1
|
Costa SR, Vasconcelos AG, Almeida JOCS, Arcanjo DDR, Dematei A, Barbosa EA, Silva PC, Nascimento T, Santos LH, Eaton P, Leite JRSDA, Brand GD. Structural Characterization and Rat Aortic Vascular Reactivity of Bradykinin-Potentiating Peptides (BPPs) from the Snake Venom of Bothrops moojeni from Delta do Parnaíba Region, Brazil. JOURNAL OF NATURAL PRODUCTS 2024; 87:820-830. [PMID: 38449376 DOI: 10.1021/acs.jnatprod.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Collapse
Affiliation(s)
- Samuel R Costa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - José Otávio C S Almeida
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Daniel D R Arcanjo
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Eder A Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Pedro Costa Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Thiago Nascimento
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Lucianna H Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Peter Eaton
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, U.K
| | - José Roberto S de A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Martínez-Casales M, Hernanz R, González-Carnicero Z, Barrús MT, Martín A, Briones AM, Michalska P, León R, Pinilla E, Simonsen U, Alonso MJ. The Melatonin Derivative ITH13001 Prevents Hypertension and Cardiovascular Alterations in Angiotensin II-Infused Mice. J Pharmacol Exp Ther 2024; 388:670-687. [PMID: 38129126 DOI: 10.1124/jpet.123.001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.
Collapse
Affiliation(s)
- Marta Martínez-Casales
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Zoe González-Carnicero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María T Barrús
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Angela Martín
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ana M Briones
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Patrycja Michalska
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Rafael León
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Estefano Pinilla
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ulf Simonsen
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María J Alonso
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| |
Collapse
|
3
|
Ortiz-Cerda T, Mosso C, Alcudia A, Vázquez-Román V, González-Ortiz M. Pathophysiology of Preeclampsia and L-Arginine/L-Citrulline Supplementation as a Potential Strategy to Improve Birth Outcomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:127-148. [PMID: 37466772 DOI: 10.1007/978-3-031-32554-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Constanza Mosso
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
5
|
Na J, Hwang HJ, Shin MS, Kang M, Lee J, Bang G, Kim YJ, Hwang YJ, Hwang KA, Park YH. Extract of radish (R. Sativus Linn) promotes anti-atherosclerotic effect using urine metabolomics in ApoE−/− mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
6
|
Lu M, Wu S, Cheng G, Xu C, Chen Z. Integrative Bioinformatics Analysis of iNOS/NOS2 in gastric and colorectal cancer. Pteridines 2020. [DOI: 10.1515/pteridines-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective The aim of the present work was to investigate the expression of nitric oxide synthase 2 (iNOS/ NOS2) in colorectal and gastric cancers and evaluate its association with patient’s prognosis by integrated bioinformatics analysis.
Methods The data for present study was obtained from the TCGA, GTEx, and STRING database. iNOS/NOS2 mRNA expression in normal tissue and colorectal, and gastric cancer tissuea were investigated through the GTEx and TCGA database. iNOS/NOS2 gene mutations and frequency were analyzed in the TCGA database using the cBioPortal online data analysis tool. The protein-protein interaction (PPI) network of iNOS/NOS2 was constructed by STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of iNOS/NOS2 and relevant proteins involved in the PPI network were enriched and demonstrated by the bubble plot. Comparison of the overall survival(OS) and disease free survival(DFS) between samples expressing high and low levels of iNOS/NOS2 was analysis based on the TCGA databases through the GEPIA online data analysis tool.
Results For colon adenocarcinoma (COAD) and rectal adenocarcinoma(READ) iNOS/NOS2 mRNA expression levels in tumor tissue were significant higher than those of corresponding normal colorectal tissue (p<0.05). iNOS/NOS2 mutations were identified in both colorectal cancer and gastric cancer. Missense substitutions and synonymous substitution were the top two mutation types for colorectal and gastric cancer. The top positive and negative co-expressed genes correlated with iNOS/ NOS2 were TRIM40 (rpearson=0.56, p<0.05) and GDPD5 (rpearson=-0.41, p<0.05) in colorectal cancer respectively andCASP5 (rpearson=0.63,p<0.05) and PIAS3 (rpearson=-0.43,p<0.05) in gastric cancer. Twenty one proteins were included in the PPI network with 51 nodes and 345 edges which indicated the PPI enrichment wassignificant (p=1.0e-16). The KEGG of the included genes were mainly enriched in metabolic pathway and Jak-STAT signaling pathway. There was a significant difference indisease free survival (DFS) between samples expressing high and low iNOS/NOS2 (HR=0.37, p=0.044) in rectal cancer. The difference was not statistical between iNOS/NOS2 high and low expressing groups for overall survival(OS) or DFS in the colon cancer or gastric cancer(p>0.05).
