1
|
Yao X, Gao S, Yan N. Structural biology of voltage-gated calcium channels. Channels (Austin) 2024; 18:2290807. [PMID: 38062897 PMCID: PMC10761187 DOI: 10.1080/19336950.2023.2290807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Voltage-gated calcium (Cav) channels mediate Ca2+ influx in response to membrane depolarization, playing critical roles in diverse physiological processes. Dysfunction or aberrant regulation of Cav channels can lead to life-threatening consequences. Cav-targeting drugs have been clinically used to treat cardiovascular and neuronal disorders for several decades. This review aims to provide an account of recent developments in the structural dissection of Cav channels. High-resolution structures have significantly advanced our understanding of the working and disease mechanisms of Cav channels, shed light on the molecular basis for their modulation, and elucidated the modes of actions (MOAs) of representative drugs and toxins. The progress in structural studies of Cav channels lays the foundation for future drug discovery efforts targeting Cav channelopathies.
Collapse
Affiliation(s)
- Xia Yao
- TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shuai Gao
- TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| |
Collapse
|
2
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Ca v3.2 inhibition by selective antagonists. Cell Res 2024; 34:440-450. [PMID: 38605177 PMCID: PMC11143251 DOI: 10.1038/s41422-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Lyu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinmeng Guo
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Gao S, Yao X, Chen J, Huang G, Fan X, Xue L, Li Z, Wu T, Zheng Y, Huang J, Jin X, Wang Y, Wang Z, Yu Y, Liu L, Pan X, Song C, Yan N. Structural basis for human Ca v1.2 inhibition by multiple drugs and the neurotoxin calciseptine. Cell 2023; 186:5363-5374.e16. [PMID: 37972591 DOI: 10.1016/j.cell.2023.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/16/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Cav1.2 channels play crucial roles in various neuronal and physiological processes. Here, we present cryo-EM structures of human Cav1.2, both in its apo form and in complex with several drugs, as well as the peptide neurotoxin calciseptine. Most structures, apo or bound to calciseptine, amlodipine, or a combination of amiodarone and sofosbuvir, exhibit a consistent inactivated conformation with a sealed gate, three up voltage-sensing domains (VSDs), and a down VSDII. Calciseptine sits on the shoulder of the pore domain, away from the permeation path. In contrast, when pinaverium bromide, an antispasmodic drug, is inserted into a cavity reminiscent of the IFM-binding site in Nav channels, a series of structural changes occur, including upward movement of VSDII coupled with dilation of the selectivity filter and its surrounding segments in repeat III. Meanwhile, S4-5III merges with S5III to become a single helix, resulting in a widened but still non-conductive intracellular gate.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Urology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Xia Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lingfeng Xue
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong 518107, China
| | - Chen Song
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Sanyal SK, Awasthi M, Ranjan P, Sharma S, Pandey GK, Kateriya S. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga. Int J Biol Macromol 2023; 245:125492. [PMID: 37343610 DOI: 10.1016/j.ijbiomac.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayanka Awasthi
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Peeyush Ranjan
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, the University of Delhi South Campus, New Delhi 110021, India.
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
6
|
Nunes EJ, Addy NA. L-type calcium channel regulation of dopamine activity in the ventral tegmental area to nucleus accumbens pathway: Implications for substance use, mood disorders and co-morbidities. Neuropharmacology 2023; 224:109336. [PMID: 36414149 PMCID: PMC11215796 DOI: 10.1016/j.neuropharm.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
L-type calcium channels (LTCCs), including the Cav1.2 and Cav1.3 LTCC subtypes, are important regulators of calcium entry into neurons, which mediates neurotransmitter release and synaptic plasticity. Cav1.2 and Cav1.3 are encoded by the CACNA1C and CACNA1D genes, respectively. These genes are implicated in substance use disorders and depression in humans, as demonstrated by genetic-wide association studies (GWAS). Pre-clinical models have also revealed a critical role of LTCCs on drug and mood related behavior, including the co-morbidity of substance use and mood disorders. Moreover, LTCCs have been shown to regulate the neuronal firing of dopamine (DA) neurons as well as drug and stress-induced plasticity within the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway. Thus, LTCCs are interesting targets for the treatment of neuropsychiatric diseases. In this review, we provide a brief introduction to voltage-gated calcium channels, specifically focusing on the LTCCs. We place particular emphasis on the ability of LTCCs to regulate DA neuronal activity and downstream signaling in the VTA to NAc pathway, and how such processes mediate substance use and mood disorder-related behavioral responses. We also discuss the bi-directional control of VTA LTCCs on drug and mood-related behaviors in pre-clinical models, with implications for co-morbid psychiatric diagnosis. We conclude with a section on the clinical implications of LTCC blockers, many which are already FDA approved as cardiac medications. Thus, pre-clinical and clinical work should examine the potential of LTCC blockers to be repurposed for neuropsychiatric illness. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
- Department of Cellular and Molecular Physiology, Yale School of Medicine
