1
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
2
|
Kwan Z, Paulose Nadappuram B, Leung MM, Mohagaonkar S, Li A, Amaradasa KS, Chen J, Rothery S, Kibreab I, Fu J, Sanchez-Alonso JL, Mansfield CA, Subramanian H, Kondrashov A, Wright PT, Swiatlowska P, Nikolaev VO, Wojciak-Stothard B, Ivanov AP, Edel JB, Gorelik J. Microtubule-Mediated Regulation of β 2AR Translation and Function in Failing Hearts. Circ Res 2023; 133:944-958. [PMID: 37869877 PMCID: PMC10635332 DOI: 10.1161/circresaha.123.323174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND β1AR (beta-1 adrenergic receptor) and β2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac β-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that β-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS The localization pattern of β-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on β-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible β-AR translation sites in cardiomyocytes. The mechanism by which β-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS β1AR and β2AR mRNAs show differential localization in cardiomyocytes, with β1AR found in the perinuclear region and β2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of β2AR transcripts toward the perinuclear region. The close proximity between β2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of β2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both β1AR and β2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to β-AR mRNA redistribution and impaired β2AR function in failing hearts. CONCLUSIONS Asymmetrical microtubule-dependent trafficking dictates differential β1AR and β2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 β-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted β2AR-mediated cyclic adenosine monophosphate signaling.
Collapse
MESH Headings
- Rats
- Animals
- In Situ Hybridization, Fluorescence
- Heart Failure/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Myocardial Infarction/metabolism
- Myocytes, Cardiac/metabolism
- Cyclic AMP/metabolism
- Receptors, Adrenergic, beta-1/metabolism
- Microtubules/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Adenosine Monophosphate/metabolism
- Adenosine Monophosphate/pharmacology
Collapse
Affiliation(s)
- Zoe Kwan
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Binoy Paulose Nadappuram
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, United Kingdom (B.P.N.)
| | - Manton M. Leung
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom (M.M.L.)
| | - Sanika Mohagaonkar
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ao Li
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Kumuthu S. Amaradasa
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ji Chen
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Stephen Rothery
- FILM Facility, Imperial College London, United Kingdom (S.R.)
| | - Iyobel Kibreab
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jiarong Fu
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jose L. Sanchez-Alonso
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Catherine A. Mansfield
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | | | - Alexander Kondrashov
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, United Kingdom (A.K.)
| | - Peter T. Wright
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, United Kingdom (P.T.W.)
| | - Pamela Swiatlowska
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center, Hamburg-Eppendorf, Germany (H.S., V.O.N.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Aleksandar P. Ivanov
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| |
Collapse
|
3
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
4
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Moura ALD, Hyslop S, Grassi-Kassisse DM, Spadari RC. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress. Can J Physiol Pharmacol 2017; 95:999-1008. [DOI: 10.1139/cjpp-2016-0622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β1/β2-adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β2-receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β1-receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β2-adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.
Collapse
Affiliation(s)
- André Luiz de Moura
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dora M. Grassi-Kassisse
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Regina C. Spadari
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
6
|
Rozier K, Bondarenko VE. Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 2017; 312:C595-C623. [DOI: 10.1152/ajpcell.00273.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
The β1- and β2-adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β1-adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β2-adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β1- and β2-adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions. Simulations describe the dynamics of major signaling molecules in different subcellular compartments; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; and [Ca2+]i and [Na+]i dynamics upon stimulation of β1- and β2-adrenergic receptors (β1- and β2-ARs). The model reveals physiological conditions when β2-ARs do not produce significant physiological effects and when their effects can be measured experimentally. Simulations demonstrated that stimulation of β2-ARs with isoproterenol caused a marked increase in the magnitude of the L-type Ca2+ current, [Ca2+]i transient, and phosphorylation of phospholamban only upon additional application of pertussis toxin or inhibition of phosphodiesterases of type 3 and 4. The model also made testable predictions of the changes in magnitudes of [Ca2+]i and [Na+]i fluxes, the rate of decay of [Na+]i concentration upon both combined and separate stimulation of β1- and β2-ARs, and the contribution of phosphorylation of PKA targets to the changes in the action potential and [Ca2+]i transient.
Collapse
Affiliation(s)
- Kelvin Rozier
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
7
|
Oliveira ES, Pereira AH, Cardoso AC, Franchini KG, Bassani JW, Bassani RA. Atrial chronotropic reactivity to catecholamines in neonatal rats: Contribution of β-adrenoceptor subtypes. Eur J Pharmacol 2015; 764:385-394. [DOI: 10.1016/j.ejphar.2015.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
8
|
Pecha S, Flenner F, Söhren KD, Lorenz K, Eschenhagen T, Christ T. β 1 Adrenoceptor antagonistic effects of the supposedly selective β 2 adrenoceptor antagonist ICI 118,551 on the positive inotropic effect of adrenaline in murine hearts. Pharmacol Res Perspect 2015; 3:e00168. [PMID: 26516580 PMCID: PMC4618639 DOI: 10.1002/prp2.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Studies on the relative contribution of β1- and β2-adrenoceptors (AR) generally employ selective β1- and β2-AR antagonists such as CGP 20712A and ICI 118,551, respectively, and assume that antagonism by one of these compounds indicates mediation by the respective AR subtype. Here, we evaluated the β2-AR-selectivity of ICI 118,551 in ventricular muscle strips of transgenic mice lacking β1-AR (β1-KO), β2-AR (β2-KO), or both (β1/β2-KO). Strips were electrically driven and force development was measured. In wild type (WT), ICI 118,551 (100 nmol/L) shifted the concentration–response curve (CRC) for adrenaline by about 0.5 log units to the right, corresponding to the known affinity of ICI 118,551 to β1-AR but not to β2-AR. Conversely, the phosphodiesterase inhibitor rolipram (10 μmol/L) shifted the CRC to the left, but did not enlarge the ICI 118,551 shift, indicating exclusive β1-AR mediation even when PDE4 is inactive. In line with this, rolipram and ICI 118,551 had similar effects in β2-KO than in WT. In contrast, β1-KO did not show any inotropic reaction to adrenaline (+/− rolipram). In WT, the β1-AR selective antagonist CGP 20712A (100 nmol/L) shifted the CRC for isoprenaline by 2.1 log units, corresponding to the affinity of CGP 20712A to β1-AR. Rolipram increased the sensitivity to adrenaline independently of the presence of CGP 20712A. We conclude that effects sensitive to the β2-AR antagonist ICI 118,551 are not necessarily β2-AR-mediated and CGP 20712A-resistant effects cannot be simply interpreted as β2-AR-mediated. Catecholamine effects in murine ventricles strictly depend on β1-AR, even if PDE 4 is blocked.