Conclusions iNOS/NOS2 mRNA isup-regulated in tumor tissue compared to corresponding normal tissue in colorectal and gastric cancer which implement it in the development of colorectal and gastric cancers.
Collapse
Affiliation(s)
- Mingbei Lu
- Department of Thyroid and Breast Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Suping Wu
- Department of ICU , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| |
Collapse
|
7
|
Greene MA, Klotz JL, Goodman JP, May JB, Harlow BE, Baldwin WS, Strickland JR, Britt JL, Schrick FN, Duckett SK. Evaluation of oral citrulline administration as a mitigation strategy for fescue toxicosis in sheep. Transl Anim Sci 2020; 4:txaa197. [PMID: 33269340 PMCID: PMC7684870 DOI: 10.1093/tas/txaa197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/13/2023] Open
Abstract
Gestating ewes consuming ergot alkaloids, from endophyte-infected (E+) tall fescue seed, suffer from intrauterine growth restriction and produce smaller lambs. Arginine (Arg) supplementation has been shown to increase birth weight and oral citrulline (Cit) administration is reported to increase arginine concentrations. Two experiments were conducted to: 1) evaluate if oral supplementation with Cit or water, to ewes consuming E+ fescue seed, increases lamb birth weight and 2) determine the effectiveness of Cit and citrulline:malate as an oral drench and elevating circulating levels of Cit to determine levels and dose frequency. In experiment 1, gestating Suffolk ewes (n = 10) were assigned to one of two treatments [oral drench of citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline) or water (TOX)] to start on d 86 of gestation and continued until parturition. Ewes on CITM treatment had decreased (P < 0.05) plasma Arg and Cit concentrations during gestation. At birth, lambs from CITM ewes had reduced (P < 0.05) crude fat and total fat but did not differ (P > 0.05) in birth weight from lambs born to TOX ewes. In experiment 2, nonpregnant Suffolk ewes (n = 3) were assigned to either oral citrulline (CIT; 81 mg/kg/d), citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline), or water (CON) drench in a Latin Square design for a treatment period of 4 d with a washout period of 3 d. On d 4, blood samples were collected at 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 18 h post drench. Oral drenching of CIT and CITM increased (P < 0.0001) Cit concentrations within 2 h and levels remained elevated for 6 h. Apparent half-life of elimination for CIT and CITM were 8.484 and 10.392 h, respectively. Our results show that lamb birth weight was not altered with a single oral drench of citrulline-malate; however, lamb body composition was altered. The level and frequency of citrulline dosing may need to be greater in order to observe consistent elevation of Cit/Arg concentrations to determine its effectiveness in mitigating fescue toxicosis.
Collapse
Affiliation(s)
- Maslyn A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - James L Klotz
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | - John B May
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | | | - James R Strickland
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Jessica L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Susan K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| |
Collapse
|
8
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Oludare G, Jinadu H, Aro O. L-arginine attenuates blood pressure and reverses the suppression of angiogenic risk factors in a rat model of preeclampsia. PATHOPHYSIOLOGY 2018; 25:389-395. [DOI: 10.1016/j.pathophys.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
|
10
|
Tykhomyrov AA, Nedzvetsky VS, Zabida AA, Ağca CA, Kuryata OV. l-Arginine treatment improves angiogenic response and reduces matrix metalloproteinase activity in chronic heart failure patients with coronary artery disease. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Functional status of microvascular vasomotion is impaired in spontaneously hypertensive rat. Sci Rep 2017; 7:17080. [PMID: 29213078 PMCID: PMC5719042 DOI: 10.1038/s41598-017-17013-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence demonstrates that microcirculation plays a role in the pathogenesis of hypertension. In the current study, we demonstrated that pancreatic islet microvascular vasomotion of spontaneously hypertensive rats (SHRs) lost the ability to regulate blood flow perfusion and exhibited a lower microvascular blood perfusion pattern which was negative correlated with blood glucose level. SHRs administrated with insulin revealed an improvement of pancreatic islet microvascular vasomotion and blood perfusion pattern. In vitro, the expressions of endothelial nitric oxide synthase (eNOS) and phospho-eNOSser1177 (p-eNOSser1177) were significantly decreased in high glucose exposed islet endothelial cells (iECs), accompanied with a higher ratio of eNOS monomer to eNOS dimer and a significantly increased malondialdehyde and nitrite levels. Meanwhile, barrier function, tube formation and migration capacities of high glucose exposed iECs were significantly inhibited. In contrast, iECs dysfunction induced by glucose toxicity and oxidative stress was attenuated or improved by supplement with insulin, L-arginine and β-mercaptoethanol. In summary, our findings suggest that functional status of pancreatic islet microvascular vasomotion is impaired in SHRs and provide evidence that treatment with insulin, L-arginine and β-mercaptoethanol improves endothelium-dependent microvascular vasomotion and meliorates iECs function due to anti-hyperglycemic and anti-oxidative effects, partly through mechanism involving regulation of eNOS and p-eNOSser1177.