- Interdepartmental Neuroscience Program, Yale University
- Wu Tsai Institute, Yale University
| |
Collapse
|
7
|
Warlick H, Leon L, Patel R, Filoramo S, Knipe R, Joubran E, Levy A, Nguyen H, Rey J. Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Mol Biol Rep 2023; 50:1765-1784. [PMID: 36456769 DOI: 10.1007/s11033-022-08110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Current approaches for managing benzodiazepine (BZD) withdrawal symptoms are daunting for clinicians and patients, warranting novel treatment and management strategies. This review discusses the pharmacodynamic properties of BZDs, gabapentinoids (GBPs), endozepines, and novel GABAergic compounds associated with potential clinical benefits for BZD-dependent patients. The objective of this study was to review the complex neuromolecular changes occurring within the GABAergic and glutamatergic systems during the BZD tolerance and withdrawal periods while also examining the mechanism by which GBPs and alternative pharmacological therapies may attenuate withdrawal symptoms. METHODS AND RESULTS An elaborative literature review was conducted using multiple platforms, including the National Center for Biotechnology (NCBI), AccessMedicine, ScienceDirect, pharmacology textbooks, clinical trial data, case reports, and PubChem. Our literature analysis revealed that many distinctive neuroadaptive mechanisms are involved in the GABAergic and glutamatergic systems during BZD tolerance and withdrawal. Based on this data, we hypothesize that GBPs may attenuate the overactive glutamatergic system during the withdrawal phase by an indirect presynaptic glutamatergic mechanism dependent on the α2δ1 subunit expression. CONCLUSIONS GBPs may benefit individuals undergoing BZD withdrawal, given that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor current significantly increases during abrupt BZD withdrawal in animal studies. This may be a conceivable explanation for the effectiveness of GBPs in treating both alcohol withdrawal symptoms and BZD withdrawal symptoms in some recent studies. Finally, natural and synthetic GABAergic compounds with unique pharmacodynamic properties were found to exert potential clinical benefits as BZD substitutes in animal studies, though human studies are lacking.
Collapse
Affiliation(s)
- Halford Warlick
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA.
| | - Lexie Leon
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Rudresh Patel
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Stefanie Filoramo
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ryan Knipe
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ernesto Joubran
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Hoang Nguyen
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Rey
- College of Pharmacy, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
8
|
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, Zhao Y. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca V2.3. Nat Commun 2023; 14:516. [PMID: 36720859 PMCID: PMC9889812 DOI: 10.1038/s41467-023-36260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
High-voltage-activated R-type CaV2.3 channel plays pivotal roles in many physiological activities and is implicated in epilepsy, convulsions, and other neurodevelopmental impairments. Here, we determine the high-resolution cryo-electron microscopy (cryo-EM) structure of human CaV2.3 in complex with the α2δ1 and β1 subunits. The VSDII is stabilized in the resting state. Electrophysiological experiments elucidate that the VSDII is not required for channel activation, whereas the other VSDs are essential for channel opening. The intracellular gate is blocked by the W-helix. A pre-W-helix adjacent to the W-helix can significantly regulate closed-state inactivation (CSI) by modulating the association and dissociation of the W-helix with the gate. Electrostatic interactions formed between the negatively charged domain on S6II, which is exclusively conserved in the CaV2 family, and nearby regions at the alpha-interacting domain (AID) and S4-S5II helix are identified. Further functional analyses indicate that these interactions are critical for the open-state inactivation (OSI) of CaV2 channels.
Collapse
Affiliation(s)
- Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoli Cui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Hao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunlong Qiu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqing Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boling Zhu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Yao X, Gao S, Wang J, Li Z, Huang J, Wang Y, Wang Z, Chen J, Fan X, Wang W, Jin X, Pan X, Yu Y, Lagrutta A, Yan N. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Ca v channels. Cell 2022; 185:4801-4810.e13. [PMID: 36417914 PMCID: PMC9891081 DOI: 10.1016/j.cell.2022.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Drug-drug interaction of the antiviral sofosbuvir and the antiarrhythmics amiodarone has been reported to cause fatal heartbeat slowing. Sofosbuvir and its analog, MNI-1, were reported to potentiate the inhibition of cardiomyocyte calcium handling by amiodarone, which functions as a multi-channel antagonist, and implicate its inhibitory effect on L-type Cav channels, but the molecular mechanism has remained unclear. Here we present systematic cryo-EM structural analysis of Cav1.1 and Cav1.3 treated with amiodarone or sofosbuvir alone, or sofosbuvir/MNI-1 combined with amiodarone. Whereas amiodarone alone occupies the dihydropyridine binding site, sofosbuvir is not found in the channel when applied on its own. In the presence of amiodarone, sofosbuvir/MNI-1 is anchored in the central cavity of the pore domain through specific interaction with amiodarone and directly obstructs the ion permeation path. Our study reveals the molecular basis for the physical, pharmacodynamic interaction of two drugs on the scaffold of Cav channels.