Collapse
Affiliation(s)
- Simon Pecha
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Cardiovascular Surgery, University Heart Center Hamburg Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Klaus-Dieter Söhren
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, University of Wuerzburg Wuerzburg, Germany ; Comprehensive Heart Failure Center, University of Wuerzburg Wuerzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
9
|
Walsh SK, Hector EE, Andréasson AC, Jönsson-Rylander AC, Wainwright CL. GPR55 deletion in mice leads to age-related ventricular dysfunction and impaired adrenoceptor-mediated inotropic responses. PLoS One 2014; 9:e108999. [PMID: 25275556 PMCID: PMC4183508 DOI: 10.1371/journal.pone.0108999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023] Open
Abstract
G protein coupled receptor 55 (GPR55) is expressed throughout the body, and although its exact physiological function is unknown, studies have suggested a role in the cardiovascular system. In particular, GPR55 has been proposed as mediating the haemodynamic effects of a number of atypical cannabinoid ligands; however this data is conflicting. Thus, given the incongruous nature of our understanding of the GPR55 receptor and the relative paucity of literature regarding its role in cardiovascular physiology, this study was carried out to examine the influence of GPR55 on cardiac function. Cardiac function was assessed via pressure volume loop analysis, and cardiac morphology/composition assessed via histological staining, in both wild-type (WT) and GPR55 knockout (GPR55−/−) mice. Pressure volume loop analysis revealed that basal cardiac function was similar in young WT and GPR55−/− mice. In contrast, mature GPR55−/− mice were characterised by both significant ventricular remodelling (reduced left ventricular wall thickness and increased collagen deposition) and systolic dysfunction when compared to age-matched WT mice. In particular, the load-dependent parameter, ejection fraction, and the load-independent indices, end-systolic pressure-volume relationship (ESPVR) and Emax, were all significantly (P<0.05) attenuated in mature GPR55−/− mice. Furthermore, GPR55−/− mice at all ages were characterised by a reduced contractile reserve. Our findings demonstrate that mice deficient in GPR55 exhibit maladaptive adrenergic signalling, as evidenced by the reduced contractile reserve. Furthermore, with age these mice are characterised by both significant adverse ventricular remodelling and systolic dysfunction. Taken together, this may suggest a role for GPR55 in the control of adrenergic signalling in the heart and potentially a role for this receptor in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Sarah K. Walsh
- Institute for Health & Wellbeing Research, Robert Gordon University, Riverside East, Aberdeen, United Kingdom
| | - Emma E. Hector
- Institute for Health & Wellbeing Research, Robert Gordon University, Riverside East, Aberdeen, United Kingdom
| | | | | | - Cherry L. Wainwright
- Institute for Health & Wellbeing Research, Robert Gordon University, Riverside East, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Melsom CB, Hussain RI, Ørstavik Ø, Aronsen JM, Sjaastad I, Skomedal T, Osnes JB, Levy FO, Krobert KA. Non-classical regulation of β1- and β 2-adrenoceptor-mediated inotropic responses in rat heart ventricle by the G protein Gi. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1177-86. [PMID: 25216690 DOI: 10.1007/s00210-014-1036-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Studies suggest that increased activity of Gi contributes to the reduced β-adrenoceptor-mediated inotropic response (βAR-IR) in failing cardiomyocytes and that β2AR-IR but not β1AR-IR is blunted by dual coupling to Gs and Gi. We aimed to clarify the role of Gi upon the β1AR-IR and β2AR-IR in Sham and failing myocardium by directly measuring contractile force and cAMP accumulation. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation in cardiomyocytes from rats with post-infarction heart failure (HF) or sham operates (Sham). The β2AR-IR in Sham and HF was small and was amplified by simultaneously inhibiting phosphodiesterases 3 and 4 (PDE3&4). In HF, the inotropic response and cAMP accumulation evoked by β1AR- or β2AR-stimulation were reduced. Inactivation of Gi with pertussis toxin (PTX) did not restore the β1AR-IR or β2AR-IR in HF to Sham levels but did enhance the maximal β2AR-IR. PTX increased both β1AR- and β2AR-evoked cAMP accumulation more in Sham than that in HF, and HF levels approached those in untreated Sham. The potency of agonists at β1 and at β2ARs (only under PDE3&4 inhibition) was increased in HF and by PTX in both HF and Sham. Without PDE3&4 inhibition, PTX increased only the maximal β2AR-IR, not potency. We conclude that Gi regulates both β1AR- and β2AR-IR independent of receptor coupling with Gi. Gi together with PDE3&4 tonically restrict the β2AR-IR. Gi inhibition did not restore the βAR-IR in HF despite increasing cAMP levels, suggesting that the mechanism of impairment resides downstream to cAMP signalling.
Collapse
Affiliation(s)
- Caroline Bull Melsom
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Melsom CB, Ørstavik Ø, Osnes JB, Skomedal T, Levy FO, Krobert KA. Gi proteins regulate adenylyl cyclase activity independent of receptor activation. PLoS One 2014; 9:e106608. [PMID: 25203113 PMCID: PMC4159282 DOI: 10.1371/journal.pone.0106608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.
Collapse
Affiliation(s)
- Caroline Bull Melsom
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øivind Ørstavik
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan-Bjørn Osnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Skomedal
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Kurt Allen Krobert
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr−/− mice. Nitric Oxide 2014; 36:58-66. [DOI: 10.1016/j.niox.2013.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 11/22/2022]
|
13
|
|
14
|
Wang Q, Traynor JR. Modulation of μ-opioid receptor signaling by RGS19 in SH-SY5Y cells. Mol Pharmacol 2013; 83:512-20. [PMID: 23197645 PMCID: PMC3558815 DOI: 10.1124/mol.112.081992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/29/2012] [Indexed: 02/03/2023] Open
Abstract
Regulator of G-protein signaling protein 19 (RGS19), also known as Gα-interacting protein (GAIP), acts as a GTPase accelerating protein for Gαz as well as Gαi/o subunits. Interactions with GAIP-interacting protein N-terminus and GAIP-interacting protein C-terminus (GIPC) link RGS19 to a variety of intracellular proteins. Here we show that RGS19 is abundantly expressed in human neuroblastoma SH-SY5Y cells that also express µ- and δ- opioid receptors (MORs and DORs, respectively) and nociceptin receptors (NOPRs). Lentiviral delivery of short hairpin RNA specifically targeted to RGS19 reduced RGS19 protein levels by 69%, with a similar reduction in GIPC. In RGS19-depleted cells, there was an increase in the ability of MOR (morphine) but not of DOR [(4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80)] or NOPR (nociceptin) agonists to inhibit forskolin-stimulated adenylyl cyclase and increase mitogen-activated protein kinase (MAPK) activity. Overnight treatment with either MOR [D-Ala, N-Me-Phe, Gly-ol(5)-enkephalin (DAMGO) or morphine] or DOR (D-Pen(5)-enkephalin or SNC80) agonists increased RGS19 and GIPC protein levels in a time- and concentration-dependent manner. The MOR-induced increase in RGS19 protein was prevented by pretreatment with pertussis toxin or the opioid antagonist naloxone. Protein kinase C (PKC) activation alone increased the level of RGS19 and inhibitors of PKC 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile and mitogen-activated protein kinase kinase 1 2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one, but not protein kinase A (H89), completely blocked DAMGO-induced RGS19 protein accumulation. The findings show that RGS19 and GIPC are jointly regulated, that RGS19 is a GTPase accelerating protein for MOR with selectivity over DOR and NOPR, and that chronic MOR or DOR agonist treatment increases RGS19 levels by a PKC and the MAPK pathway-dependent mechanism.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Benzamides/pharmacology