Collapse
|
12
|
Glueck CJ, Haque M, Winarska M, Dharashivkar S, Fontaine RN, Zhu B, Wang P. Stromelysin-1 5A/6A and eNOS T-786C Polymorphisms, MTHFR C677T and A1298C Mutations, and Cigarette-Cannabis Smoking: A Pilot, Hypothesis-Generating Study of Gene-Environment Pathophysiological Associations With Buerger’s Disease. Clin Appl Thromb Hemost 2016; 12:427-39. [PMID: 17000887 DOI: 10.1177/1076029606293429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Buerger’s disease (BD) etiologies are poorly understood. Beyond smoking cessation, medical-surgical treatments have limited success. We hypothesized that mutations associated with arterial vasospasm (stromelysin-1 5A/6A, eNOS T-786C) and C677T-A1298C methylene tetrahydrofolate reductase (MTHFR) interacted with cigarette-cannabis smoking, reducing vasodilatory nitric oxide (NO), promoting arterial spasm-thrombosis. Of 21 smoking BD patients (14 men [2 siblings], 7 women; 20 white, 1 African-American), compared to 21 age-gender-race matched healthy controls, 5A/6A stromelysin- 1 homozygosity was present in 7 of 21 (33%) BD cases versus 5 of 21 (24%) controls (risk ratio 1.4; 95% confidence interval [CI] 0.5-3.7), and eNOS T-786C homozygosity was present in 3 of 21 (14%) BD cases versus 1 of 21 (5%) controls (risk ratio 3.0; 95% CI 0.3-26.6). C677T MTHFR homozygosity or compound C677T-A1298C heterozygosity was present in 7 of 21 cases (33%) versus 11 of 21 controls (52%) (risk ratio 0.6; 95% CI 0.3-1.3). In 18 patients who stopped and 3 who continued smoking, all stromelysin-1 5A/6A and/or eNOS heterozygotes-homozygotes, superficial phlebitis, lower limb gangrenous ulcers, and intractable ischemic rest pain with arterial occlusion progressed despite conventional medical therapy, threatening amputation. In 15 patients, to increase vasodilatory NO via endothelial NO synthase, l-arginine (15 g/day) was given, along with folic acid (5 mg), vitamin B6 (100 mg), and B12 (2000 mg/day) to optimize homocysteine metabolism and reduce asymmetric dimethylarginine, a NO synthase inhibitor. Unexpectedly quickly and strikingly, within 8 weeks to 8 months receiving l-arginine-folic acid, 11 of 15 treated patients improved with uniform pain reduction, ulcer healing, and in 5, full recovery of previously absent peripheral pulses. In smokers homo/heterozygous for stromelysin-1 5A/6A and eNOS T-786C mutations, we speculate that the development and severity of BD are related to a gene-environment vasospastic interaction with reduced NO-mediated vasodilatation. Increasing NO production by l-arginine while optimizing homocysteine metabolism by folic acid-B6-B12 may have therapeutic benefit. Further blinded, placebo-controlled studies are needed to determine whether our observations can be generalized to larger BD cohorts.
Collapse
Affiliation(s)
- Charles J Glueck
- Cholesterol Center, Jewish Hospital, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hamilton K, MacKenzie A. Gender specific generation of nitroxyl (HNO) from rat endothelium. Vascul Pharmacol 2015; 71:208-14. [DOI: 10.1016/j.vph.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
14
|
Trachootham D, Chen G, Zhang W, Lu W, Zhang H, Liu J, Huang P. Loss of p53 in stromal fibroblasts promotes epithelial cell invasion through redox-mediated ICAM1 signal. Free Radic Biol Med 2013; 58:1-13. [PMID: 23376231 PMCID: PMC3622735 DOI: 10.1016/j.freeradbiomed.2013.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 01/06/2013] [Accepted: 01/15/2013] [Indexed: 02/04/2023]
Abstract
Tumor microenvironment plays a major role in cancer development. Understanding how the stroma affects epithelial transformation will provide a basis for new preventive strategies. Recent evidence suggests that oxidative stress in stroma may play a role in cancer progression, and loss of p53 function in the stromal cells was associated with poor prognosis and high tumor recurrence. However, the underlying mechanisms remain poorly understood. Here, we investigated the role of p53 loss in fibroblasts in epithelial transformation and the mechanistic involvement of reactive species. Using 3D organotypic culture and other assays, we report that the stroma containing p53-deficient fibroblasts could induce the nontumorigenic epithelial cells of oral and ovarian tissue origins to become invasive through reactive nitrogen species (RNS)-mediated release of the cytokine ICAM1. The p53-deficient fibroblasts have increased RNS production and accumulation of oxidative DNA-damage products associated with specific upregulation of endothelial nitric oxide synthase (eNOS). Suppression of RNS production by siRNA of eNOS or the antioxidant NAC reduced ICAM1 expression and prevented the stroma-mediated epithelial invasion. Our study uncovers the novel mechanism by which redox alteration associated with loss of p53 in stromal fibroblasts functions as a key inducer of epithelial transformation and invasion via RNS-mediated ICAM1 signaling. Thus, the modulation of redox signaling in the microenvironment may serve as a new approach to preventing epithelial transformation and suppressing cancer invasion.