Collapse
Affiliation(s)
- Xia Yao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,These authors contribute equally
| | - Shuai Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,These authors contribute equally.,Present address: School of Pharmaceutical Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China,To whom correspondence should be addressed: N. Yan (); S. Gao ()
| | - Jixin Wang
- Department of Genetic and Cellular Toxicology, ADME & Discovery Toxicology, Preclinical Development, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA,These authors contribute equally
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,These authors contribute equally
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Jiaofeng Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weipeng Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA
| | - Armando Lagrutta
- Department of Genetic and Cellular Toxicology, ADME & Discovery Toxicology, Preclinical Development, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lead contact.,To whom correspondence should be addressed: N. Yan (); S. Gao ()
| |
Collapse
|
10
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
11
|
Chen X, An M, Ye S, Yang Z, Ding Z. The α 2δ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of Ditylenchus destructor. Int J Mol Sci 2022; 23:12999. [PMID: 36361788 PMCID: PMC9657823 DOI: 10.3390/ijms232112999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2024] Open
Abstract
The α2δ subunit is a high-voltage activated (HVA) calcium channel (Cav1 and Cav2) auxiliary subunit that increases the density and function of HVA calcium channels in the plasma membrane of mammals. However, its function in plant parasitic nematodes remains unknown. In this study, we cloned the full-length cDNA sequence of the voltage-gated calcium channel (VGCC) α2δ subunit (named DdCavα2δ) in Ditylenchus destructor. We found that DdCavα2δ tends to be expressed in the egg stage, followed by the J3 stage. RNA-DIG in situ hybridization experiments showed that the DdCavα2δ subunit was expressed in the body wall, esophageal gland, uterus, post uterine, and spicules of D. destructor. The in vitro application of RNA interference (RNAi) affected the motility, reproduction, chemotaxis, stylet thrusting, and protein secretion of D. destructor to different degrees by targeting DdCα1D, DdCα1A, and DdCavα2δ in J3 stages, respectively. Based on the results of RNAi experiments, it was hypothesized that L-type VGCC may affect the motility, chemotaxis, and stylet thrusting of D. destructor. Non-L-type VGCC may affect the protein secretion and reproduction of D. destructor. The DdCavα2δ subunit gene also affected the motility, chemotaxis, and reproduction of D. destructor. These findings reveal the independent function of the VGCC α2δ subunit in D. destructor as well as give a theoretical foundation for future research on plant parasitic nematode VGCC.
Collapse
Affiliation(s)
| | | | | | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Kelkar S, Nailwal N, Bhatia NY, Doshi G, Sathaye S, Godad AP. An Update On Proficiency of Voltage-gated Ion Channel Blockers in the Treatment of Inflammation-associated Diseases. Curr Drug Targets 2022; 23:1290-1303. [PMID: 35996239 DOI: 10.2174/1389450123666220819141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Inflammation is the body's mechanism to trigger the immune system, thereby preventing bacteria and viruses from manifesting their toxic effect. Inflammation plays a vital role in regulating inflammatory mediator levels to initiate the wound healing process depending on the nature of the stimuli. This process occurs due to chemical release from white blood cells by elevating blood flow to the site of action, leading to redness and increased body temperature. Currently, there are numerous Non-steroidal anti-inflammatory drugs (NSAIDs) available, but these drugs are reported with adverse effects such as gastric bleeding, progressive kidney damage, and increased risk of heart attacks when prolonged use. For such instances, alternative options need to be adopted. The introduction of voltage-gated ion channel blockers can be a substantial alternative to mask the side effects of these currently available drugs. Chronic inflammatory disorders such as rheumatoid and osteoarthritis, cancer and migraine, etc., can cause dreadful pain, which is often debilitating for the patient. The underlying mechanism for both acute and chronic inflammation involves various complex receptors, different types of cells, receptors, and proteins. The working of voltage-gated sodium and calcium channels is closely linked to both inflammatory and neuropathic pain. Certain drugs such as carbamazepine and gabapentin, which are ion channel blockers, have greater pharmacotherapeutic activity for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states. This review intends to provide brief information on the mechanism of action, latest clinical trials, and applications of these blockers in treating inflammatory conditions.
Collapse
Affiliation(s)
- Siddesh Kelkar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Reclamation, Bandra West, Mumbai, Maharashtra 400050, India
| | - Namrata Nailwal
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nirav Yogesh Bhatia
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Angel Pavalu Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India.,Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
13
|
Zhang YL, Moran SP, Allen A, Baez-Nieto D, Xu Q, Wang LA, Martenis WE, Sacher JR, Gale JP, Weïwer M, Wagner FF, Pan JQ. Novel Fluorescence-Based High-Throughput FLIPR Assay Utilizing Membrane-Tethered Genetic Calcium Sensors to Identify T-Type Calcium Channel Modulators. ACS Pharmacol Transl Sci 2022; 5:156-168. [PMID: 35311021 PMCID: PMC8923061 DOI: 10.1021/acsptsci.1c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/28/2022]
Abstract
T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sean P. Moran
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew Allen
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - David Baez-Nieto
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Qihong Xu
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Lei A. Wang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - William E. Martenis
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Joshua R. Sacher
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer P. Gale
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Michel Weïwer
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Florence F. Wagner
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jen Q. Pan
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
15
|
Gao S, Yan N. Structural Basis of the Modulation of the Voltage‐Gated Calcium Ion Channel Ca
v
1.1 by Dihydropyridine Compounds**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Gao
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| | - Nieng Yan
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
16
|
Gao S, Yan N. Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Ca v 1.1 by Dihydropyridine Compounds*. Angew Chem Int Ed Engl 2021; 60:3131-3137. [PMID: 33125829 PMCID: PMC7898392 DOI: 10.1002/anie.202011793] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Indexed: 12/29/2022]
Abstract
1,4-Dihydropyridines (DHP), the most commonly used antihypertensives, function by inhibiting the L-type voltage-gated Ca2+ (Cav ) channels. DHP compounds exhibit chirality-specific antagonistic or agonistic effects. The structure of rabbit Cav 1.1 bound to an achiral drug nifedipine reveals the general binding mode for DHP drugs, but the molecular basis for chiral specificity remained elusive. Herein, we report five cryo-EM structures of nanodisc-embedded Cav 1.1 in the presence of the bestselling drug amlodipine, a DHP antagonist (R)-(+)-Bay K8644, and a titration of its agonistic enantiomer (S)-(-)-Bay K8644 at resolutions of 2.9-3.4 Å. The amlodipine-bound structure reveals the molecular basis for the high efficacy of the drug. All structures with the addition of the Bay K8644 enantiomers exhibit similar inactivated conformations, suggesting that (S)-(-)-Bay K8644, when acting as an agonist, is insufficient to lock the activated state of the channel for a prolonged duration.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/chemistry