- Colforsin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- HEK293 Cells
- Humans
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morphine/pharmacology
- Opioid Peptides/pharmacology
- PC12 Cells
- Piperazines/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Rats
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | |
Collapse
|
15
|
Chen Z, Miao G, Liu M, Hao G, Liu Y, Fang X, Zhang Z, Lu L, Zhang J, Zhang L. Age-related up-regulation of beta3-adrenergic receptor in heart-failure rats. J Recept Signal Transduct Res 2010; 30:227-33. [PMID: 20443655 DOI: 10.3109/10799891003801918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of beta1- and beta2-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta3-AR is also expressed in the heart and that its stimulation leads to negative inotropic effects. The aim of this study was to investigate the expression of beta3-AR in age-related heart-failure rats and its relevance to left ventricular dysfunction. Aging male Wistar rats were divided into young and aging groups according to age, and each group included sham-operation and heart-failure subgroups. Left ventricular end-diastolic pressure (LVEDP) and the ratio of left ventricular weight to body weight (LV/BW) were significantly higher for the aging heart-failure versus young heart-failure and the heart-failure versus sham-operation groups (P < 0.01, respectively). However, the left ventricular end-systolic pressure (LVESP) and the maximal rate of rise or fall of left ventricular pressure were all significantly lower for the aging heart-failure versus young heart-failure and the heart-failure versus sham-operation groups (P < 0.01, respectively). beta3-AR protein levels increased significantly when heart failure worsened in aging rats. These results suggest that beta3-AR expression in age-related heart-failure rats and left ventricular function were highly correlated.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Levitt ES, Purington LC, Traynor JR. Gi/o-coupled receptors compete for signaling to adenylyl cyclase in SH-SY5Y cells and reduce opioid-mediated cAMP overshoot. Mol Pharmacol 2010; 79:461-71. [PMID: 21098043 DOI: 10.1124/mol.110.064816] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organization of G protein-coupled receptors and cognate signaling partners at the plasma membrane has been proposed to occur via multiple mechanisms, including membrane microdomains, receptor oligomerization, and protein scaffolding. Here, we investigate the organization of six types of Gi/o-coupled receptors endogenously expressed in SH-SY5Y cells. The most abundant receptor in these cells was the μ-opioid receptor (MOR), the activation of which occluded acute inhibition of adenylyl cyclase (AC) by agonists to δ-opioid (DOR), nociceptin/orphanin FQ peptide (NOPr), α2-adrenergic (α2AR), cannabinoid 1, and serotonin 1A receptors. We further demonstrate that all receptor pairs share a common pool of AC. The MOR agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) also occluded the ability of DOR agonist to stimulate G proteins. However, at lower agonist concentrations and at shorter incubation times when G proteins were not limiting, the relationship between MOR and DOR agonists was additive. The additive relationship was confirmed by isobolographic analysis. Long-term coadministration of MOR and DOR agonists caused cAMP overshoot that was not additive, suggesting that sensitization of AC mediated by these two receptors occurs by a common pathway. Furthermore, heterologous inhibition of AC by agonists to DOR, NOPr, and α2AR reduced the expression of cAMP overshoot in DAMGO-dependent cells. However, this cross-talk did not lead to heterologous tolerance. These results indicate that multiple receptors could be tethered into complexes with cognate signaling proteins and that access to shared AC by multiple receptor types may provide a means to prevent opioid withdrawal.
Collapse
Affiliation(s)
- Erica S Levitt
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
17
|
Kaumann AJ, Galindo-Tovar A, Escudero E, Vargas ML. Phosphodiesterases do not limit beta1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1-5 in rats. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:421-30. [PMID: 19693491 DOI: 10.1007/s00210-009-0445-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/30/2009] [Indexed: 01/01/2023]
Abstract
The mammalian heart expresses at least five phosphodiesterases (PDE1-5). Catecholamines produce surges of inotropically relevant cAMP through beta(1)-adrenoceptor stimulation. cAMP is mainly hydrolysed by PDE3 and/or PDE4 thereby blunting contractility. Basal sinoatrial beating rate in mouse, rat, piglet and rabbit sinoatrial cells is reduced by PDE3 and/or PDE4 through hydrolysis of cAMP. However, in rodents, the tachycardia elicited by catecholamines through production of cAMP by beta-adrenoceptor activation is not controlled by PDE3 and PDE4, despite a blunting effect of PDE3 or/and PDE4 on basal sinoatrial beating, but it is unknown whether PDE3 limits catecholamine-evoked tachycardia in the rabbit. Since rabbit sinoatrial cells are an important model for pacemaker research, we investigated whether the positive chronotropic effects of (-)-noradrenaline on spontaneously beating right atria of the rabbit are potentiated by inhibition of PDE3 with cilostamide (300 nM). We also studied the sinoatrial effects of the PDE4 inhibitor rolipram (10 microM) and its influence on the responses to (-)-noradrenaline. For comparison, we investigated the influence of cilostamide and rolipram on the positive inotropic responses to (-)-noradrenaline on rabbit left atria and right ventricular papillary muscles. Cilostamide and concurrent cilostamide + rolipram, but not rolipram alone, increased sinoatrial rate by 15% and 31% of the effect of (-)-isoprenaline (200 microM) but the PDE inhibitors did not significantly change the chronotropic potency of (-)-noradrenaline. In contrast in papillary muscle, the positive inotropic effects of (-)-noradrenaline were potentiated 2.4-, 2.6- and 44-fold by cilostamide, rolipram and concurrent cilostamide + rolipram, respectively. In left atrium, the positive inotropic effects of (-)-noradrenaline were marginally potentiated by cilostamide, as well as potentiated 2.7- and 32-fold by rolipram and by concurrent cilostamide and rolipram respectively. To compare the influence of PDE1-5 on basal sinoatrial rate and (-)-noradrenaline-evoked tachycardia, we investigated on rat right atria the effects of selective inhibitors. The PDE4 inhibitor rolipram and non-selective inhibitor isobutyl-methylxanthine caused tachycardia with -logEC(50)s of 7.2 and 5.0 and E(max) of 18% and 102% of (-)-isoprenaline, respectively. Rolipram did not change the chronotropic potency of (-)-noradrenaline. At high concentrations (10-30 microM), the PDE1, PDE3 and PDE5 inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine, cilostamide and sildenafil, respectively, caused marginal tachycardia but did not significantly change the chronotropic potency of (-)-noradrenaline. The PDE2-selective inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine caused marginal bradycardia at 30 microM and tended to reduce the chronotropic potency of (-)-noradrenaline. Rabbit PDE3 reduces basal sinoatrial rate. Although PDE4 only marginally reduces rate, under conditions of PDE3 inhibition, it further reduces sinoatrial rate. Both PDE3 and PDE4 control atrial and ventricular positive inotropic effects of (-)-noradrenaline. In contrast, neither PDE3 nor PDE4 limit the sinoatrial tachycardia induced by (-)-noradrenaline. In the rat, only PDE4, but not PDE1, PDE2, PDE3 and PDE5, reduces basal sinoatrial rate. None of the five rat PDEs limits the (-)-noradrenaline-evoked tachycardia. Taken together, these results confirm and expand evidence for our proposal that the cAMP-compartment modulating basal sinoatrial rate, controlled by PDE3 and/or PDE4, is different from the PDE-resistant cAMP compartment involved in beta(1)-adrenoceptor-mediated sinoatrial tachycardia.