Collapse
Affiliation(s)
- Dunyaporn Trachootham
- Faculty of Dentistry, Thammasat University, 99 Paholyothin Road, Khlong Luang, Pathum-thani, Thailand 12121
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Correspondences should be addressed to Dr. Dunyaporn Trachootham: Tel. 66-2-986-9206, Fax. 66-2-9869205, or to Dr. Peng Huang: Tel. 713- 834-6044, Fax. 713-834-6084,
| | - Gang Chen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Wan Zhang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Weiqin Lu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Hui Zhang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, MC 0412, La Jolia, CA 92093-0412
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Peng Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Correspondences should be addressed to Dr. Dunyaporn Trachootham: Tel. 66-2-986-9206, Fax. 66-2-9869205, or to Dr. Peng Huang: Tel. 713- 834-6044, Fax. 713-834-6084,
| |
Collapse
|
15
|
L-arginine enhances nitrative stress and exacerbates tumor necrosis factor-alpha toxicity to human endothelial cells in culture: prevention by propofol. J Cardiovasc Pharmacol 2010; 55:358-67. [PMID: 20125033 DOI: 10.1097/fjc.0b013e3181d265a3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplementation of L-arginine, a nitric oxide precursor, during the late phase of myocardial ischemia/reperfusion increases myocyte apoptosis and exacerbates myocardial injury, but the underlying mechanism is unclear. During myocardial ischemia/reperfusion, apoptosis of endothelial cells precedes that of cardiomyocyte. Tumor necrosis factor-alpha (TNF) production is increased during myocardial ischemia/reperfusion, which may exacerbate myocardial injury by inducing endothelial cell apoptosis. We postulated that L-arginine may exacerbate TNF-induced endothelial cell apoptosis by enhancing peroxynitrite-mediated nitrative stress. Cultured human umbilical vein endothelial cells were either not treated (control) or treated with TNF alone or with TNF in the presence of L-arginine, the nonselective nitric oxide synthase inhibitor N (omega)-nitro-L-arginine (L-NNA), propofol (an anesthetic that scavenges peroxynitrite), or L-arginine plus propofol, respectively, for 24 hours. TNF increased intracellular superoxide and hydrogen peroxide production accompanied by increases of inducible nitric oxide synthase (iNOS) protein expression and nitric oxide production. This was accompanied by increased protein expression of nitrotyrosine, a fingerprint of peroxynitrite and an index of nitrative stress, and increased endothelial cell apoptosis. L-arginine did not enhance TNF-induced increases of superoxide and peroxynitrite production but further increased TNF-induced increase of nitrotyrosine production and exacerbated TNF-mediated cell apoptosis. L-NNA and propofol, respectively, reduced TNF-induced nitrative stress and attenuated TNF cellular toxicity. The L-arginine-mediated enhancement of nitrative stress and TNF toxicity was attenuated by propofol. Thus, under pathological conditions associated with increased TNF production, L-arginine supplementation may further exacerbate TNF cellular toxicity by enhancing nitrative stress.