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism
- Amlodipine/chemistry
- Amlodipine/metabolism
- Binding Sites
- Calcium Channel Agonists/chemistry
- Calcium Channel Agonists/metabolism
- Calcium Channel Blockers/chemistry
- Calcium Channel Blockers/metabolism
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/metabolism
- Cryoelectron Microscopy
- Dihydropyridines/chemistry
- Dihydropyridines/metabolism
- Molecular Dynamics Simulation
- Nanostructures/chemistry
- Protein Structure, Tertiary
- Stereoisomerism
Collapse
Affiliation(s)
- Shuai Gao
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ08544USA
| | - Nieng Yan
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ08544USA
| |
Collapse
|
17
|
Eisenberg RS. Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:172. [PMID: 33573137 PMCID: PMC7912333 DOI: 10.3390/e23020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/17/2023]
Abstract
When forces are applied to matter, the distribution of mass changes. Similarly, when an electric field is applied to matter with charge, the distribution of charge changes. The change in the distribution of charge (when a local electric field is applied) might in general be called the induced charge. When the change in charge is simply related to the applied local electric field, the polarization field P is widely used to describe the induced charge. This approach does not allow electrical measurements (in themselves) to determine the structure of the polarization fields. Many polarization fields will produce the same electrical forces because only the divergence of polarization enters Maxwell's first equation, relating charge and electric forces and field. The curl of any function can be added to a polarization field P without changing the electric field at all. The divergence of the curl is always zero. Additional information is needed to specify the curl and thus the structure of the P field. When the structure of charge changes substantially with the local electric field, the induced charge is a nonlinear and time dependent function of the field and P is not a useful framework to describe either the electrical or structural basis-induced charge. In the nonlinear, time dependent case, models must describe the charge distribution and how it varies as the field changes. One class of models has been used widely in biophysics to describe field dependent charge, i.e., the phenomenon of nonlinear time dependent induced charge, called 'gating current' in the biophysical literature. The operational definition of gating current has worked well in biophysics for fifty years, where it has been found to makes neurons respond sensitively to voltage. Theoretical estimates of polarization computed with this definition fit experimental data. I propose that the operational definition of gating current be used to define voltage and time dependent induced charge, although other definitions may be needed as well, for example if the induced charge is fundamentally current dependent. Gating currents involve substantial changes in structure and so need to be computed from a combination of electrodynamics and mechanics because everything charged interacts with everything charged as well as most things mechanical. It may be useful to separate the classical polarization field as a component of the total induced charge, as it is in biophysics. When nothing is known about polarization, it is necessary to use an approximate representation of polarization with a dielectric constant that is a single real positive number. This approximation allows important results in some cases, e.g., design of integrated circuits in silicon semiconductors, but can be seriously misleading in other cases, e.g., ionic solutions.
Collapse
Affiliation(s)
- Robert S. Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA; ; Tel.: +1-708-932-2597
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. Conserved biophysical features of the Ca V2 presynaptic Ca 2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 2020; 295:18553-18578. [PMID: 33097592 PMCID: PMC7939481 DOI: 10.1074/jbc.ra120.015725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Salsabil Abdallah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas Piekut
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute, Toronto, Ontario, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
19
|
Mosa FES, C S, Feng T, Barakat K. Effects of selective calcium channel blockers on ions' permeation through the human Cav1.2 ion channel: A computational study. J Mol Graph Model 2020; 102:107776. [PMID: 33137694 DOI: 10.1016/j.jmgm.2020.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Selective calcium channel antagonists are widely used in the treatment of cardiovascular disorders. They are mainly classified into 1,4-dihydropyridine (1,4-DHPs) and non-DHPs. The non-DHPs class is further classified into phenylalkylamines (PAAs) and benzothiazepines (BZTs) derivatives. These blockers are used for the treatment of hypertension, angina pectoris, and cardiac arrhythmias. Despite their well-established efficiency, the structural basis behind their activity is not very clear. Here we report the use of a near-open confirmation (NOC) model of the Cav1.2 cardiac ion channel to examine the mode of binding of these antagonists within the pore domain as well as the fenestration of the pore-forming domains. Effects of calcium ion permeation in the presence of drug molecules were assessed using steered molecular dynamics (SMD) simulations. These studies reveal that nicardipine, a DHP derivative, shows a strong Cav1.2 blocking activity, requiring more 2500 pN force to pull calcium ion towards the channel's pore in the presence of the compound. Similar blocking activity was observed for verapamil, a PAA derivative, requiring almost 2300 pN of force. The least blocking activity was observed for Diltiazem, a BZT derivative. Our results explain the structural basis and the binding details of 1,4-DHPs, PAAs and BZTs at their distinct Cav1.2 sites and offer detailed insights into their mechanism of action in modulating the Cav1.2 channel.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Suryanarayanan C
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Tianhua Feng
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Communication of Glioma cells with neuronal plasticity: What is the underlying mechanism? Neurochem Int 2020; 141:104879. [PMID: 33068685 DOI: 10.1016/j.neuint.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
There has been a significantly rising discussion on how neuronal plasticity communicates with the glioma growth and invasion. This literature review aims to determine which neurotransmitters, ion channels and signaling pathways are involved in this context, how information is transferred from synaptic sites to the glioma cells and how glioma cells apply established mechanics of synaptic plasticity for their own increment. This work is a compilation of some outstanding findings related to the influence of the glutamate, calcium, potassium, chloride and sodium channels and other important brain plasticity molecules over the glioma progression. These topics also include the relevant molecular signaling data which could prove to be helpful for an effective clinical management of brain tumors in the future.
