both on the N-terminal functional domain and on the C-terminus core. Different kinases have been identified as responsible for the phosphorylation status of selective residues. The specific change in the phosphorylation status on the different sites alters ANXA1 localization, binding properties and functions. This review shows the physiological relevance of the ANXA1 phosphorylation leading to the conclusion that numerous and different roles of Annexin A1 could be associated with different phosphorylations to alter not only intracellular localization and bindings to its partners but also the extracellular receptor interactions.
Collapse
Affiliation(s)
- Cosimo Walter D'Acunto
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28, Czech Republic.
| | | | | | | |
Collapse
|
13
|
Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 2012; 110:832-41. [PMID: 23277546 DOI: 10.1073/pnas.1209362110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.
Collapse
|
14
|
McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, Solito E. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. THE JOURNAL OF IMMUNOLOGY 2010; 185:6317-28. [PMID: 20962261 DOI: 10.4049/jimmunol.1001095] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. We have identified ANXA1 to be sparingly expressed in microglia of normally aged human brains and to be more strongly expressed in Alzheimer's disease. Using an in vitro model comprising microglial and neuronal cell lines, as well as primary microglia from wild-type and ANXA1 null mice, we have identified two distinct roles for microglial ANXA1: 1) controlling the noninflammatory phagocytosis of apoptotic neurons and 2) promoting resolution of inflammatory microglial activation. In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.
Collapse
Affiliation(s)
- Simon McArthur
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T. Annexin A6-Linking Ca(2+) signaling with cholesterol transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:935-47. [PMID: 20888375 DOI: 10.1016/j.bbamcr.2010.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/17/2022]
Abstract
Annexin A6 (AnxA6) belongs to a conserved family of Ca(2+)-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA(2)) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca(2+)-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca(2+)-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McArthur S, Yazid S, Christian H, Sirha R, Flower R, Buckingham J, Solito E. Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization. FASEB J 2009; 23:4000-10. [DOI: 10.1096/fj.09-131391] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon McArthur
- Department of Cellular and Molecular Neuroscience Imperial College London Hammersmith Campus London UK
| | | | - Helen Christian
- Department of Physiology Anatomy and Genetics University of Oxford Oxford UK
| | - Ravneet Sirha
- Department of Cellular and Molecular Neuroscience Imperial College London Hammersmith Campus London UK
| | | | - Julia Buckingham
- Department of Cellular and Molecular Neuroscience Imperial College London Hammersmith Campus London UK
| | - Egle Solito
- Department of Cellular and Molecular Neuroscience Imperial College London Hammersmith Campus London UK
| |
Collapse
|
17
|
Ayoub SS, Yazid S, Flower RJ. Increased susceptibility of annexin-A1 null mice to nociceptive pain is indicative of a spinal antinociceptive action of annexin-A1. Br J Pharmacol 2008; 154:1135-42. [PMID: 18469846 PMCID: PMC2451045 DOI: 10.1038/bjp.2008.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/11/2008] [Accepted: 03/05/2008] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Annexin-A1 (ANXA1), a glucocorticoid-regulated protein, mediates several of the anti-inflammatory actions of the glucocorticoids. Previous studies demonstrated that ANXA1 is involved in pain modulation. The current study, using ANXA1 knockout mice (ANXA1-/-), is aimed at addressing the site and mechanism of the modulatory action of ANXA1 as well as possible involvement of ANXA1 in mediating the analgesic action of glucocorticoids. EXPERIMENTAL APPROACH The acetic acid-induced writhing response was performed in ANXA1-/- and wild-type (ANXA1+/+) mice with spinal and brain levels of prostaglandin E2 (PGE2) examined in both genotypes. The effect of the ANXA1 peptomimetic Ac2-26 as well as methylprednisolone on the writhing response and on spinal cord PGE2 of ANXA1+/+ and ANXA1-/- was compared. The expression of proteins involved in PGE2 synthesis, cytosolic phospholipase A2 (cPLA2) and cyclooxygenases (COXs), in the spinal cord of ANXA1+/+ and ANXA1-/- was also compared. KEY RESULTS ANXA1-/- mice exhibited a significantly greater writhing response and increased spinal cord levels of PGE2 compared with ANXA1+/+ mice. Ac2-26 produced analgesia and reduced spinal PGE2 levels in ANXA1+/+ and ANXA1-/- mice, whereas methylprednisolone reduced the writhing response and spinal PGE2 levels in ANXA1+/+, but not in ANXA1-/- mice. The expression of cPLA2, COX-1, COX-2 and COX-3 in spinal cord tissues was upregulated in ANXA1-/-compared with ANXA1+/+. CONCLUSIONS AND IMPLICATIONS We conclude that ANXA1 protein modulates nociceptive processing at the spinal level, by reducing synthesis of PGE2 by modulating cPLA2 and/or COX activity. The analgesic activity of methylprednisolone is mediated by spinal ANXA1.
Collapse
Affiliation(s)
- S S Ayoub
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St Bart's and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
18
|
Cubells L, de Muga SV, Tebar F, Bonventre JV, Balsinde J, Pol A, Grewal T, Enrich C. Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. J Biol Chem 2008; 283:10174-83. [DOI: 10.1074/jbc.m706618200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Abstract
Lipopolysaccharides at approximate plasma reactivities >3 ng/mL or β-glucans at >0.5-1 μg/mL are toxic for human blood; lipopolysaccharide interacts with membrane components of susceptible cells (eg, monocytes) activating phospholipase A2that destroys the cell membrane. Cell fragments (microparticles or DNA) possess polynegative niches that activate intrinsic hemostasis. Pathologic disseminated intravascular coagulation arises. Blood vessels are obstructed by disseminated thrombi, and vital organ areas become ischemic. Multiorgan failure threatens life of the patient. Diagnosis and therapy of pathologic disseminated intravascular coagulation is of extreme clinical importance. For early diagnosis of pathologic disseminated intravascular coagulation, specific activation markers of coagulation (eg, plasmatic amidolytic thrombin activity) or the plasmatic lipopolysaccharide or glucan reactivity can be measured. A new treatment target might be kallikrein or factor XIIa; 10 to 20 mM arginine is the approximate 50% inhibitory concentration against the contact phase of coagulation. The complex interaction between cell fragments and hemostasis causes pathologic disseminated intravascular coagulation in sepsis.