Collapse
|
16
|
Glueck CJ, Munjal J, Khan A, Umar M, Wang P. Endothelial nitric oxide synthase T-786C mutation, a reversible etiology of Prinzmetal's angina pectoris. Am J Cardiol 2010; 105:792-6. [PMID: 20211321 DOI: 10.1016/j.amjcard.2009.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 01/17/2023]
Abstract
Because the endothelial nitric oxide synthase (eNOS) T-786C polymorphism is associated with reduced nitric oxide production and coronary artery spasm in Japanese patients, we speculated that it might be reversibly associated with Prinzmetal's variant angina in white Americans. Polymerase chain reaction analyses of eNOS T-786C and stromelysin 5A6A polymorphisms were done in 31 women and 12 men (42 white and 1 black American, median age 50 years), with well-documented Prinzmetal's variant angina. We matched each case with 1 healthy control by race and gender. Of the 43 cases, 21 (49%) were homozygous for wild-type normal eNOS, 19 (44%) were T-786C heterozygotes, and 3 (7%) were T-786C homozygotes. Of the 43 controls, 31 (72%) were homozygous for wild-type normal eNOS, 12 (28%) were T-786C heterozygotes, and 0 (0%) were T-786C homozygotes (p = .013). The mutant eNOS T-786C allele frequency in patients was 25 (29%) of 86 vs 12 (14%) of 86 in the controls (p = 0.016). Patients did not differ from controls for the distribution of the stromelysin 6A mutation (p = 0.66) or for the mutant 6A allele frequency (53% in cases, 50% in controls; p = 0.65). Nineteen patients took nitric oxide-elevating l-arginine (9.2 g/day, orally). Of these 19 patients, 10 (53%) became free of angina, 3 (16%) were improved but not angina free, and 6 (32%) had no change in their angina. Using l-arginine, the physical ability score (Seattle Angina Questionnaire) increased from a median of 42 to 72 of a total possible score of 100 (p = 0.011), satisfaction with symptom reduction increased from 53 to 61 (p = 0.004), and the perception of quality of life as acceptable increased from 29 to 50 (p = 0.001). In conclusion, the eNOS T-786C mutation appears to be a reversible etiology of Prinzmetal's variant angina in white Americans whose angina might be ameliorated by l-arginine.
Collapse
Affiliation(s)
- Charles J Glueck
- Cholesterol Center, Jewish Hospital of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | |
Collapse
|
17
|
Heller A. Apoptosis-inducing high (.)NO concentrations are not sustained either in nascent or in developed cancers. ChemMedChem 2009; 3:1493-9. [PMID: 18759245 DOI: 10.1002/cmdc.200800257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide ((.)NO) induces apoptosis at high concentrations by S-nitrosating proteins such as glyceraldehyde-3-phosphate dehydrogenase. This literature analysis revealed that failure to sustain high (.)NO concentrations is common to all cancers. In cervical, gastric, colorectal, breast, and lung cancer, the cause of this failure is the inadequate expression of inducible nitric oxide synthase (iNOS), resulting from the inhibition of iNOS expression by TGF-beta1 at the mRNA level. In bladder, renal, and prostate cancer, the reason for the insufficient (.)NO levels is the depletion of arginine, resulting from arginase overexpression. Arginase competes with iNOS for arginine, catalyzing its hydrolysis to ornithine and urea. In gliomas and ovarian sarcomas, low (.)NO levels are caused by inhibition of iNOS by N-chlorotaurine, produced by infiltrating neutrophils. Stimulated neutrophils express myeloperoxidase, catalyzing H2O2 oxidation of Cl- to HOCl, which N-chlorinates taurine at its concentration of 19 mM in neutrophils. In squamous cell carcinomas of the skin, ovarian cancers, lymphomas, Hodgkin's disease, and breast cancers, low (.)NO concentrations arise from the inhibition of iNOS by N-bromotaurine, produced by eosinophil-peroxidase-expressing infiltrating eosinophils. Eosinophil peroxidase catalyzes the H2O2 oxidation of Br- to HOBr, which N-brominates taurine to N-bromotaurine at its concentration of 15 mM in eosinophils. In microvascularized tumors, the (.)NO concentration is further depleted; (.)NO is rapidly consumed by red blood cells (RBCs) through S-nitrosation of RBC glutathione and hemoglobin, and by oxidation to nitrate by RBC oxyhemoglobin. Angiogenesis-inhibiting antibodies are currently used to treat cancers; their mode of action is not, as previously thought, reduction of the tumor O2 or nutrient supply. They actually decrease the loss of (.)NO to RBCs.