Collapse
|
21
|
Spasevska I, Matera EL, Chettab K, Ville J, Potier-Cartereau M, Jordheim LP, Thieblemont C, Sahin D, Klein C, Dumontet C. Calcium Channel Blockers Impair the Antitumor Activity of Anti-CD20 Monoclonal Antibodies by Blocking EGR-1 Induction. Mol Cancer Ther 2020; 19:2371-2381. [PMID: 32847969 DOI: 10.1158/1535-7163.mct-19-0839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/12/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Direct cell death induction, in addition to immune-effector cell-mediated mechanisms, is one of the key mechanisms of action of anti-CD20 antibodies, and yet the signaling pathways implicated remain poorly investigated. Here we show that the transcription factor EGR-1 is rapidly induced by anti-CD20 antibodies and is a key mediator for CD20-induced cell death. EGR-1 induction results from an increased calcium influx induced by anti-CD20 antibodies. We show that both rituximab and obinutuzumab induce calcium influx, albeit through different mechanisms, and this influx is crucial for cell death induction. Inhibition of the calcium flux with calcium channel blockers (CCB) abolished EGR-1 induction and impaired the efficacy of anti-CD20 antibodies in preclinical in vitro and in vivo models. Finally, we investigated the impact of CCBs in patients treated with anti-CD20 antibodies included in the clinical trials GOYA and REMARC, and found that patients simultaneously receiving CCBs and anti-CD20 therapy have a shorter progression-free survival and overall survival. These results reveal EGR-1 as a key mediator of the direct cytotoxic activity of anti-CD20 antibodies and provide a rationale to evaluate EGR-1 expression as a new biomarker to predict response to anti-CD20 treatment. In addition, our findings show that calcium influx is required for anti-CD20-mediated tumor cell death and suggest that simultaneous administration of calcium channel blocking agents could be deleterious in patients receiving anti-CD20-based immunotherapy.
Collapse
Affiliation(s)
- Ivana Spasevska
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eva Laure Matera
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Kamel Chettab
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jade Ville
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Denis Sahin
- Pharma Development Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France. .,Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
22
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch 2020; 472:653-667. [PMID: 32435990 DOI: 10.1007/s00424-020-02398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.
Collapse
|
24
|
Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N. Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca 2+ Channel. Cell 2020; 177:1495-1506.e12. [PMID: 31150622 DOI: 10.1016/j.cell.2019.04.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.
Collapse
Affiliation(s)
- Yanyu Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Wu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Qiurong Wu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zhen Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Abdelmoniem AM, Mohamed MF, Abdelmoniem DM, Ghozlan SAS, Abdelhamid IA. Recent Synthetic Approaches and Biological Evaluations of Amino Hexahydroquinolines and Their Spirocyclic Structures. Anticancer Agents Med Chem 2020; 19:875-915. [PMID: 30706793 DOI: 10.2174/1871520619666190131140436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 01/19/2019] [Indexed: 01/10/2023]
Abstract
In this review, the recent synthetic approaches of amino hexahydroquinolines and their spirocyclic structures were highlighted. The synthetic routes include, two-components, three-components or fourcomponents reactions. The two-component [3+3] atom combination reaction represents the simplest method. It involves Michael addition of the electron rich β-carbon of β-enaminones to the activated double bond of cinnamonitriles followed by cyclization to yield hexahydroquinoline compounds. The bioactivity profiles and SAR studies of these compounds were also reviewed with emphasis to the utility of these substances as antimicrobial, anticancer and antitubercular agents, as well as calcium channel modulators.