Collapse
Affiliation(s)
- Thomas W. Stief
- Department of Clinical Chemistry, University Hospital, Marburg, Germany,
| |
Collapse
|
20
|
Warne JP, John CD, Christian HC, Morris JF, Flower RJ, Sugden D, Solito E, Gillies GE, Buckingham JC. Gene deletion reveals roles for annexin A1 in the regulation of lipolysis and IL-6 release in epididymal adipose tissue. Am J Physiol Endocrinol Metab 2006; 291:E1264-73. [PMID: 16835395 PMCID: PMC1855443 DOI: 10.1152/ajpendo.00655.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, epididymal adipose tissue from male annexin 1 (ANXA1)-null and wild-type control mice were used to explore the potential role of ANXA1 in adipocyte biology. ANXA1 was detected by Western blot analysis in wild-type tissue and localized predominantly to the stromal-vascular compartment. Epididymal fat pad mass was reduced by ANXA1 gene deletion, but adipocyte size was unchanged, suggesting that ANXA1 is required for the maintenance of adipocyte and/or preadipocyte cell number. Epididymal tissue from wild-type mice responded in vitro to noradrenaline and isoprenaline with increased glycerol release, reduced IL-6 release, and increased cAMP accumulation. Qualitatively similar but significantly attenuated responses to the catecholamines were observed in tissue from ANXA1-null mice, an effect that was not associated with changes in beta-adrenoceptor mRNA expression. Lipopolysaccharide (LPS) also stimulated lipolysis in vitro, but its effects were muted by ANXA1 gene deletion. By contrast, LPS failed to influence IL-6 release from wild-type tissue but stimulated the release of the cytokine from tissue from ANXA1-null mice. ANXA1 gene deletion did not affect glucocorticoid receptor expression or the ability of dexamethasone to suppress catecholamine-induced lipolysis. It did, however, augment IL-6 expression and modify the inhibitory effects of glucocorticoids on IL-6 release. Collectively, these studies suggest that ANXA1 supports aspects of adipose tissue mass and alters the sensitivity of epididymal adipose tissue to catecholamines, glucocorticoids, and LPS, thereby modulating lipolysis and IL-6 release.
Collapse
Affiliation(s)
- James P Warne
- Dept. of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Akiyama N, Nabemoto M, Hatori Y, Nakamura H, Hirabayashi T, Fujino H, Saito T, Murayama T. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide. Toxicol Appl Pharmacol 2006; 215:218-27. [PMID: 16603213 DOI: 10.1016/j.taap.2006.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/23/2006] [Accepted: 02/27/2006] [Indexed: 11/18/2022]
Abstract
Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the alpha type of cytosolic phospholipase A(2) (cPLA(2)alpha) in PC12 cells. Treatment with 80-120 microM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA(2)alpha mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N(G) nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA(2)alpha expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA(2). Furthermore, DDC treatment of the cells enhanced Ca(2+)-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA(2)alpha expression by DDC treatment in neuronal cells.
Collapse
Affiliation(s)
- Nobuteru Akiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Solito E, Christian HC, Festa M, Mulla A, Tierney T, Flower RJ, Buckingham JC. Post-translational modification plays an essential role in the translocation of annexin A1 from the cytoplasm to the cell surface. FASEB J 2006; 20:1498-500. [PMID: 16720734 PMCID: PMC2049060 DOI: 10.1096/fj.05-5319fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Annexin A1 (ANXA1) has an important role in cell-cell communication in the host defense and neuroendocrine systems. In both systems, its actions are exerted extracellularly via membrane-bound receptors on adjacent sites after translocation of the protein from the cytoplasm to the cell surface of adjacent cells. This study used molecular, microscopic, and pharmacological approaches to explore the mechanisms underlying the cellular exportation of ANXA1 in TtT/GF (pituitary folliculo-stellate) cells. LPS caused serine-phosphorylation of ANXA1 (ANXA1-S27-PO4) and translocation of the phosphorylated protein to the cell membrane. The fundamental requirement of phosphorylation for membrane translocation was confirmed by immunofluorescence microscopy on cells transfected with wild-type or mutated (S27/A) ANXA1 constructs tagged with enhanced green fluorescence protein. The trafficking of ANXA1-S27-PO4 to the cell surface was dependent on PI3-kinase and MAP-kinase. It also required HMG-coenzyme A and myristoylation. The effects of HMG-coenzyme A blockade were overcome by mevalonic acid (the product of HMG-coenzyme A) and farnesyl-pyrophosphate but not by geranyl-geranylpyrophosphate or cholesterol. Together, these results suggest that serine-27 phosphorylation is essential for the translocation of ANXA1 across the cell membrane and also identify a role for isoprenyl lipids. Such lipids could target consensus sequences in ANXA1. Alternatively, they may target other proteins in the signal transduction cascade (e.g., transporters).