Collapse
Affiliation(s)
- Adam Heller
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Glueck CJ, Freiberg RA, Boppana S, Wang P. Thrombophilia, hypofibrinolysis, the eNOS T-786C polymorphism, and multifocal osteonecrosis. J Bone Joint Surg Am 2008; 90:2220-9. [PMID: 18829920 DOI: 10.2106/jbjs.g.00616] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We examined the hypothesis that thrombophilia, hypofibrinolysis, and the endothelial nitric oxide synthase (eNOS) T-786C polymorphism are common, potentially treatable, and similar pathophysiologic causes of multifocal (three sites or more) and unifocal (single-site) osteonecrosis. METHODS We prospectively evaluated twenty-six consecutively referred adults with multifocal osteonecrosis, who included thirteen with idiopathic multifocal osteonecrosis and thirteen with secondary multifocal osteonecrosis (resulting from steroid therapy in ten and alcoholism in three). We compared these patients with race, sex, and age-matched normal control subjects and with patients with idiopathic unifocal and secondary unifocal osteonecrosis, respectively. Using polymerase chain reaction and serologic measures, we studied thrombophilic and hypofibrinolytic mutations and the eNOS T-786C polymorphism. RESULTS The total number of polymerase chain reaction and serologic thrombophilic-hypofibrinolytic abnormalities and the eNOS T-786C polymorphism did not differ between patients with idiopathic (p > 0.5) or secondary (p > 0.5) multifocal and unifocal osteonecrosis. The frequency of low free protein-S levels (<66%) in patients with secondary multifocal osteonecrosis (four of eleven patients) was higher than that in the control subjects (one of fifty-nine) (risk ratio = 21.5; 95% confidence interval, 2.6 to 174; p = 0.0016, Benjamini-Hochberg adjusted p [Bp] = 0.004). Factor-V Leiden heterozygosity was present in two of thirteen patients with secondary multifocal osteonecrosis compared with none of sixty-four control subjects (p = 0.027, Bp = 0.008). For eleven patients with secondary multifocal osteonecrosis, the eNOS T-786C polymorphism was present in nine of twenty-two alleles compared with eight of forty-four alleles in twenty-two normal control subjects (risk ratio = 2.3; 95% confidence interval, 1.0 to 5.0; p = 0.047, Bp = 0.016). The frequency of homocystinemia (>13.5 mumol/L) was higher in patients with idiopathic multifocal osteonecrosis (two of thirteen patients) than in normal controls (none of fifty-one) (p = 0.039, Bp = 0.004). A high level of factor VIII (>150%) was seen in four of eight patients with idiopathic multifocal osteonecrosis and in seven of forty-eight normal controls (risk ratio = 3.4; 95% confidence interval, 1.3 to 9.1; p = 0.04, Bp = 0.008). The eNOS T-786C mutant allele was present in seven of twelve alleles in the six patients with idiopathic multifocal osteonecrosis who were tested, compared with twenty-five of 108 alleles in fifty-four control subjects (risk ratio = 2.5; 95% confidence interval, 1.4 to 4.5; p = 0.015, Bp = 0.008). CONCLUSIONS Limited by the small numbers of patients with multifocal osteonecrosis, this exploratory study suggested that thrombophilia was associated with both idiopathic multifocal osteonecrosis and secondary multifocal osteonecrosis, as was the eNOS T-786C polymorphism. Multifocal and unifocal osteonecrosis are similarly associated with thrombophilia, hypofibrinolysis, and the eNOS T-786C polymorphism, which are potentially treatable pathophysiologic conditions, requiring further study.
Collapse
Affiliation(s)
- Charles J Glueck
- Cholesterol Center, Jewish Hospital of Cincinnati, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
19
|
Pezzuto L, Bohlen HG. Extracellular arginine rapidly dilates in vivo intestinal arteries and arterioles through a nitric oxide mechanism. Microcirculation 2008; 15:123-35. [PMID: 18260003 DOI: 10.1080/10739680701447415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Arginine used for nitric oxide formation can be from intracellular stores or transported into cells. The study evaluated the rapidity, and primary site of NO and vascular resistance responses to arginine at near physiological concentrations (100-400 microM). METHODS Arginine was applied to a single arteriole through a micropipette to determine the fastest possible responses. For vascular blood flow and [NO] responses, arginine was added to the bathing media. RESULTS Dilation of single arterioles to arginine began in 10-15 seconds and application over the entire vasculature increased [NO] in approximately 60-90 seconds, and flow increased within 120-300 seconds. Resting periarteriolar [NO] for arterioles was 493.6 +/- 30.5 nM and increased to 696.1 +/- 68.2 and 820.1 +/- 110.5 nM at 200 and 400 microM L-arginine. The blood flow increased 50% at 400-1200 microM L-arginine. The reduced arterial resistance during topical arginine was significantly greater than microvascular resistance at 100 and 200 microM arginine. All responses were blocked by L-NAME. CONCLUSIONS This study demonstrated arterial resistance responses are as or more responsive to arginine induced NO formation as arterioles at near physiological concentrations of arginine. The vascular NO and resistance responses occurred rapidly at L-arginine concentrations at and below 400 microM, which predict arginine transport processes were involved.