Collapse
Affiliation(s)
- Amr M Abdelmoniem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Magda F Mohamed
- Chemistry Department (biochemistry branch), Faculty of Science, Cairo University, Giza, Egypt.,Department of Chemistry, Faculty of Science and Arts, Khulais, University of Jeddah, Saudi Arabia
| | | | - Said A S Ghozlan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
26
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
27
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Burks SR, Lorsung RM, Nagle ME, Tu TW, Frank JA. Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 2019; 9:5517-5531. [PMID: 31534500 PMCID: PMC6735402 DOI: 10.7150/thno.33876] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Pulsed focused ultrasound (pFUS) technology is being developed for clinical neuro/immune modulation and regenerative medicine. Biological signal transduction of pFUS forces can require mechanosensitive or voltage-gated plasma membrane ion channels. Previous studies suggested pFUS is capable of activating either channel type, but their mechanistic relationship remains ambiguous. We demonstrated pFUS bioeffects increased mesenchymal stem cell tropism (MSC) by altering molecular microenvironments through cyclooxygenase-2 (COX2)-dependent pathways. This study explored specific relationships between mechanosensitive and voltage-gated Ca2+ channels (VGCC) to initiate pFUS bioeffects that increase stem cell tropism. Methods: Murine kidneys and hamstring were given pFUS (1.15 or 1.125 MHz; 4MPa peak rarefactional pressure) under ultrasound or magnetic resonance imaging guidance. Cavitation and tissue displacement were measure by hydrophone and ultrasound radiofrequency data, respectively. Elastic modeling was performed from displacement measurements. COX2 expression and MSC tropism were evaluated in the presence of pharmacological ion channel inhibitors or in transient-receptor-potential-channel-1 (TRPC1)-deficient mice. Immunohistochemistry and co-immunoprecipitation examined physical channel relationships. Fluorescent ionophore imaging of cultured C2C12 muscle cells or TCMK1 kidney cells probed physiological interactions. Results: pFUS induced tissue deformations resulting in kPa-scale forces suggesting mechanical activation of pFUS-induced bioeffects. Inhibiting VGCC or TRPC1 in vivo blocked pFUS-induced COX2 upregulation and MSC tropism to kidneys and muscle. A TRPC1/VGCC complex was observed in plasma membranes. VGCC or TRPC1 suppression blocked pFUS-induced Ca2+ transients in TCMK1 and C2C12 cells. Additionally, Ca2+ transients were blocked by reducing transmembrane Na+ potentials and observed Na+ transients were diminished by genetic TRPC1 suppression. Conclusion: This study suggests that pFUS acoustic radiation forces mechanically activate a Na+-containing TRPC1 current upstream of VGCC rather than directly opening VGCC. The electrogenic function of TRPC1 provides potential mechanistic insight into other pFUS techniques for physiological modulation and optimization strategies for clinical implementation.
Collapse
|
29
|
5-Oxo-hexahydroquinoline: an attractive scaffold with diverse biological activities. Mol Divers 2018; 23:471-508. [PMID: 30390186 DOI: 10.1007/s11030-018-9886-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022]
Abstract
5-Oxo-hexahydroquinoline (5-oxo-HHQ) represents a biologically attractive fused heterocyclic core. Various synthetic analogs of 5-oxo-HHQ have been synthesized and assessed for different biological activities. Some derivatives have exhibited myorelaxant, analgesic, anticancer, antibacterial, antifungal, antitubercular, antimalarial, antioxidant, anti-inflammatory, multidrug resistance reversal, anti-Alzheimer, neuroprotective, antidiabetic, antidyslipidemic and antiosteoporotic activities. This review provides a comprehensive report regarding the preparation and pharmacological characterization of 5-oxo-HHQ derivatives that have been reported so far. This information will be beneficial for medicinal chemists in the field of drug discovery to design and develop new and potent therapeutical agents bearing the 5-oxo-HHQ nucleus.
Collapse
|
30
|
Baig AM, Rana Z, Waliani N, Karim S, Rajabali M. Evidence of human-like Ca 2+ channels and effects of Ca 2+ channel blockers in Acanthamoeba castellanii. Chem Biol Drug Des 2018; 93:351-363. [PMID: 30362253 DOI: 10.1111/cbdd.13421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Abstract
The evolution of voltage-gated calcium channel (Cav) in eukaryotes is an area of interest for biologists worldwide. The CLAN CL0030 and its family Ion_Trans 2 PF 07885 have been known to be present in prokaryotes, but the origin of these ion channels in Acanthamoeba spp. is yet to be determined. We inferred the origin of primitive forms of two-pore channels like proteins, human-like Cav 1.1 of L-type, and Cav subunit alpha-2/delta-1 in Acanthamoeba spp. early during evolution. By in-depth investigation into genomics, transcriptomics, use of bioinformatics tools and experimentations done with drugs like amlodipine and gabapentin on Acanthamoeba spp., we show the evidence of primitive forms of these channels in this protist pathogen. Genomics and transcriptomics of proteins ACA1_167020, 092610, and 270170 reflected their cellular expression in Acanthamoeba spp. We performed amino acid sequence homology, 3D structural modeling, ligand binding predictions, and dockings. Bioinformatics and 3D structural models show similarities between ACA1_167020, 092610, 270170, and different types of known human Cav. We show amoebicidal effects of amlodipine and gabapentin on Acanthamoeba spp., which can help design their structural analogs to target pathogenic genotypes of Acanthamoeba in diseases like Acanthamoeba keratitis and granulomatous amoebic encephalitis.
Collapse
|
31
|
Small-molecule Ca Vα 1⋅Ca Vβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc Natl Acad Sci U S A 2018; 115:E10566-E10575. [PMID: 30355767 DOI: 10.1073/pnas.1813157115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.
Collapse
|
32
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
33
|
Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth 2018; 120:1315-1334. [DOI: 10.1016/j.bja.2018.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
|
34
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
35
|
Kumari N, Gaur H, Bhargava A. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling. Life Sci 2017; 194:139-149. [PMID: 29288765 DOI: 10.1016/j.lfs.2017.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated.