Collapse
Affiliation(s)
- Alberto J Kaumann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Physiology Building, Cambridge, CB2 3EG, UK.
| | | | | | | |
Collapse
|
18
|
Christ T, Galindo-Tovar A, Thoms M, Ravens U, Kaumann AJ. Inotropy and L-type Ca2+ current, activated by beta1- and beta2-adrenoceptors, are differently controlled by phosphodiesterases 3 and 4 in rat heart. Br J Pharmacol 2009; 156:62-83. [PMID: 19133992 DOI: 10.1111/j.1476-5381.2008.00015.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE beta(1)- and beta(2)-adrenoceptors coexist in rat heart but beta(2)-adrenoceptor-mediated inotropic effects are hardly detectable, possibly due to phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide (300 nmol x L(-1)) and the PDE4 inhibitor rolipram (1 micromol x L(-1)) on the effects of (-)-catecholamines. EXPERIMENTAL APPROACH Cardiostimulation evoked by (-)-noradrenaline (ICI118551 present) and (-)-adrenaline (CGP20712A present) through beta(1)- and beta(2)-adrenoceptors, respectively, was compared on sinoatrial beating rate, left atrial and ventricular contractile force in isolated tissues from Wistar rats. L-type Ca(2+)-current (I(Ca-L)) was assessed with whole-cell patch clamp. KEY RESULTS Rolipram caused sinoatrial tachycardia. Cilostamide and rolipram did not enhance chronotropic potencies of (-)-noradrenaline and (-)-adrenaline. Rolipram but not cilostamide potentiated atrial and ventricular inotropic effects of (-)-noradrenaline. Cilostamide potentiated the ventricular effects of (-)-adrenaline but not of (-)-noradrenaline. Concurrent cilostamide + rolipram uncovered left atrial effects of (-)-adrenaline. Both rolipram and cilostamide augmented the (-)-noradrenaline (1 micromol x L(-1)) evoked increase in I(Ca-L). (-)-Adrenaline (10 micromol x L(-1)) increased I(Ca-L) only in the presence of cilostamide but not rolipram. CONCLUSIONS AND IMPLICATIONS PDE4 blunts the beta(1)-adrenoceptor-mediated inotropic effects. PDE4 reduces basal sinoatrial rate in a compartment distinct from compartments controlled by beta(1)- and beta(2)-adrenoceptors. PDE3 and PDE4 jointly prevent left atrial beta(2)-adrenoceptor-mediated inotropy. Both PDE3 and PDE4 reduce I(Ca-L) responses through beta(1)-adrenoceptors but the PDE3 component is unrelated to inotropy. PDE3 blunts both ventricular inotropic and I(Ca-L) responses through beta(2)-adrenoceptors.
Collapse
Affiliation(s)
- Torsten Christ
- Department of Pharmacology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
19
|
Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, Jurevicius J, Fischmeister R. beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest 2008; 118:3219-27. [PMID: 18704193 DOI: 10.1172/jci32519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 07/09/2008] [Indexed: 11/17/2022] Open
Abstract
beta3-adrenergic receptor (beta3-AR) activation produces a negative inotropic effect in human ventricles. Here we explored the role of beta3-AR in the human atrium. Unexpectedly, beta3-AR activation increased human atrial tissue contractility and stimulated the L-type Ca2+ channel current (I Ca,L) in isolated human atrial myocytes (HAMs). Right atrial tissue specimens were obtained from 57 patients undergoing heart surgery for congenital defects, coronary artery diseases, valve replacement, or heart transplantation. The I(Ca,L) and isometric contraction were recorded using a whole-cell patch-clamp technique and a mechanoelectrical force transducer. Two selective beta3-AR agonists, SR58611 and BRL37344, and a beta3-AR partial agonist, CGP12177, stimulated I(Ca,L) in HAMs with nanomolar potency and a 60%-90% efficacy compared with isoprenaline. The beta3-AR agonists also increased contractility but with a much lower efficacy (approximately 10%) than isoprenaline. The beta3-AR antagonist L-748,337, beta1-/beta2-AR antagonist nadolol, and beta1-/beta2-/beta3-AR antagonist bupranolol were used to confirm the involvement of beta3-ARs (and not beta1-/beta2-ARs) in these effects. The beta3-AR effects involved the cAMP/PKA pathway, since the PKA inhibitor H89 blocked I(Ca,L) stimulation and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) strongly increased the positive inotropic effect. Therefore, unlike in ventricular tissue, beta3-ARs are positively coupled to L-type Ca2+ channels and contractility in human atrial tissues through a cAMP-dependent pathway.
Collapse
|
20
|
Galindo-Tovar A, Kaumann AJ. Phosphodiesterase-4 blunts inotropism and arrhythmias but not sinoatrial tachycardia of (-)-adrenaline mediated through mouse cardiac beta(1)-adrenoceptors. Br J Pharmacol 2007; 153:710-20. [PMID: 18084319 DOI: 10.1038/sj.bjp.0707631] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE beta(1) and beta(2)-adrenoceptors coexist in murine heart but beta(2)-adrenoceptor-mediated effects have not been detected in atrial and ventricular tissues, possibly due to marked phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide and PDE4 inhibitor rolipram on the effects of (-)-adrenaline in three regions of murine heart. EXPERIMENTAL APPROACH (-)-Adrenaline-evoked cardiostimulation was compared on sinoatrial beating rate, left atrial and right ventricular contractile force in isolated tissues from 129SvxC57B1/6 cross mice. Ventricular arrhythmic contractions were also assessed. KEY RESULTS Both rolipram (1 microM) and cilostamide (300 nM) caused transient sinoatrial tachycardia but neither enhanced the chronotropic potency of (-)-adrenaline. Rolipram potentiated 19-fold (left atrium) and 7-fold (right ventricle) the inotropic effects of (-)-adrenaline. (-)-Adrenaline elicited concentration-dependent ventricular arrhythmias that were potentiated by rolipram. All effects of (-)-adrenaline were antagonized by the beta(1)-adrenoceptor-selective antagonist CGP20712A (300 nM). Cilostamide (300 nM) did not increase the chronotropic and inotropic potencies of (-)-adrenaline, but administered jointly with rolipram in the presence of CGP20712A, uncovered left atrial inotropic effects of (-)-adrenaline that were prevented by the beta(2)-adrenoceptor-selective antagonist ICI118551. CONCLUSIONS AND IMPLICATIONS PDE4 blunts the beta(1)-adrenoceptor-mediated effects of (-)-adrenaline in left atrium and right ventricle but not in sinoatrial node. Both PDE3 and PDE4 reduce basal sinoatrial rate in a compartment distinct from the beta(1)-adrenoceptor compartment. PDE3 and PDE4, acting in concert, prevent left atrial beta(2)-adrenoceptor-mediated inotropy. PDE4 partially protects the right ventricle against (-)-adrenaline-evoked arrhythmias.
Collapse
Affiliation(s)
- A Galindo-Tovar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
21
|
Krizanova O, Myslivecek J, Tillinger A, Jurkovicova D, Kubovcakova L. Adrenergic and calcium modulation of the heart in stress: from molecular biology to function. Stress 2007; 10:173-84. [PMID: 17514586 DOI: 10.1080/10253890701305754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is strong evidence about the importance of catecholamines and calcium signaling in heart function. Also, interaction of these two systems is well documented. Catecholamines signal through adrenergic receptors, and further activate calcium transport either from the extracellular space, or from the intracellular calcium stores. This review summarizes current knowledge on catecholamine production in the heart, with special focus on the final enzyme in the catecholamine synthesizing pathway, phenylethanolamine N-methyltransferase (PNMT), in different cell types in the heart. Further, signaling through different types of adrenergic receptors in physiological conditions and after exposure to different stressors is discussed. Also, part of this review considers activation of an intracellular calcium transport system via inositol 1,4,5-trisphosphate receptor and to possible functional consequences in control and stress conditions.