Collapse
Affiliation(s)
- Laura Pezzuto
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, IN 46202, USA
| | | |
Collapse
|
20
|
Smith JM, Sondgeroth KB, Wahler GM. Inhibition of nitric oxide synthase enhances contractile response of ventricular myocytes from streptozotocin-diabetic rats. Mol Cell Biochem 2007; 300:129-37. [PMID: 17225190 DOI: 10.1007/s11010-006-9376-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
The contractile hyporesponsiveness of the streptozotocin diabetic rat heart in vitro to beta-adrenergic agonists is eliminated when the heart is perfused with N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of nitric oxide synthase (NOS). The following study evaluated the hypothesis that an increased production of NO/cGMP within the diabetic myocyte inhibits the beta-adrenergic-stimulated increase in calcium current and contractile response. Male Sprague-Dawley rats were given an intravenous injection of streptozotocin (60 mg/kg). After 8 weeks, L-type calcium currents were recorded in ventricular myocytes using the whole cell voltage-clamp method. Shortening of isolated myocytes was determined using a video edge detection system. cAMP and cGMP were measured using radioimmunoassay. Nitric oxide production was determined using the Griess assay kit. Basal cGMP levels and nitric oxide production were elevated in diabetic myocytes. Shortening of the diabetic myocytes in response to isoproterenol (1 microM) was markedly diminished. However, there was no detectable difference in the isoproterenol-stimulated L-type calcium current or cAMP levels between control and diabetic myocytes. Acute superfusion of the diabetic myocyte with L-NAME (1 mM) decreased basal cGMP and markedly enhanced the shortening response to isoproterenol but did not alter isoproterenol-stimulated calcium current. These data suggest that increased production of NO/cGMP within the diabetic myocyte suppressed beta-adrenergic stimulated shortening of the myocyte. However, NO/cGMP apparently does not suppress shortening of the myocyte by inhibition of the beta-stimulated calcium current.
Collapse
Affiliation(s)
- Jacquelyn M Smith
- Department of Physiology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | | | |
Collapse
|
21
|
Wadsworth R, Stankevicius E, Simonsen U. Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors. J Vasc Res 2005; 43:70-85. [PMID: 16276114 DOI: 10.1159/000089547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) plays an important role in the regulation of blood flow. Pharmacological tools and a series of other techniques have been developed for studying the NO/L-arginine pathway, but it has proved difficult to make a quantitative link between effect and tissue NO concentration. NO microsensors have been applied with success for the measurement of NO in suspensions of mitochondria and cells, such as platelets and leukocytes, and in cell cultures, which together with other interventions or measurements are particularly useful for the examination of cell signalling related to the NO/L-arginine pathway. In isolated vascular segments, studies using the NO microsensor have defined the relationship between NO concentration and relaxation and revealed residual NO release in the presence of NO synthase inhibitors. Moreover, simultaneous measurements of NO concentration and vasorelaxation in isometric preparations have shown that agonist-induced relaxation is L-arginine dependent and NO release is reduced in hypertension. By placing NO microsensors in catheters, it is possible to measure NO in the living animal and man. This approach has been applied for the measurements of NO concentration in relation to increases in flow, erection, in conditions of hypoxia, and in endotoxemia. However, further methodological development of NO microsensors is necessary to avoid the influence of changes in temperature, pH and oxygen on the measurements.
Collapse
Affiliation(s)
- Roger Wadsworth
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
22
|
Zani BG, Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 2005; 289:H1381-90. [PMID: 15849232 DOI: 10.1152/ajpheart.01231.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cultured endothelial cells, 70-95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase. Our prior studies indicate that each of these perturbations causes NO-dependent vasodilation. The perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature. Suppression of extracellular l-arginine transport significantly and strongly inhibited increases in vascular [NO] and intestinal blood flow during NaCl hyperosmolarity, lowered oxygen tension, and increased flow. These results suggest that l-arginine from the extracellular space is accumulated by CAT-1. When CAT-1-mediated transport of extracellular l-arginine into endothelial cells was suppressed, the endothelial cell NO response to a wide range of physiological stimuli was strongly depressed.
Collapse
Affiliation(s)
- Brett G Zani
- Department of Cellular and Integrative Physiology, Indiana University Medical School, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
23
|
Kozuka N, Itofusa R, Kudo Y, Morita M. Lipopolysaccharide and proinflammatory cytokines require different astrocyte states to induce nitric oxide production. J Neurosci Res 2005; 82:717-28. [PMID: 16247808 DOI: 10.1002/jnr.20671] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nitric oxide (NO) production by astrocytes is a significant factor affecting brain physiology and pathology, but the mechanism by which it is regulated is not known. Previous studies using different specimens and stimuli might have described different aspects of a complex system. We investigated the effect of culture and stimulus conditions on NO production by cultured astrocytes and identified two combinations of these allowing NO production. Lipopolysaccharide (LPS)-induced NO production required a high seeding cell density and was independent of the serum concentration, whereas that induced by proinflammatory cytokines required simultaneous treatment with interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma and low-serum conditions but was less affected by the seeding density. These two pathways showed differential sensitivity to protein kinase inhibitors. Both LPS and cytokines induced expression of inducible nitric oxide synthase (iNOS). Although LPS-induced iNOS expression required a high seeding cell density, cytokine-induced iNOS expression, in contrast to NO production, was not affected by the serum concentration. These results suggest that astrocytes interact with the environment and alter their responsiveness to NO production-inducing stimuli by regulating iNOS expression and activity. This is the first evidence for the selective use of two different regulatory pathways in any cell type.