Collapse
Affiliation(s)
- Neema Kumari
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Himanshu Gaur
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
36
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
37
|
Shi L, Chang JYA, Yu F, Ko ML, Ko GYP. The Contribution of L-Type Ca v1.3 Channels to Retinal Light Responses. Front Mol Neurosci 2017; 10:394. [PMID: 29259539 PMCID: PMC5723326 DOI: 10.3389/fnmol.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/10/2017] [Indexed: 01/28/2023] Open
Abstract
L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4) expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3-/-) mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3-/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3-/- mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Fei Yu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Anderson JC, Fritz ML, Benson JM, Tracy BL. Nerve Decompression and Restless Legs Syndrome: A Retrospective Analysis. Front Neurol 2017; 8:287. [PMID: 28729849 PMCID: PMC5498562 DOI: 10.3389/fneur.2017.00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Introduction Restless legs syndrome (RLS) is a prevalent sleep disorder affecting quality of life and is often comorbid with other neurological diseases, including peripheral neuropathy. The mechanisms related to RLS symptoms remain unclear, and treatment options are often aimed at symptom relief rather than etiology. RLS may present in distinct phenotypes often described as “primary” vs. “secondary” RLS. Secondary RLS is often associated with peripheral neuropathy. Nerve decompression surgery of the common and superficial fibular nerves is used to treat peripheral neuropathy. Anecdotally, surgeons sometimes report improved RLS symptoms following nerve decompression for peripheral neuropathy. The purpose of this retrospective analysis was to quantify the change in symptoms commonly associated with RLS using visual analog scales (VAS). Methods Forty-two patients completed VAS scales (0–10) for pain, burning, numbness, tingling, weakness, balance, tightness, aching, pulling, cramping, twitchy/jumpy, uneasy, creepy/crawly, and throbbing, both before and 15 weeks after surgical decompression. Results Subjects reported significant improvement among all VAS categories, except for “pulling” (P = 0.14). The change in VAS following surgery was negatively correlated with the pre-surgery VAS for both the summed VAS (r = −0.58, P < 0.001) and the individual VAS scores (all P < 0.01), such that patients who reported the worst symptoms before surgery exhibited relatively greater reductions in symptoms after surgery. Conclusion This is the first study to suggest improvement in RLS symptoms following surgical decompression of the common and superficial fibular nerves. Further investigation is needed to quantify improvement using RLS-specific metrics and sleep quality assessments.
Collapse
Affiliation(s)
- James C Anderson
- Anderson Podiatry Center for Nerve Pain, Fort Collins, CO, United States
| | - Megan L Fritz
- Anderson Podiatry Center for Nerve Pain, Fort Collins, CO, United States.,Neuromuscular Function Lab, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | | | - Brian L Tracy
- Neuromuscular Function Lab, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Schoser B, Eymard B, Datt J, Mantegazza R. Lambert–Eaton myasthenic syndrome (LEMS): a rare autoimmune presynaptic disorder often associated with cancer. J Neurol 2017; 264:1854-1863. [DOI: 10.1007/s00415-017-8541-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
|
40
|
Ozer EK, Gunduz MG, El-Khouly A, Sara Y, Simsek R, Iskit AB, Safak C. Synthesis of fused 1,4-dihydropyridines as potential calcium channel blockers. TURKISH JOURNAL OF BIOCHEMISTRY 2017. [DOI: 10.1515/tjb-2016-0247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objective
The aim of this study was to synthesize ten 1,4-dihydropyridine (DHP) derivatives in which substituted cyclohexane rings were fused to the DHP ring and to determine how different ester groups and the benzoyl substituent introduced in 4-phenyl ring affected their calcium channel blocking activity.
Methods
A microwave-assisted one-pot method was applied for the synthesis of compound 1–5 according to a modified Hantzsch reaction. The benzoyl moiety was introduced in the 4-phenyl ring of these dihydropyridines by refluxing with benzoyl chloride in acetone in the presence of anhydrous potassium carbonate. Synthesized products were characterized by elemental analysis, IR, 1H-NMR and 13C-NMR spectroscopy. The inhibitory actions of compounds 1–10 on calcium channel blocking activity were tested on isolated rat aorta preparations.
Results
The obtained pharmacological results showed that although all compounds are potent relaxing agents on isolated rat aorta smooth muscle, introduction of a benzoyloxy substitiuent on the phenyl ring (compound 6–10) decreased the relaxant effect of these compunds.
Conclusion
The reported 1,4-DHP derivatives have calcium channel blocking activity on rat aorta smooth muscle.
Collapse
Affiliation(s)
- Erdem Kamil Ozer
- Department of Pharmacology , Faculty of Medicine, Selcuk University , 42250, Selcuklu , Konya , Turkey , Phone: +90 332 2243839
| | - Miyase Gozde Gunduz
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Hacettepe University , 06100, Ankara , Turkey
| | - Ahmed El-Khouly
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Hacettepe University , 06100, Ankara , Turkey
| | - Yildirim Sara
- Department of Pharmacology , Faculty of Medicine , Hacettepe University , Ankara , Turkey
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Hacettepe University , 06100, Ankara , Turkey
| | - Alper Bektas Iskit
- Department of Pharmacology , Faculty of Medicine , Hacettepe University , Ankara , Turkey
| | - Cihat Safak
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Hacettepe University , 06100, Ankara , Turkey
| |
Collapse
|
41
|
Lee MY, Ha SE, Park C, Park PJ, Fuchs R, Wei L, Jorgensen BG, Redelman D, Ward SM, Sanders KM, Ro S. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures. PLoS One 2017; 12:e0176031. [PMID: 28426719 PMCID: PMC5398589 DOI: 10.1371/journal.pone.0176031] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.