Collapse
Affiliation(s)
- O Krizanova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
22
|
Altan VM, Arioglu E, Guner S, Ozcelikay AT. The influence of diabetes on cardiac β-adrenoceptor subtypes. Heart Fail Rev 2007; 12:58-65. [PMID: 17364227 DOI: 10.1007/s10741-007-9005-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
Despite the significant developments in the treatment of diabetes mellitus, diabetic patients still continue to suffer from cardiac complications. The increase of cardiac adrenergic drive may ultimately contribute to the development and progression of diabetic cardiomyopathy. beta-Adrenoceptors play an important role in the regulation of heart function. However, responsiveness of diabetic heart to beta-adrenoceptor agonist stimulation is diminished. The chronotropic responses mediated by beta(1)-subtype, which is mainly responsible for cardiac effects of catecholamines are decreased in the atria of diabetic rats. The expression of cardiac beta(1)-subtype is significantly decreased in diabetic rats as well. beta(2)-Adrenoceptors also increase cardiac function. Although the expression of this subtype is slightly decreased in diabetic rat hearts, beta(2)-mediated chronotropic responses are preserved. On the other hand, functional beta(3)-adrenoceptor subtype was characterized in human heart. Interestingly, stimulation of cardiac beta(3)-adrenoceptors, on the contrary of beta(1)- and beta(2)-subtypes, mediates negative inotropic effect in human ventricular muscle. Cardiac beta(3)-adrenoceptors are upregulated in experimental diabetes as well as in human heart failure. These findings suggest that each beta-adrenoceptor subtype may play an important role in the pathophysiology of diabetes-induced heart disease. However, it is still not known whether the changes in the expression and/or responsiveness of beta-adrenoceptors are adaptive or maladaptive. Therefore, this review outlines the potential roles of these receptor subtypes in cardiac pathologies of diabetes.
Collapse
Affiliation(s)
- V Melih Altan
- Department of Pharmacology, Faculty of Pharmacy, University of Ankara, Tandogan, Ankara, 06100, Turkey.
| | | | | | | |
Collapse
|
23
|
Brixius K, Bloch W, Ziskoven C, Bölck B, Napp A, Pott C, Steinritz D, Jiminez M, Addicks K, Giacobino JP, Schwinger RHG. β3-Adrenergic eNOS stimulation in left ventricular murine myocardium. Can J Physiol Pharmacol 2006; 84:1051-60. [PMID: 17328145 DOI: 10.1139/y06-033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates mechanisms underlying β3-adrenergic activation of the endothelial nitric oxide synthase (eNOS) in myocardial tissue of wild-type (WT) and β3-adrenoceptor knockout (β3-KNO) mice, in the absence and presence of BRL 37344 (BRL), the preferential β3-adrenoceptor selective agonist. Nitric oxide (NO)-liberation was measured after the application of BRL (10 µmol/L), using fluorescence dye diaminofluorescein (DAF), in left ventricular cardiac preparations. Phosphorylation of eNOSSer1177, eNOSThr495, eNOSSer114, and eNOS translocation, and alterations of 8-isoprostaglandin F2α (a parameter for reactive oxygen radical generation), after application of BRL (10 µmol/L), were studied using immunohistochemical stainings in isolated, electrically stimulated (1 Hz) right atrial (RA) and left ventricular (LV) myocardium. An increased NO release after BRL application (10 µmol/L) was observed in the RA and LV myocardial tissue of WT mice, but not in β3-KNO mice. This NO liberation in WT mice was paralleled by an increased eNOSSer1177, but not eNOSThr495, phosphorylation. A cytosolic eNOS translocation was observed after the application of BRL (10 µmol/L) only in the RA myocardial tissue of WT mice. A BRL (10 µmol/L)-dependent increase in eNOSSer114 phosphorylation was observed only in the LV myocardial tissue of WT mice; this was paralleled by an increase in 8-isoprostaglandin F2α. In murine myocardium, 3 β3-adrenoceptor-dependent activation pathways for eNOS exist (i.e., a translocation and phosphorylation of eNOSSer1177 and eNOSSer114). These pathways are used in a regional-dependent manner. β3-adrenergic oxygen-derived free radical production might be important in situations of enhanced β3-adrenoceptor activation, as has been described in human heart failure.
Collapse
Affiliation(s)
- Klara Brixius
- Laboratory of Muscle Research and Molecular Cardiology, Department of Internal Medicine III, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Most modern theories about stress recognize that although stress is not a disease, it may be the trigger for the majority of diseases when allostatic overload has been generated. During stress, the glucocorticoids and catecholamines play a key role in the regulation of physiological parameters and homeostasis during stress. In the heart, positive chronotropic, inotropic, and lusitropic responses to catecholamines are mediated by various subtypes of adrenergic receptors (beta-ARs), mainly beta1- and beta2-adrenergic receptors. beta-ARs also control cardiomyocyte growth and death, thus contributing to cardiac remodelling. The structural basis of each beta-AR subtype, as well as their signalling pathways, and adaptive responses to stress are discussed. The participation of beta3- and putative beta4-ARs in the control of cardiac function is also discussed, with emphasis on low affinity beta-AR isoforms and the role they play in the response to the catecholamines under stress. The changes in beta-AR signalling under pathogenic conditions as well as under stress are reviewed.
Collapse
Affiliation(s)
- Iraídes N Santos
- Institute of Biology, State University of Campinas (UNICAMP), Department of Physiology and Biophysics, Campinas, SP, Brazil
| | | |
Collapse
|
25
|
Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M. Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 2005; 98:226-34. [PMID: 16357307 DOI: 10.1161/01.res.0000200178.34179.93] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP]i in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving beta3-adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by beta-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the beta-adrenergic pathway. In this, activation of beta3-adrenergic receptors counteracts cAMP generation obtained via stimulation of beta1/beta2-adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling.
Collapse
Affiliation(s)
- Marco Mongillo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Feldman DS, Carnes CA, Abraham WT, Bristow MR. Mechanisms of disease: beta-adrenergic receptors--alterations in signal transduction and pharmacogenomics in heart failure. ACTA ACUST UNITED AC 2005; 2:475-83. [PMID: 16265588 DOI: 10.1038/ncpcardio0309] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 06/23/2005] [Indexed: 01/08/2023]
Abstract
Beta-adrenergic signaling is an important regulator of myocardial function. During the progression of heart failure (HF), a reproducible series of biochemical events occurs that affects beta-adrenergic receptor (beta-AR) signaling and cardiac function. Furthermore, there are pathophysiologic alterations in the expression and regulation of proteins that are regulated by beta-ARs during HF. Analyses of these complex signaling pathways have led to a better understanding of HF mechanisms and the use of beta-adrenergic antagonists, which have notably altered HF-related morbidity and mortality. Despite therapeutic advances that have affected beta-AR signaling, HF remains a leading cause of hospitalization and a principal cause of death in industrialized nations. In this review, we summarize current insights into beta-adrenergic signal-transduction pathways, the best-described beta-AR polymorphisms, and therapies that target the beta-AR pathway in HF.