Collapse
Affiliation(s)
- E Solito
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Leon C, Nandan D, Lopez M, Moeenrezakhanlou A, Reiner NE. Annexin V associates with the IFN-gamma receptor and regulates IFN-gamma signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:5934-42. [PMID: 16670301 DOI: 10.4049/jimmunol.176.10.5934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many of the biological activities of IFN-gamma are mediated through the IFN-gammaR3-linked Jak-Stat1alpha pathway. However, regulation of IFN-gamma signaling is not fully understood, and not all responses to IFN-gamma are Stat1alpha dependent. To identify novel elements involved in IFN-gamma cell regulation, the cytoplasmic domain of the R2 subunit of the human IFN-gammaR was used as bait in a yeast two-hybrid screen of a human monocyte cDNA library. This identified annexin A5 (AxV) as a putative IFN-gammaR binding protein. The interaction was confirmed in pull-down experiments in which a GST-R2 cytoplasmic domain fusion protein was incubated with macrophage lysates. Furthermore, immunoprecipitation using anti-IFN-gammaR2 Abs showed that AxV interacted with IFN-gammaR2 to form a stable complex following incubation of cells with IFN-gamma. In 293T cells with reduced expression of AxV, brought about by small interfering RNA targeting, activation of Jak2 and Stat1alpha in response to IFN-gamma was enhanced. Inhibition of cell proliferation, a hallmark of the IFN-gamma response, also was potentiated in HeLa cells treated with small interfering RNA directed at AxV. Taken together, these results suggest that through an inducible association with the R2 subunit of the IFN-gammaR, AxV modulates cellular responses to IFN-gamma by modulating signaling through the Jak-Stat1 pathway.
Collapse
Affiliation(s)
- Carlos Leon
- Department of Medicine, Division of Infectious Diseases, Faculties of Medicine and Science, University of British Columbia, 2733 Heather Street, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
24
|
Flamand N, Lefebvre J, Lapointe G, Picard S, Lemieux L, Bourgoin SG, Borgeat P. Inhibition of platelet-activating factor biosynthesis by adenosine and histamine in human neutrophils: involvement of cPLA2alpha and reversal by lyso-PAF. J Leukoc Biol 2006; 79:1043-51. [PMID: 16501051 DOI: 10.1189/jlb.1005614] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukotrienes (LT) and platelet-activating factor (PAF) are important lipid mediators of inflammation. We and others reported previously that autacoids such as adenosine, histamine, prostaglandin E2, and beta-adrenergic agents inhibit LT biosynthesis in activated human polymorphonuclear leukocytes (PMN). In this study, we demonstrate that CGS-21680 (a selective agonist of the adenosine A2A receptor) and histamine also potently inhibit PAF biosynthesis in agonist [formyl Met-Leu-Phe (fMLP)]- and thapsigargin-activated human PMN. The observed inhibitions of PAF biosynthesis were reversed effectively by exogenous 1-O-alkyl-lyso-sn-glyceryl-3-phosphocholine (lyso-PAF), suggesting that these effects of CGS-21680 and histamine implicate the blockade of cytosolic phospholipase A2alpha (cPLA2alpha) activity and lyso-PAF release and that the acetyl-coenzyme A/lyso-PAF acetyl transferase is not inhibited by the autacoids. Accordingly, the cPLA2alpha inhibitor pyrrophenone completely blocked PAF formation, and lyso-PAF similarly prevented this effect of pyrrophenone. The inhibitory effects of CGS-21680 and histamine on PAF biosynthesis were prevented by the protein kinase A inhibitor H-89, supporting roles for the Gs -coupled receptors A2A and H2, respectively, and cyclic adenosine monophosphate in the inhibitory mechanism. The fMLP-induced phosphorylations of p38 and extracellular signal-regulated kinase 1/2 were not altered significantly by the CGS-21680, indicating that inhibition of these kinases is not involved in the inhibitory effect of the adenosine A2A receptor ligand on LT and PAF biosynthesis. These data further emphasize the multiple and potent inhibitory effects of adenosine and histamine on leukocyte functions, in particular, on the biosynthesis of two classes of important lipid mediators and their putative regulatory roles in immune processes in health and diseases.
Collapse
Affiliation(s)
- Nicolas Flamand
- Centre de Recherche du Rhumatologie et Immunologie, Centre de Recherche du CHUQ (CHUL), Faculté de Médecine, Université Laval, Québec, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
25
|
Akiyama N, Shimma N, Takashiro Y, Hatori Y, Hirabayashi T, Horie S, Saito T, Murayama T. Decrease in cytosolic phospholipase A2α mRNA levels by reactive oxygen species via MAP kinase pathways in PC12 cells: effects of dopaminergic neurotoxins. Cell Signal 2005; 17:597-604. [PMID: 15683734 DOI: 10.1016/j.cellsig.2004.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 10/11/2004] [Indexed: 11/28/2022]
Abstract
Excess production of reactive oxygen species (ROS), including H2O2, leads to neuronal death in pathological conditions. Although ROS stimulates alpha-type cytosolic phospholipase A2 (cPLA2alpha) activity, their role in cPLA2alpha expression has not been elucidated. We investigated the effect of ROS on cPLA2alpha mRNA levels and signaling pathways in rat pheochromocytoma PC12 cells. Treatment with H2O2 and xanthine-xanthine oxidase (X/XO) for 4 h decreased cPLA2alpha mRNA levels without changing the mRNA levels of other tested proteins. H2O2 and X/XO caused cell toxicity not after 4 h but 24 h after their addition. The H2O2-induced decrease in cPLA2alpha mRNA levels was inhibited in cells treated with N-acetyl-cysteine and selective inhibitors of mitogen-activated protein kinase (MAPK) pathways (extracellular signal-regulated kinase and p38 MAPK). Treatment with dopaminergic neurotoxins, including 1,2,3,4-tetrahydroisoquinoline (TIQ)-inducing ROS formation, decreased cPLA2alpha mRNA levels. These findings suggest that ROS decreases cPLA2alpha mRNA levels via MAPK pathways in PC12 cells.