Collapse
Affiliation(s)
- Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Paul J. Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robert Fuchs
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Doug Redelman
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
42
|
Nicoletti NF, Erig TC, Zanin RF, Roxo MR, Ferreira NP, Gomez MV, Morrone FB, Campos MM. Pre-clinical evaluation of voltage-gated calcium channel blockers derived from the spider P. nigriventer in glioma progression. Toxicon 2017; 129:58-67. [PMID: 28202361 DOI: 10.1016/j.toxicon.2017.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/30/2023]
Abstract
This study investigated the effects of P/Q- and N-type voltage-gated calcium channel (VGCC) blockers derived from P. nigriventer in glioma progression, by means of in vitro and in vivo experiments. Glioma cells M059J, U-138MG and U-251MG were used to evaluate the antiproliferative effects of P/Q- and N-type VGCC inhibitors PhTx3-3 and Phα1β from P. nigriventer (0.3-100 pM), in comparison to MVIIC and MVIIA from C. magus (0.3-100 pM), respectively. The toxins were also analyzed in a glioma model induced by implantation of GL261 mouse cells. PhTx3-3, Phα1β and MVIIA displayed significant inhibitory effects on the proliferation and viability of all tested glioma cell lines, and evoked cell death mainly with apoptosis characteristics, as indicated by Annexin V/propidium iodide (PI) positivity. The antiproliferative effects of toxins were confirmed by flow cytometry using Ki67 staining. None of the tested toxins altered the proliferation rates of the N9 non-tumor glial cell line. Noteworthy, the administration of the preferential N-type VGCC inhibitors, Phα1β (50 pmol/site; i.c.v.), its recombinant form CTK 01512-2 (50 pmol/site; i.c.v. and i.t.), or MVIIA (10 pmol/site; i.c.v.) caused significant reductions of tumor areas in vivo. N-type VGCC inhibition by Phα1β, CTK 01512-2, and MVIIA led to a marked increase of GFAP-activated astrocytes, and Iba-1-positive microglia, in the peritumoral region, which might explain, at least in part, the inhibitory effects of the toxins in tumor development. This study provides novel evidence on the potential effects of P. nigriventer-derived P/Q-, and mainly, N-type VGCC inhibitors, in glioma progression.
Collapse
Affiliation(s)
- Natália Fontana Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil
| | | | - Rafael Fernandes Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Ricardo Roxo
- Serviço de Neurocirurgia, Hospital São José, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil; UCS, Faculdade de Medicina, Departamento de Neurocirurgia, Caxias do Sul, RS, Brazil
| | - Nelson Pires Ferreira
- Serviço de Neurocirurgia, Hospital São José, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcus Vinicius Gomez
- UFMG, Faculdade de Medicina, Laboratório de Neurociências, Belo Horizonte, MG, Brazil
| | - Fernanda Bueno Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil; PUCRS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil; PUCRS, Faculdade de Odontologia, Laboratório de Patologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
44
|
Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci 2016; 10:135. [PMID: 27313508 PMCID: PMC4889576 DOI: 10.3389/fncel.2016.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruxandra Barzan
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Friederike Pfeiffer
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Maria Kukley
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| |
Collapse
|
45
|
Zhou Y, Greka A. Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol 2016; 310:F1157-67. [PMID: 27029425 DOI: 10.1152/ajprenal.00117.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
46
|
Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2016; 350:aad2395. [PMID: 26680202 DOI: 10.1126/science.aad2395] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit α1 and auxiliary subunits α2δ, β, and γ. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the α1 subunit are arranged clockwise in the extracellular view. The γ subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic β subunit is located adjacent to VSD(II) of α1. The α2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.
Collapse
Affiliation(s)
- Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhen Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Vasopressin-induced Ca(2+) signals in human adipose-derived stem cells. Cell Calcium 2016; 59:135-9. [PMID: 26830970 DOI: 10.1016/j.ceca.2015.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
Intracellular Ca(2+) signals are essential for stem cell differentiation due to their ability to control signaling pathways involved in this process. Arginine vasopression (AVP) is a neurohypophyseal hormone that increases intracellular Ca(2+) concentration during adipogenesis via V1a receptors, Gq-proteins and the PLC-IP3 pathway in human adipose-derived stromal/stem cells (hASCs). These Ca(2+) signals originate through calcium release from pools within the endoplasmic reticulum and the extracellular space. AVP supplementation to the adipogenic media inhibits adipogenesis and key adipocyte marker genes. This review focuses on the intersection between AVP, Ca(2+) signals and ASC differentiation.
Collapse
|
48
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
49
|
Shaldam MA, El-Hamamsy MH, Saleh DO, El-Moselhy TF. Synthesis, Evaluation of Pharmacological Activity, and Molecular Docking of 1,4-Dihydropyridines as Calcium Antagonists. Chem Pharm Bull (Tokyo) 2016; 64:297-304. [DOI: 10.1248/cpb.c15-00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Moataz Ahmed Shaldam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Delta University for Science and Technology
| | | | | | | |
Collapse
|
50
|
Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 2015; 10:49-72. [PMID: 26834861 DOI: 10.1007/s11571-015-9365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022] Open
Abstract
This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network's rate of failure to shift attention is lower than the control network's, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.
Collapse
|