Collapse
Affiliation(s)
- David S Feldman
- Davis Heart and Lung Research Institute, Division of Cardiology/Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
27
|
Talbot JN, Happe HK, Murrin LC. Mu opioid receptor coupling to Gi/o proteins increases during postnatal development in rat brain. J Pharmacol Exp Ther 2005; 314:596-602. [PMID: 15860573 DOI: 10.1124/jpet.104.082156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mu opioid receptors are densely expressed within rat striatum and are concentrated in anatomically discrete patches called striosomes. The density of striosomal mu receptors remains relatively constant during postnatal development, but little is known about their functional maturation. We examined the extent of G protein coupling by mu opioid receptors in rat brain during development, focusing on striosomes within the striatum because of receptor density. The mu receptors were quantified using [(3)H][d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) autoradiography. Adjacent sections were analyzed for DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding to assess mu receptor activation of G(i/o) proteins. Striosomal mu receptor expression increased only slightly between postnatal day 5 and adult. In contrast, mu receptor-stimulated [(35)S]GTPgammaS binding increased from 0.13 to 2.6 fmol/mg tissue over the same period, a 20-fold difference. The ratio of specific DAMGO-stimulated [(35)S]GTPgammaS binding to [(3)H]DAMGO binding, representing the relative number of G proteins activated per receptor, increased 19-fold between postnatal day 5 and adult. Similar patterns were observed throughout the striatum and other brain regions such as the nucleus accumbens, although the extent of change varied from region to region. These data indicate that mu opioid receptors exhibit enhanced function in the adult rat brain compared with the neonate. These data also suggest that this increase in G protein coupling is developmentally regulated and that in the developing rat brain the density of mu opioid receptor expression may not necessarily correlate with receptor activation of G proteins.
Collapse
Affiliation(s)
- Jeffery N Talbot
- Depatment of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | |
Collapse
|
28
|
Santos IN, Sumitame M, Caceres VM, Moreira MF, Krieger MH, Spadari-Bratfisch RC. Evidence for two atypical conformations of beta-adrenoceptors and their interaction with Gi proteins. Eur J Pharmacol 2005; 513:109-18. [PMID: 15878715 DOI: 10.1016/j.ejphar.2005.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 11/25/2022]
Abstract
In this study, we investigated whether the responses of right atria from sinoaortic denervated rats to CGP12177 (4(3-t-butylamino-2-hydroxypropoxy benzidimidazole-2 one, hydrochloride)), isoprenaline and norepinephrine desensitized in parallel and whether CGP12177 interacted with distinct conformations of beta-adrenoceptors. Right atria from rats 48 h after sinoaortic denervation were subsensitive to isoprenaline, norepinephrine and CGP12177. One week after sinoaortic denervation, the sensitivity to CGP12177 had recovered whereas the responses to isoprenaline and norepinephrine were still subsensitive, suggesting that the binding sites for these molecules showed independent behavior. In atria from 48 h sinoaortic-denervated rats, propranolol or 3 microM CGP20712A (2-hydroxy-5(2-((2-hydroxy-3-(4-((methyl-4-trifluormethyl)1H imidazole-2-yl)-phenoxypropyl) amino) ethoxy)-benzamide monomethane sulphonate)) blocked the responses to 10 nM-1 microM CGP12177 and steepened the curves. The concentration-response curves to CGP12177 in the presence of ICI118,551 (erythro-DL-1(-methylindan-4-yloxy)-3-isopropylamino-butan-2-ol) were biphasic, suggesting that CGP12177 interacted with at least two conformations of beta-adrenoceptors that showed negative cooperativism, one acting through beta(2)-adrenoceptor-Gi and the other via beta(1)-adrenoceptor-Gs. This hypothesis was confirmed in right atria from sinoaortic-denervated rats treated with pertussis toxin.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Heart/drug effects
- Heart/physiology
- Heart Atria/drug effects
- Heart Atria/innervation
- Imidazoles/pharmacology
- In Vitro Techniques
- Isoproterenol/pharmacology
- Male
- Myocardial Contraction/drug effects
- Norepinephrine/pharmacology
- Pertussis Toxin/pharmacology
- Propanolamines/pharmacology
- Protein Binding
- Protein Conformation
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/chemistry
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/metabolism
Collapse
Affiliation(s)
- Iraídes N Santos
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Wettwer E, Hála O, Christ T, Heubach JF, Dobrev D, Knaut M, Varró A, Ravens U. Role of
I
Kur
in Controlling Action Potential Shape and Contractility in the Human Atrium. Circulation 2004; 110:2299-306. [PMID: 15477405 DOI: 10.1161/01.cir.0000145155.60288.71] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The ultrarapid outward current
I
Kur
is a major repolarizing current in human atrium and a potential target for treating atrial arrhythmias. The effects of selective block of
I
Kur
by low concentrations of 4-aminopyridine or the biphenyl derivative AVE 0118 were investigated on right atrial action potentials (APs) in trabeculae from patients in sinus rhythm (SR) or chronic atrial fibrillation (AF).
Methods and Results—
AP duration at 90% repolarization (APD
90
) was shorter in AF than in SR (300±16 ms, n=6, versus 414±10 ms, n=15), whereas APD
20
was longer (35±9 ms in AF versus 5±2 ms in SR,
P
<0.05). 4-Aminopyridine (5 μmol/L) elevated the plateau to more positive potentials from −21±3 to −6±3 mV in SR and 0±3 to +12±3 mV in AF. 4-Aminopyridine reversibly shortened APD
90
from 414±10 to 350±10 ms in SR but prolonged APD
90
from 300±16 to 320±13 ms in AF. Similar results were obtained with AVE 0118 (6 μmol/L). Computer simulations of
I
Kur
block in human atrial APs predicted secondary increases in
I
Ca,L
and in the outward rectifiers
I
Kr
and
I
Ks
, with smaller changes in AF than SR. The indirect increase in
I
Ca,L
was supported by a positive inotropic effect of 4-aminopyridine without direct effects on
I
Ca,L
in atrial but not ventricular preparations. In accordance with the model predictions, block of
I
Kr
with E-4031 converted APD shortening effects of
I
Kur
block in SR into AP prolongation.
Conclusions—
Whether inhibition of
I
Kur
prolongs or shortens APD depends on the disease status of the atria and is determined by the level of electrical remodeling.