Collapse
Affiliation(s)
- Nobuteru Akiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Evans JH, Gerber SH, Murray D, Leslie CC. The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol Biol Cell 2004; 15:371-83. [PMID: 13679516 PMCID: PMC307554 DOI: 10.1091/mbc.e03-05-0338] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 08/06/2003] [Accepted: 08/26/2003] [Indexed: 11/11/2022] Open
Abstract
Translocation of cytosolic phospholipase A2 (cPLA2) to Golgi and ER in response to intracellular calcium mobilization is regulated by its calcium-dependent lipid-binding, or C2, domain. Although well studied in vitro, the biochemical characteristics of the cPLA2C2 domain offer no predictive value in determining its intracellular targeting. To understand the molecular basis for cPLA2C2 targeting in vivo, the intracellular targets of the synaptotagmin 1 C2A (Syt1C2A) and protein kinase Calpha C2 (PKCalphaC2) domains were identified in Madin-Darby canine kidney cells and compared with that of hybrid C2 domains containing the calcium binding loops from cPLA2C2 on Syt1C2A and PKCalphaC2 domain backbones. In response to an intracellular calcium increase, PKCalphaC2 targeted plasma membrane regions rich in phosphatidylinositol-4,5-bisphosphate, and Syt1C2A displayed a biphasic targeting pattern, first targeting phosphatidylinositol-4,5-bisphosphate-rich regions in the plasma membrane and then the trans-Golgi network. In contrast, the Syt1C2A/cPLA2C2 and PKCalphaC2/cPLA2C2 hybrids targeted Golgi/ER and colocalized with cPLA2C2. The electrostatic properties of these hybrids suggested that the membrane binding mechanism was similar to cPLA2C2, but not PKCalphaC2 or Syt1C2A. These results suggest that primarily calcium binding loops 1 and 3 encode structural information specifying Golgi/ER targeting of cPLA2C2 and the hybrid domains.
Collapse
Affiliation(s)
- John H Evans
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
27
|
Solito E, Mulla A, Morris JF, Christian HC, Flower RJ, Buckingham JC. Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology 2003; 144:1164-74. [PMID: 12639897 DOI: 10.1210/en.2002-220592] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent studies on rat pituitary tissue suggest that the annexin 1 (ANXA1)-dependent inhibitory actions of glucocorticoids on ACTH secretion are effected via a paracrine mechanism that involves protein kinase C (PKC)-dependent translocation of a serine-phosphorylated species of ANXA1 (Ser-P-ANXA1) to the plasma membrane of the nonsecretory folliculostellate cells. In the present study, we have used a human folliculostellate cell line (PDFS) to explore the signaling mechanisms that cause the translocation of Ser-P-ANXA1 to the membrane together with Western blot analysis and flow cytometry to detect the phosphorylated protein. Exposure of PDFS cells to dexamethasone caused time-dependent increases in the expression of ANXA1 mRNA and protein, which were first detected within 2 h of steroid contact. This genomic response was preceded by the appearance within 30 min of substantially increased amounts of Ser-P-ANXA1 and by translocation of the phosphorylated protein to the cell surface. The prompt membrane translocation of Ser-P-ANXA1 provoked by dexamethasone was inhibited by the glucocorticoid receptor, antagonist, mifepristone, but not by actinomycin D or cycloheximide, which effectively inhibit mRNA and protein synthesis respectively in our preparation. It was also inhibited by a nonselective PKC inhibitor (PKC(9-31)), by a selective inhibitor of Ca(2+)-dependent PKCs (Go 6976) and by annexin 5 (which sequesters PKC in other systems). In addition, blockade of phosphatidylinositiol 3-kinase (wortmannin) or MAPK pathways with PD 98059 or UO 126 (selective for MAPK kinse 1 and 2) prevented the steroid-induced translocation of Ser-P-ANXA1 to the cell surface. These results suggest that glucocorticoids induce rapid serine phosphorylation and membrane translocation of ANXA1 via a novel nongenomic, glucocorticoid receptor-dependent mechanism that requires MAPK, phosphatidylinositiol 3-kinase, and Ca(2+)-dependent PKC pathways.
Collapse
Affiliation(s)
- Egle Solito
- Department of Neuroendocrinology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 ONN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K, Williams PM. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 2003; 10:63-81. [PMID: 12610664 DOI: 10.1038/sj.mn.7800170] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 09/13/2002] [Indexed: 11/08/2022]
Abstract
The process of endothelial differentiation into a network of tube-like structures with patent lumens requires an integrated program of gene expression. To identify genes upregulated in endothelial cells during the process of tube formation, RNA was prepared from several different time points (0, 4, 8, 24, 40, and 48 hours) and from three different experimental models of human endothelial tube formation: in collagen gels and fibrin gels driven by the combination of PMA (80), bFGF (40 ng/ml) and bFGF (40 ng/ml) or in collagen gels driven by the combination of HGF (40 ng/ml) and VEGF (40 ng/ml). Gene expression was evaluated using Affymetrix Gene Chip oligonucleotide arrays. Over 1000 common genes were upregulated greater than twofold over baseline at one or more time points in the three different models. In the present study, we discuss the identified genes that could be assigned to major functional classes: apoptosis, cytoskeleton, proteases, matrix, and matrix turnover, pumps and transporters, membrane lipid turnover, and junctional molecules or adhesion proteins.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Cardiovascular Research, Genentech, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Perretti M, Ingegnoli F, Wheller SK, Blades MC, Solito E, Pitzalis C. Annexin 1 modulates monocyte-endothelial cell interaction in vitro and cell migration in vivo in the human SCID mouse transplantation model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2085-92. [PMID: 12165536 PMCID: PMC4340507 DOI: 10.4049/jimmunol.169.4.2085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; approximately 50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1alpha (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Balsinde J. Roles of various phospholipases A2 in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling. Biochem J 2002; 364:695-702. [PMID: 12049633 PMCID: PMC1222618 DOI: 10.1042/bj20020142] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study the lysophospholipid sources for arachidonic (AA) and eicosapentaenoic acid (EPA) incorporation into and redistribution within the phospholipids of phorbol-ester-differentiated U937 cells was investigated. Initially, AA incorporated primarily into choline glycerophospholipids (PC), whereas EPA incorporated mainly into ethanolamine glycerophospholipids (PE). Bromoenol lactone (BEL), an inhibitor of the Group VI Ca2+-independent phospholipase A2 (iPLA2), diminished both lysophosphatidylcholine levels and the incorporation of AA into phospholipids. However BEL had little effect on EPA incorporation. In concanavalin A-activated cells, EPA, but not AA, incorporation was also affected by methyl arachidonyl fluorophosphonate (MAFP), suggesting an additional role for the group IV cytosolic phospholipase A2. In the activated cells AA and EPA did not compete with each other for incorporation, indicating that the pathways for AA and EPA incorporation are partially different. The AA and EPA initially incorporated into PC slowly moved to PE in a process that took several hours. The transfer of AA and EPA from PC to PE was not inhibited by BEL, MAFP or LY311727 [3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulphonic acid], raising the possibility that an as-yet-undetermined phospholipase A2 may be involved in fatty acid phospholipid remodelling. A strong candidate to be involved in these reactions is a novel Ca2+-independent phospholipase A2 that, unlike all known iPLA2s, is resistant to inhibition by BEL and also to MAFP and LY311727. The enzyme activity cleaves both PC and PE and is thus able to provide the lysoPC and lysoPE acceptors required for the fatty acid acylation reactions.