Collapse
Affiliation(s)
- Nagisa Kozuka
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Mathewson AM, Wadsworth RM. Induction of iNOS restricts functional activity of both eNOS and nNOS in pig cerebral artery. Nitric Oxide 2004; 11:331-9. [PMID: 15604045 DOI: 10.1016/j.niox.2004.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 09/23/2004] [Indexed: 11/21/2022]
Abstract
The aim of the study was to investigate the effect of iNOS expression on eNOS and nNOS functional activity in porcine cerebral arteries. iNOS was induced in pig basilar arteries using lipopolysaccharide (LPS). Arteries expressing iNOS generated NO and relaxed when challenged with L-arginine (30 microM), an effect that was reduced by treatment with dexamethasone (coincubated with LPS) and prevented by the iNOS inhibitor 1400 W (administered 10 min prior to precontraction). eNOS was activated by A23187 and was found to be impaired in arteries that had iNOS induced (A23187 1 microM relaxation: control 110+/-8%, LPS-treated 50+/-16% ; p<0.05, N=5-6). This was due mainly to reduced formation of NO by A23187 (NO concentration in response to A23187 1 microM: control 25+/-6 nM, LPS-treated 0.8+/-1.2 nM; p<0.001, N=5-6), in addition to a small reduction in the vasodilator response to the NO-donors NOC-22 and SIN-1. Cerebral vasodilation produced by stimulation of intramural nitrergic nerves was impaired in arteries that had iNOS induced, and this was reversed by 1400 W (control 23+/-4% relaxation, LPS-treated 11+/-1% relaxation, LPS plus 1400 W 10 microM treated 25+/-2% relaxation; p<0.01 for control versus LPS, N=6). It is concluded that the induction of iNOS in cerebral arteries reduces NO-mediated vasodilation initiated by eNOS and by nNOS, primarily by modulation of NO formation.
Collapse
Affiliation(s)
- Alastair M Mathewson
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK
| | | |
Collapse
|
25
|
Kousai A, Mizuno R, Ikomi F, Ohhashi T. ATP inhibits pump activity of lymph vessels via adenosine A1 receptor-mediated involvement of NO- and ATP-sensitive K+ channels. Am J Physiol Heart Circ Physiol 2004; 287:H2585-97. [PMID: 15308482 DOI: 10.1152/ajpheart.01080.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of ATP on intrinsic pump activity in lymph vessels isolated from the rat. ATP caused significant dilation with a cessation of lymphatic pump activity. Removal of the endothelium or pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME) significantly reduced ATP-induced inhibitory responses of lymphatic pump activity, whereas reduction was not suppressed completely by 10(-6) M ATP. L-arginine significantly restored ATP-induced inhibitory responses in the presence of L-NAME. ATP-induced inhibitory responses in lymph vessels with endothelium were also significantly, but not completely, suppressed by pretreatment with glibenclamide. 8-Cyclopentyl-1,3-dipropylxanthine (a selective adenosine A1 receptor antagonist), but not suramine (a P2X and P2Y receptor antagonist) or 3,7-dimethyl-1-proparglyxanthine (a selective adenosine A2 receptor antagonist), significantly decreased ATP-induced inhibitory responses. alpha,beta-methylene ATP (a selective P2X and P2Y receptor agonist) had no significant effect on lymphatic pump activity. In some lymph vessels with endothelium (24 of 30 preparations), adenosine also caused dose-dependent dilation with a cessation of lymphatic pump activity. L-NAME significantly reduced the inhibitory responses induced by the lower (3 x 10(-8)-3 x 10(-7) M) concentrations of adenosine. Glibenclamide or 8-cyclopentyl-1,3-dipropylxanthine also significantly suppressed adenosine-induced inhibitory responses. These findings suggest that ATP-induced dilation and inhibition of pump activity of isolated rat lymph vessels are endothelium-dependent and -independent responses. ATP-mediated inhibitory responses may be, in part, related to production of endogenous nitric oxide, involvement of ATP-sensitive K+ channels, or activation of adenosine A1 receptors in lymphatic smooth muscle and endothelium.
Collapse
Affiliation(s)
- Akira Kousai
- Dept. of Physiology, Shinshu Univ. School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|