Collapse
Affiliation(s)
- Erich Wettwer
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Heubach JF, Ravens U, Kaumann AJ. Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 2004; 65:1313-22. [PMID: 15102960 DOI: 10.1124/mol.65.5.1313] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoproterenol increases and decreases contractile force at low and high concentrations, respectively, through beta(2)-adrenoceptors overexpressed in transgenic mouse heart (TG4), consistent with activation of both G(s) and G(i) proteins. Using TG4 hearts, we demonstrated that epinephrine behaves like isoproterenol, but norepinephrine does not. Epinephrine both increased (-log EC(50)M = 9.4) and decreased (-log EC(50)M = 6.5) left atrial force. Pertussis toxin (PTX) abolished the negative inotropic effects of epinephrine, consistent with mediation through G(i) protein. Norepinephrine only increased contractile force (-log EC(50)M = 7.5). Norepinephrine (10-100 microM) prevented the positive inotropic effects but hardly affected the negative inotropic effects of epinephrine. Cardiodepressive epinephrine concentrations (1-10 microM) antagonized the positive inotropic effects of norepinephrine. In the free wall of TG4 right ventricle, norepinephrine and low epinephrine concentrations caused positive inotropic effects, and high epinephrine concentrations caused PTX-sensitive negative inotropic effects, as observed in the left atrium. Epinephrine (10 nM), a concentration causing maximum increase in contractile force, and norepinephrine (1 and 100 microM) increased cAMP-dependent protein kinase activity in TG4 left ventricle. Cardiodepressive concentrations of epinephrine (1 and 100 microM) did not increase cAMP-dependent protein kinase activity. The inotropic results were simulated with a model of two beta(2)-adrenoceptor sites. For one site involved in receptor coupling to G(s), both epinephrine and norepinephrine compete. The other site, recognized by epinephrine but not by norepinephrine, leads to receptor G(i) coupling.
Collapse
Affiliation(s)
- Jürgen F Heubach
- Institute of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany
| | | | | |
Collapse
|
31
|
Abstract
This review addresses open questions about the role of beta-adrenergic receptors in cardiac function and failure. Cardiomyocytes express all three beta-adrenergic receptor subtypes-beta1, beta2, and, at least in some species, beta3. The beta1 subtype is the most prominent one and is mainly responsible for positive chronotropic and inotropic effects of catecholamines. The beta2 subtype also increases cardiac function, but its ability to activate nonclassical signaling pathways suggests a function distinct from the beta1 subtype. In heart failure, the sympathetic system is activated, cardiac beta-receptor number and function are decreased, and downstream mechanisms are altered. However, in spite of a wealth of data, we still do not know whether and to what extent these alterations are adaptive/protective or detrimental, or both. Clinically, beta-adrenergic antagonists represent the most important advance in heart failure therapy, but it is still debated whether they act by blocking or by resensitizing the beta-adrenergic receptor system. Newer experimental therapeutic strategies aim at the receptor desensitization machinery and at downstream signaling steps.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology, Versbacher Strasse 9, 97078 Wuerzburg, Germany.
| | | | | |
Collapse
|
32
|
Gengo PJ, Pettit HO, O'Neill SJ, Su YF, McNutt R, Chang KJ. DPI-3290 [(+)-3-((α-R)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A Mixed Opioid Agonist with Potent Antinociceptive Activity and Limited Effects on Respiratory Function. J Pharmacol Exp Ther 2003; 307:1227-33. [PMID: 14534367 DOI: 10.1124/jpet.103.054429] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Allyl-2,5-dimethyl-1-piperazines have been of interest as analgesic agents for the management of moderate-to-severe pain. In this study, we compared the antinociceptive properties and respiratory depressant activity of one such agent, (+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide (DPI-3290), with those of established narcotic analgesics, morphine and fentanyl. Intravenous administration of DPI-3290 in conscious laboratory rats increased antinociception in a dose-dependent manner with a corresponding ED(50) value of 0.05 +/- 0.0072 mg/kg. Simultaneous measurement of arterial blood gas in animals treated with DPI-3290 demonstrated dose-dependent increases in pCO2 with an ED(50) value of 0.91 +/- 0.22 mg/kg. In comparison, morphine and fentanyl increased antinociception in rats with ED(50) values of 2.01 +/- 0.0005 and 0.0034 +/- 0.00024 mg/kg, respectively, and the ED(50) value for morphine-induced changes in pCO2 was 4.23 +/- 0.72 mg/kg, whereas the ED(50) value for fentanyl-induced changes in pCO2 was 0.0127 +/- 0.0035 mg/kg. A separate series of experiments were designed to examine the effects of DPI-3290 on mu-opioid receptor induced antinociception and hypercapnia. Intravenous bolus doses of DPI-3290 that ranged from 0.2 to 1.0 mg/kg had no effect on antinociception mediated by alfentanil (2 microg/kg/min i.v.) but reduced hypercapnia by approximately 50%. Results from these studies demonstrate the equivalent antinociceptive efficacy of DPI-3290, morphine, and fentanyl but dramatic differences in the hypercapnia that antinociceptive doses of these drugs produce. When measured simultaneously, DPI-3290 had an 18.2-fold difference in the ratio comparing the ED(50) value for antinociception with the ED(50) value for changes in pCO2; this ratio was 2.1 for morphine and 3.7 for fentanyl. Furthermore, DPI-3290 reduced the alfentanil-mediated hypercapnia without any effect on antinociception. Together, the balanced opioid agonist activity of DPI-3290 may provide a means of powerful analgesia while mitigating the mu-opioid receptor-mediated hypercapnia.
Collapse
Affiliation(s)
- Peter J Gengo
- Ardent Pharmaceuticals, Inc., 631 United Dr., Suite 200, Durham, NC 27713, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Bowles WR, Flores CM, Jackson DL, Hargreaves KM. beta 2-Adrenoceptor regulation of CGRP release from capsaicin-sensitive neurons. J Dent Res 2003; 82:308-11. [PMID: 12651937 DOI: 10.1177/154405910308200413] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previous studies have suggested that neurotransmitter substances from the sympatho-adrenomedullary system regulate pulpal blood flow (PBF), in part, by the inhibition of vasoactive neuropeptide release from pulpal sensory neurons. However, no study has evaluated the role of beta-adrenoceptors. We evaluated the hypothesis that activation of beta-adrenoceptors inhibits immunoreactive calcitonin gene-related peptide (iCGRP) release from capsaicin-sensitive nociceptive neurons via in vitro superfusion of bovine dental pulp. Either norepinephrine or epinephrine inhibited capsaicin-evoked iCGRP. The norepinephrine effect was blocked by the selective beta(2)-adrenoceptor antagonist, ICI 118,551, but not by pre-treatment with the selective beta(1)-adrenoceptor antagonist, atenolol. In addition, application of albuterol, a selective beta(2)-adrenoceptor agonist, significantly blocked capsaicin-evoked release of iCGRP. Collectively, these studies demonstrate that activation of beta(2)-adrenoceptors in dental pulp significantly reduces exocytosis of neuropeptides from capsaicin-sensitive nociceptors. This effect may have physiologic significance in regulating PBF. Moreover, since capsaicin selectively activates nociceptors, beta(2)-adrenoceptor agonists may have clinical utility as peripherally acting therapeutics for dental pain and inflammation.