Collapse
Affiliation(s)
- Jesús Balsinde
- Instituto de Biología y Genética Molecular, CSIC, Facultad de Medicina, Universidad de Valladolid, C/Ramón y Cajal 7, E-47005 Valladolid, Spain.
| |
Collapse
|
32
|
de Coupade C, Ajuebor MN, Russo-Marie F, Perretti M, Solito E. Cytokine modulation of liver annexin 1 expression during experimental endotoxemia. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1435-43. [PMID: 11583971 PMCID: PMC1850497 DOI: 10.1016/s0002-9440(10)62530-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Annexin 1 (ANXA1) is a calcium-binding protein endowed with anti-inflammatory properties. Using an extra-hepatic system, we showed that interleukin (IL)-6 regulates ANXA1 expression at the transcriptional level. The purpose of this study was to determine whether ANXA1 synthesis was modulated by IL-6 during experimental inflammation. We have compared liver ANXA1 expression during systemic and localized inflammatory reaction, using lipopolysaccharide (LPS) and turpentine. LPS treatment strongly induced ANXA1 expression in the liver of wild-type (WT) animals (+600%) whereas a modest increase (+60%) was measured in IL-6 knockout (KO) animals. Turpentine treatment did not affect the expression of ANXA1 in either animal type. LPS enhanced serum corticosteroid levels equally in WT and IL-6 KO mice, whereas higher tumor necrosis factor (TNF)-alpha and IL-1beta levels were released in IL-6 KO animals. Injection of mouse recombinant IL-6 to IL-6 KO animals before LPS or TNF-alpha challenge, replenished ANXA1 liver synthesis to that of WT animals. Exogenous ANXA1 but not ANXA5, administered to IL-6 KO mice before LPS challenge inhibited TNF-alpha release. We propose that ANXA1 acts as a novel acute phase protein, which is controlled in the liver by TNF-alpha and IL-6, and which may contribute to the resolution of systemic endotoxemia through a negative feedback on TNF-alpha release.
Collapse
Affiliation(s)
- C de Coupade
- Department of Cell Biology, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation. Br J Pharmacol 2001; 133:217-28. [PMID: 11350857 PMCID: PMC1572776 DOI: 10.1038/sj.bjp.0704054] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transfection of the pre-monomyelocytic U937 cell line with a plasmid coding for full-length annexin 1 (ANX1, 347 amino acid) leads to cell death by promoting apoptosis. In addition, over-expression of the N-terminal and the first domain of the protein (144 amino acids, clone ANX1-S), which does not contain the Ca2+ binding sites, gives susceptibility to cell apoptosis following activation by either 5 ng ml(-1) tumour necrosis factor (TNF)-alpha or 1 - 40 microg ml-1 etoposide. This was demonstrated by using the fluorescent labelled annexin V, cell cycle and nuclear staining analyses. Transfection with an empty plasmid (clone CMV) or with a plasmid carrying the cDNA antisense for ANX1 (clone ANX1-AS) did not alter U937 cells to the degree of apoptosis promoted by either stimulant. Treatment of CMV U937 cells with TNF-alpha increased ANX1 mRNA and protein expression in a time-dependent manner, with maximal increases at 3 and 6 h, respectively. Clone ANX1-S showed higher constitutive (more than 2 fold) and activated caspase-3 activity, associated with higher phospholipase A2 (PLA2) activity (in the region of +50 - 100%), whereas expression of cytosolic PLA2 Bax and Bcl-2 were similar in all cell clones, as determined by Western blotting. In conclusion, this study demonstrates a complex regulatory role of cell apoptosis for ANX1, at least with regards to cells of the myelo-monocytic lineage.
Collapse
Affiliation(s)
- Egle Solito
- Imperial College School of Medicine, Charing Cross Campus, London
| | | | | | | | - Mauro Perretti
- The William Harvey Research Institute, London
- Author for correspondence:
| |
Collapse
|
34
|
Kim SW, Rhee HJ, Ko J, Kim YJ, Kim HG, Yang JM, Choi EC, Na DS. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site. J Biol Chem 2001; 276:15712-9. [PMID: 11278580 DOI: 10.1074/jbc.m009905200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins (ANXs) display regulatory functions in diverse cellular processes, including inflammation, immune suppression, and membrane fusion. However, the exact biological functions of ANXs still remain obscure. Inhibition of phospholipase A(2) (PLA(2)) by ANX-I, a 346-amino acid protein, has been observed in studies with various forms of PLA(2). "Substrate depletion" and "specific interaction" have been proposed for the mechanism of PLA(2) inhibition by ANX-I. Previously, we proposed a specific interaction model for inhibition of a 100-kDa porcine spleen cytosolic form of PLA(2) (cPLA(2)) by ANX-I (Kim, K. M., Kim, D. K., Park, Y. M., and Na, D. S. (1994) FEBS Lett. 343, 251-255). Herein, we present an analysis of the inhibition mechanism of cPLA(2) by ANX-I in detail using ANX-I and its deletion mutants. Deletion mutants were produced in Escherichia coli, and inhibition of cPLA(2) activity was determined. The deletion mutant ANX-I-(1-274), containing the N terminus to amino acid 274, exhibited no cPLA(2) inhibitory activity, whereas the deletion mutant ANX-I-(275-346), containing amino acid 275 to the C terminus, retained full activity. The protein-protein interaction between cPLA(2) and ANX-I was examined using the deletion mutants by immunoprecipitation and mammalian two-hybrid methods. Full-length ANX-I and ANX-I-(275-346) interacted with the calcium-dependent lipid-binding domain of cPLA(2). ANX-I-(1-274) did not interact with cPLA(2). Immunoprecipitation of A549 cell lysate with anti-ANX-I antibody resulted in coprecipitation of cPLA(2). These results are consistent with the specific interaction mechanism rather than the substrate depletion model. ANX-I may function as a negative regulator of cPLA(2) in cellular signal transduction.
Collapse
Affiliation(s)
- S W Kim
- Department of Biochemistry, College of Medicine, University of Ulsan, 388-1 Poongnap-dong, Songpa-gu, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim S, Ko J, Kim JH, Choi EC, Na DS. Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBS Lett 2001; 489:243-8. [PMID: 11165258 DOI: 10.1016/s0014-5793(00)02326-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Annexins (ANXs) are a family of proteins with calcium-dependent phospholipid binding properties. Although inhibition of phospholipase A2 (PLA2) by ANX-I has been reported, the mechanism is still controversial. Previously we proposed a 'specific interaction' model for the mechanism of cytosolic PLA2 (cPLA2) inhibition by ANX-I [Kim et al., FEBS Lett. 343 (1994) 251-255]. Here we have studied the cPLA2 inhibition mechanism using ANX-I, N-terminally deleted ANX-I (DeltaANX-I), ANX-II, ANX-II(2)P11(2), ANX-III, and ANX-V. Under the conditions for the specific interaction model, ANX-I, DeltaANX-I, and ANX-II(2)P11(2) inhibited cPLA2, whereas inhibition by ANX-II and ANX-III was negligible. Inhibition by ANX-V was much smaller than that by ANX-I. The protein-protein interactions between cPLA2 and ANX-I, DeltaANX-I, and ANX-II(2)P11(2) were verified by immunoprecipitation. We can therefore conclude that inhibition of cPLA2 by specific interaction is not a general function of all ANXs, and is rather a specific function of ANX-I. The results are consistent with the specific interaction model.
Collapse
Affiliation(s)
- S Kim
- Department of Biochemistry, College of Medicine, University of Ulsan, South Korea
| | | | | | | | | |
Collapse
|
36
|
Gijón MA, Spencer DM, Leslie CC. Recent advances in the regulation of cytosolic phospholipase A(2). ADVANCES IN ENZYME REGULATION 2000; 40:255-68. [PMID: 10828354 DOI: 10.1016/s0065-2571(99)00031-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
37
|
Solito E, Romero IA, Marullo S, Russo-Marie F, Weksler BB. Annexin 1 binds to U937 monocytic cells and inhibits their adhesion to microvascular endothelium: involvement of the alpha 4 beta 1 integrin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1573-81. [PMID: 10903766 DOI: 10.4049/jimmunol.165.3.1573] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Annexin 1 (ANX1), a calcium-binding protein, participates in the regulation of early inflammatory responses. Whereas some of its effects depend on intracellular interactions, a growing number of observations indicate that ANX1 may also act via autocrine/paracrine functions following externalization to the outer side of the plasma membrane. We studied the effects of ANX1 on leukocyte adhesion to endothelial cells using as a model system the monocytic cell line U937 and human bone marrow microvascular endothelial cells. Exogenous rANX1, as well as endogenous ANX1 externalized by U937 differentiated in vitro, inhibited monocyte firm adhesion to vascular endothelium. Both binding of ANX1 to U937 cells and ANX1-mediated inhibition of cell adhesion involved the short N-terminal domain of the ANX1 molecule. Under experimental conditions in which ANX1 inhibited U937 adhesion to human bone marrow microvascular endothelial cells, this protein specifically colocalized with the alpha 4 integrin, and a direct interaction between ANX1 and the alpha 4 integrin could be documented by immunoprecipitation experiments. Moreover, ANX1 competed with the endothelial integrin counterreceptor, VCAM-1, for binding to alpha 4 integrin. These results indicate that ANX1 plays an important physiological role in modulating monocyte firm adhesion to the endothelium.