Collapse
Affiliation(s)
- W R Bowles
- Division of Endodontics, University of Minnesota School of Dentistry, USA
| | | | | | | |
Collapse
|
34
|
Heubach JF, Blaschke M, Harding SE, Ravens U, Kaumann AJ. Cardiostimulant and cardiodepressant effects through overexpressed human beta2-adrenoceptors in murine heart: regional differences and functional role of beta1-adrenoceptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:380-90. [PMID: 12690430 DOI: 10.1007/s00210-002-0681-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 11/19/2002] [Indexed: 11/25/2022]
Abstract
(-)-Isoprenaline enhances cardiac contractility through beta-adrenoceptors. However, in cardiac tissue from transgenic mice with a 200-400-fold cardiac overexpression of the human beta(2)-adrenoceptor (TG4) we observed a pronounced cardiodepression at high (-)-isoprenaline concentrations. Here, we investigated the functional role of the coexisting beta(1)-, beta(2)-, and beta(3)-adrenoceptor subtypes in several regions of the TG4 heart, and in particular their contribution to the negative inotropic effect. In paced TG4 left atria, (-)-isoprenaline produced bell-shaped concentration-effect curves increasing (-logEC(50)M=9.0) and decreasing (-logIC(50)M=6.4) contractile force. These effects were unaffected by the beta(1)-selective CGP 20712A (300 nM). The beta(2)-selective inverse agonist ICI 118,551 (30-1,000 nM) antagonised in surmountable manner both the positive and negative inotropic effects of (-)-isoprenaline with similar concentration-dependence, consistent with an exclusive mediation through beta(2)-adrenoceptors. The beta(3)-adrenoceptor-selective agonist BRL37344 (1 nM-10 microM) failed to produce significant inotropic effects in TG4 left atria. Subsequently, we measured left atrial action potentials accompanying the inotropic changes induced by (-)-isoprenaline. Action potentials tended to have shorter duration in left atria from TG4 mice than from non-transgenic littermate mice. However, (-)-isoprenaline prolonged the duration of 30% repolarisation in atria from non-transgenic littermate but not from TG4 mice, while 90% repolarisation was abbreviated in both groups of atria. Negative inotropic effects of (-)-isoprenaline were also observed in right ventricular preparations. Pertussis toxin-treatment of the mice abolished the negative inotropic effects in left atria and reduced cardiodepression in right ventricle, indicating an involvement of beta(2)-adrenoceptor coupling to PTX-sensitive G-proteins. In additional experiments, designed to study the native murine beta(1)-adrenoceptor function, we used the physiological beta(1)-adrenoceptor agonist (-)-noradrenaline. In the presence of 600 nM ICI 118,551 we failed to find a functional role of the beta(1)-adrenoceptors in left atria, and detected only a marginal contribution to the positive chronotropic effect in right atria. We also investigated the effects of the non-conventional partial agonist (-)-CGP 12177 (0.2 nM-6 microM), which in wild-type mice causes tachycardia through beta(1)-adrenoceptors. In TG4 right atria, however, (-)-CGP 12177-evoked tachycardia was resistant to blockade by CGP 20712A but antagonised by ICI 118,551, consistent with mediation through human beta(2)-adrenoceptors. The results from TG4 mice suggest that the positive and negative inotropic effects of (-)-isoprenaline are mediated through human overexpressed beta(2)-adrenoceptors coupled to G(s) protein and G(i) protein, respectively. The (-)-isoprenaline-evoked shortening of the atrial action potential combined with reduced responses of L-type Ca(2+) current may contribute to the negative inotropic effects. The function of murine cardiac beta(1)-adrenoceptors is suppressed by overexpressed human beta(2)-adrenoceptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Female
- Heart/drug effects
- Heart/physiology
- Heart Atria/drug effects
- Imidazoles/pharmacology
- In Vitro Techniques
- Isoproterenol/pharmacology
- Male
- Mice
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Norepinephrine/pharmacology
- Pertussis Toxin/pharmacology
- Propanolamines/pharmacology
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/physiology
Collapse
Affiliation(s)
- Jürgen F Heubach
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät Carl Gustav Carus der TU Dresden, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
35
|
Rau T, Nose M, Remmers U, Weil J, Weissmüller A, Davia K, Harding S, Peppel K, Koch WJ, Eschenhagen T. Overexpression of wild-type Galpha(i)-2 suppresses beta-adrenergic signaling in cardiac myocytes. FASEB J 2003; 17:523-5. [PMID: 12631586 DOI: 10.1096/fj.02-0660fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of Galpha(i)-2 overexpression in desensitization of beta-adrenergic signaling in heart failure is controversial. An adenovirus-based approach was used to investigate whether overexpression of Galpha(i)-2 impairs beta-adrenergic stimulation of adenylyl cyclase (AC) activity and cAMP levels in neonatal rat cardiac myocytes (NRCM) and cell shortening of adult rat ventricular myocytes (ARVM). Infection of NRCM with Ad5Galpha(i)-2 increased Galpha(i)-2 by 50-600% in a virus dose-dependent manner. Overexpression was paralleled by suppression of GTP- and isoprenaline-stimulated AC by 10-72% (P<0.001) in a PTX-sensitive manner. Isoprenaline-stimulated shortening of Ad5Galpha(i)-2-infected ARVM was attenuated by 34% (P<0.01). Ad5Galpha(i)-2/GFP (Galpha(i)-2, green fluorescent protein; bicistronic) was constructed to monitor transfection homogeneity and target Galpha(i)-2 overexpression to levels found in heart failure. At Galpha(i)-2 levels of 93% above control, isoprenaline-stimulated AC activity and cAMP levels were reduced by 17% and 40% (P<0.02), respectively. Beta1- and beta2-adrenergic stimulation was reduced similarly. Our results suggest that (a) the Galpha(i)-2 system exhibits tonic inhibition of stimulated AC in cardiac myocytes, (b) Galpha(i)-2-mediated inhibition is concentration-dependent and occurs at Galpha(i)-2 levels seen in heart failure, and (c) Galpha(i)-2-mediated inhibition affects both beta1- and beta2-adrenergic stimulation of AC. The data argue for an important, independent role of the Galpha(i)-2 increase in heart failure.
Collapse
Affiliation(s)
- Thomas Rau
- Institute of Pharmacology and Toxicology, Friedrich Alexander University Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tao R, Auerbach SB. Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther 2002; 303:549-56. [PMID: 12388635 DOI: 10.1124/jpet.102.037861] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid receptor subtypes may have site-specific effects and play different roles in modulating serotonergic neurotransmission in the mammalian central nervous system. To test this hypothesis, we used in vivo microdialysis to measure changes in extracellular serotonin (5-hydroxytryptamine; 5-HT) in response to local infusion of mu-, delta-, and kappa-opioid receptor ligands into the dorsal raphe nucleus (DRN), median raphe nucleus (MRN), and nucleus accumbens (NAcc) of freely behaving rats. The mu-opioids [D-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), endomorphin-1, and endomorphin-2 were administered by reverse dialysis infusion into the DRN. In response, extracellular 5-HT was increased in the DRN, an effect that was blocked by the selective mu-receptor antagonist beta-funaltrexamine, but not by the delta-receptor antagonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI-174,864). Infusion of delta-receptor agonists, [D-Ala(2),D-Len(5)]enkephalin (DADLE), [D-Pen(2,5)]enkephalin (DPDPE), and deltophin-II into the DRN also increased extracellular 5-HT, an effect that was blocked by selective delta-receptor antagonists. In contrast to the DRN, local infusion of mu- and delta-opioids had no effect on 5-HT in the MRN or NAcc. These data indicate that mu- and delta-opioid ligands have a selective influence on serotonergic neurons in the DRN. Finally, the kappa-receptor agonist U-50,488 [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide] produced similar decreases in 5-HT during local infusion into the DRN, MRN, and NAcc. These results provide evidence of differential regulation of 5-HT release by opioid receptor subtypes in the midbrain raphe and forebrain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Leucine-2-Alanine/pharmacology
- Male
- Microdialysis
- Microinjections
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Raphe Nuclei/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/drug effects
- Serotonin/metabolism
Collapse
Affiliation(s)
- Rui Tao
- Department of Cell Biology and Neuroscience, Rutgers-State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|