Collapse
Affiliation(s)
- E Solito
- Department of Cell Biology, Institut Cochin de Génétique Moléculaire, Paris, France.
| | | | | | | | | |
Collapse
|
38
|
Oh J, Rhee HJ, Kim S, Kim SB, You H, Kim JH, Na DS. Annexin-I inhibits PMA-induced c-fos SRE activation by suppressing cytosolic phospholipase A2 signal. FEBS Lett 2000; 477:244-8. [PMID: 10908728 DOI: 10.1016/s0014-5793(00)01812-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Annexin-I (ANX-I) is a 37-kDa protein with a calcium-dependent phospholipid-binding property. Previously we have observed the inhibition of cytosolic phospholipase A2 (cPLA2) by ANX-I in the studies using purified recombinant ANX-I, and proposed a specific interaction model for the mechanism of cPLA2 inhibition by ANX-I [Kim et al. (1994) FEBS Lett. 343, 251-255]. Here we have studied the role of ANX-I in the cPLA2 signaling pathway by transient transfection assay. The stimulation of Rat2 fibroblast cells with phorbol 12-myristate 13-acetate (PMA) induced the c-fos serum response element (SRE). The SRE stimulation by PMA was dramatically reduced by (1) pretreatment with a cPLA2-specific inhibitor, arachidonyltrifluoromethyl ketone, or (2) co-transfection with antisense cPLA2 oligonucleotide, indicating that the SRE activation was through cPLA2 activation. Co-transfection with an ANX-I expression vector also reduced the SRE stimulation by PMA, suggesting the inhibition of cPLA2 by ANX-I. The active domain of ANX-I was mapped using various deletion mutants. ANX-I(1-113) and ANX-I(34-346) were fully active, whereas ANX-I(114-346) abolished the activity. Therefore the activity was in the amino acid 34 to 113 region, which corresponds to the conserved domain I of ANX-I.
Collapse
Affiliation(s)
- J Oh
- Department of Biochemistry, College of Medicine, University of Ulsan, 388-1 Poongnap-dong, Songpa-ku, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Croxtall JD, Choudhury Q, Flower RJ. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol 2000; 130:289-98. [PMID: 10807665 PMCID: PMC1572055 DOI: 10.1038/sj.bjp.0703272] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recruitment to activated tyrosine kinase growth factor receptors of Grb2 and p21(ras) leads to downstream activation of the kinases Raf, MAPK/Erk kinase (Mek) and, subsequently, extracellular signal-regulated kinase (Erk). Activated Erk phosphorylates specific serine residues within cytosolic phospholipase A(2) (PLA(2)), promoting enzyme translocation to membranes and facilitating liberation of arachidonic acid (AA). In the A549 human adenocarcinoma cell line dexamethasone inhibited epidermal growth factor (EGF)-stimulated cytosolic PLA(2) (cPLA(2)) activation and AA release by blocking the recruitment of Grb2 to the activated EGF receptor (EGF-R) through a glucocorticoid receptor (GR)-dependent (RU486-sensitive), transcription-independent (actinomycin-insensitive), mechanism. The dexamethasone-induced block of Grb2 recruitment was parallelled by changes in phosphorylation status and subcellular localization of lipocortin 1 (LC1) and an increase in the amount of the tyrosine phosphoprotein co-localized with EGF-R. Like dexamethasone, peptides containing E-Q-E-Y-V from the N-terminal domain of LC1 also blocked ligand-induced association of Grb2, p21(ras) and Raf. Our results point to an unsuspected rapid effect of glucocorticoids, mediated by occupation of GR but not by changes in gene transcription, which is brought about by competition between LC1 and Grb2 leading to a failure of recruitment off signalling factors to EGF-R
Collapse
Affiliation(s)
- J D Croxtall
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine & Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ.
| | | | | |
Collapse
|
40
|
Le Maire V, Solito E, Russo-Marie F, Hernvann A, Le Marechal H, Ekindjian OG, Aussel C. System A neutral amino acid transporter regulation by interleukin-1beta in human osteoarthritic synovial cells: evidence for involvement of prostaglandin E(2) as a second messenger. J Cell Physiol 2000; 183:65-73. [PMID: 10699967 DOI: 10.1002/(sici)1097-4652(200004)183:1<65::aid-jcp8>3.0.co;2-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We studied the long-terms effects of interleukin-1beta (IL-1beta; 3 to 6 h) on alpha-(methylamino) isobutyric acid (MeAIB), a nonmetabolizable amino acid transported by system A. We found that IL-1beta induced a large decrease in MeAIB uptake by human osteoarthritic synovial cells and a concomitant increase in prostaglandin E(2) (PGE(2)) synthesis. Therefore, we investigated whether PGE(2) acts as a mediator for the long-term action of IL-1beta. We found that exogenous PGE(2) inhibited MeAIB uptake, and that AH6809, a PGE(2) receptor antagonist, inhibited IL-1beta-mediated MeAIB uptake. To identify the enzymes involved in the IL-1beta-mediated synthesis of PGE(2) that inhibits MeAIB uptake, we studied the expression of secreted (s) and cytosolic (c) phospholipase A(2) (PLA(2)). Because both were expressed, we selected a broad spectrum of inhibitors to determine which of the two PLA(2)s was involved. We used AACOCF3, a cPLA(2) inhibitor, and dithiothreitol (DTT) and bromophenacyl bromide (BPB), which are sPLA(2) inhibitors. Our results suggest that the PLA(2) involved in the IL-1beta-mediated synthesis of PGE(2) was sPLA(2). We also showed the expression of cyclooxygenase (COX)-2 and its partial involvement using a potent selective COX-2 inhibitor, L-745337. These findings provide insight into the mechanisms underlying the IL-1beta-mediated regulation of transport system A. The Il-1beta-induced inhibition of MeAIB uptake in human osteoarthritic synovial cells thus seems to be essentially mediated by PGE(2) production via the activation of sPLA(2) and the partial activation of COX-2.
Collapse
Affiliation(s)
- V Le Maire
- Laboratoire de Biochimie A, AP-HP, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Canaider S, Solito E, de Coupade C, Flower RJ, Russo-Marie F, Goulding NJ, Perretti M. Increased apoptosis in U937 cells over-expressing lipocortin 1 (annexin I). Life Sci 2000; 66:PL265-70. [PMID: 10809174 DOI: 10.1016/s0024-3205(00)00500-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The potential involvement of endogenous lipocortin 1 in the process of cellular apoptosis, particularly in cells of the myelo-monocytic lineage, has been investigated. U937 cells were transfected either with an antisense or a sense DNA for lipocortin 1 and the stable clones 36.4AS clone (20-40% lower lipocortin 1 levels) and 15S (30% higher lipocortin 1 levels) were obtained. Cell apoptosis was induced by incubation with tumor necrosis factor-alpha: optimal responses were observed within a 24 h incubation period at a 5 ng/ml concentration. Apoptosis was assessed both morphologically, by annexin V binding and cell cycle analysis with propidium iodide. Whilst no consistent difference was seen between wild type cells and clone 36.4AS, a higher incidence of apoptosis (ranging from +30% to + 60%) was observed in the 15S clone. Release of arachidonic acid from loaded cells was promoted by 24 h incubation with the cytokine, and a higher degree of release was measured in the 15S clone. These data indicate that endogenous intracellular lipocortin 1 is involved in the promotion of apoptosis in cells of the myelo-monocytic derivation.
Collapse
Affiliation(s)
- S Canaider
- The William Harvey Research Institute, London, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
de Coupade C, Gillet R, Bennoun M, Briand P, Russo-Marie F, Solito E. Annexin 1 expression and phosphorylation are upregulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice. Hepatology 2000; 31:371-80. [PMID: 10655260 DOI: 10.1002/hep.510310217] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have used a transgenic animal model, which constitutively develops hepatocarcinoma (Antithrombin III SV40 T large Antigen: ASV), to study the involvement of Annexin 1 (ANX1) in liver regeneration and malignant transformation. Primary hepatocytes isolated from normal mice did not express ANX1. In contrast, ANX1 was strongly expressed in hepatocytes of transgenic mice during constitutive development of hepatocarcinoma. In ASV transgenic mice, an elevated ANX1 level preceded the appearance of the tumor, indicating that it could be a good marker in the diagnosis of cancer. One-third hepatectomy in normal mice resulted in stimulation of ANX1 synthesis and phosphorylation. This upregulation correlated with increased synthesis of EGF and consequently with increased phosphorylation of the EGF receptor (EGF-R). Stable transfection of a hepatocyte cell line derived from ASV transgenic mice (mhAT2) with antisense complementary DNA for ANX1 reduced the proliferation rate as well as cytosolic phospholipase A(2) (cPLA(2)) activity. Thus, ANX1 expression and phosphorylation could be a factor implicated in liver regeneration and tumorigenesis, either through modulation of cPLA(2) activity or EGF-R function.
Collapse
Affiliation(s)
- C de Coupade
- Unité INSERM U-332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Frey BM, Reber BF, Vishwanath BS, Escher G, Frey FJ. Annexin I modulates cell functions by controlling intracellular calcium release. FASEB J 1999; 13:2235-45. [PMID: 10593871 DOI: 10.1096/fasebj.13.15.2235] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Annexin I is an intracellular protein in search of a function. Ex vivo it has calcium- and phospholipid-binding properties. To evaluate its role in vivo, MCF-7 cells were stably transfected with annexin I in sense or antisense orientations. In cells overexpressing annexin I, calcium release was abrogated on stimulation of purinergic or bradykinin receptors, whereas non-transfected cells or cells with down-regulated annexin I released calcium within seconds. Basal calcium and calcium stores were not affected. The impaired calcium release was paralleled by a down-regulation of the activities of phospholipase C, group II phospholipase A2, and E-cadherin with altered adhesion and enhanced tumor growth on soft agar. Significantly smaller tumors, with the histologically most differentiated cells, were observed in nude mice inoculated with cells transfected with the antisense rather than with the sense plasmid. These observations indicate that annexin I modulates cell functions by controlling intracellular calcium release. Frey, B. M., Reber, B. F. X., Vishwanath, B. S., Escher, G., Frey, F. J. Annexin I modulates cell functions by controlling intracellular calcium release.
Collapse
Affiliation(s)
- B M Frey
- Division of Nephrology and Hypertension and. Institute of Pharmacology, University of Berne, CH-3010 Switzerland.
| | | | | | | | | |
Collapse
|
44
|
Gidon-Jeangirard C, Solito E, Hofmann A, Russo-Marie F, Freyssinet JM, Martínez MC. Annexin V counteracts apoptosis while inducing Ca(2+) influx in human lymphocytic T cells. Biochem Biophys Res Commun 1999; 265:709-15. [PMID: 10600485 DOI: 10.1006/bbrc.1999.1752] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that when annexin V is present during the execution of a cell death program, apoptosis is delayed. This is reflected by the inhibition of DNA cleavage and of the release of apoptotic membrane particles, and by reduction of the proteolytic processing of caspase-3. Here, we have studied the mechanism(s) through which annexin V counteracts apoptosis in the human CEM T cell line. The degree of apoptosis inhibition was associated with an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). Reduction of the extracellular Ca(2+) concentration by EGTA abolished the anti-apoptotic effect, suggesting that annexin V favors Ca(2+) influx and that Ca(2+) acts as an inhibitor rather than an activator of apoptosis in CEM T cells. The effects on apoptosis and [Ca(2+)](i) of several modified annexins with different electrophysiological properties indicate that the N-terminal domain of annexin V is necessary for the Ca(2+)-dependent anti-apoptotic action of annexin V. These results suggest that annexin V regulates membrane Ca(2+) permeability and is protective against apoptosis by increasing [Ca(2+)](i) in CEM T cells.
Collapse
Affiliation(s)
- C Gidon-Jeangirard
- Institut d'Hématologie et d'Immunologie, Faculté de Médecine, Université Louis Pasteur, Strasbourg, 67085, France
| | | | | | | | | | | |
Collapse
|