1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Infante Hernández S, Gómez Rivas J, Moreno Sierra J. [Benign prostatic hyperplasia]. Med Clin (Barc) 2024; 163:407-414. [PMID: 39013719 DOI: 10.1016/j.medcli.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 07/18/2024]
Abstract
Benign prostatic hyperplasia (BPH) is a histopathologic definition associated with enlargement of the prostate gland that causes obstruction of the lower urinary tract and manifests clinically with characteristic symptoms that are what bring patients for consultation. Urinary tract symptoms are common, especially in an increasingly aging population. Diagnosis and the decision on when and how to treat depend on the patient's quality of life and objective clinical parameters. An individualized, risk-based approach is necessary to guide conservative, pharmacologic, or surgical treatment.
Collapse
Affiliation(s)
| | - Juan Gómez Rivas
- Servicio de Urología, Hospital Clínico San Carlos, Madrid, España; Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, Sección de Urología, Madrid, España
| | - Jesús Moreno Sierra
- Servicio de Urología, Hospital Clínico San Carlos, Madrid, España; Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, Sección de Urología, Madrid, España
| |
Collapse
|
3
|
Kallinikas G, Haronis G, Kallinika E, Kozyrakis D, Rodinos E, Filios A, Filios P, Mityliniou D, Safioleas K, Zarkadas A, Bozios D, Karmogiannis A, Konstantinopoulos V, Konomi AM, Ektesabi AM, Tsoporis JN. A Brief Overview of Cholinergic and Phosphodiesterase-5 Inhibitors in Diabetic Bladder Dysfunction. Int J Mol Sci 2024; 25:10704. [PMID: 39409033 PMCID: PMC11476953 DOI: 10.3390/ijms251910704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic bladder dysfunction (DBD) comprises a wide spectrum of lower urinary tract symptoms that impact diabetic patients' lives, including urinary frequency, urgency, incontinence, and incomplete bladder emptying. To relieve symptoms, anticholinergics have been widely prescribed and are considered an effective treatment. There is increasing evidence that diabetic patients may benefit from the use of phosphodiesterase 5 (PDE5) inhibitors. This narrative review aims to provide a brief overview of the pathophysiology of DBD along with a focus on cholinergic and phosphodiesterase inhibitors as therapies that benefit DBD. An examination of the literature suggests compelling avenues of research and underscores critical gaps in understanding the mechanisms underlying DBD. New tools and models, especially rodent models, are required to further elucidate the mechanisms of action of current therapies in the treatment of DBS.
Collapse
Affiliation(s)
- Georgios Kallinikas
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Georgios Haronis
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Eirini Kallinika
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Diomidis Kozyrakis
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Evangelos Rodinos
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Athanasios Filios
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Panagiotis Filios
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Despoina Mityliniou
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Konstantinos Safioleas
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Anastasios Zarkadas
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Dimitrios Bozios
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Athanasios Karmogiannis
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Vasileios Konstantinopoulos
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Anna Maria Konomi
- Department of Urology, Konstantopouleion–Patision Hospital, N. Ionia, 14233 Attika, Greece; (G.K.); (G.H.); (D.K.); (E.R.); (A.F.); (P.F.); (D.M.); (K.S.); (A.Z.); (D.B.); (A.K.); (V.K.); (A.M.K.)
| | - Amin M. Ektesabi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
4
|
Cai R, Zou P, Zhang Y, Chen Y. Chemoselective Synthesis of α-Tertiary Hydroxy Oximes via Photochemical 1,3-Boronate Rearrangement. Org Lett 2024; 26:7795-7799. [PMID: 39250595 DOI: 10.1021/acs.orglett.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Tertiary alcohols with adjacent nucleophilic labile groups are prevalent in bioactive molecules but are challenging to synthesize. Herein we introduce a direct, protecting group-free method to access α-tertiary hydroxy oximes via photochemical 1,3-boronate rearrangement. This reaction delivers high yields (up to 94%) using readily available boronic acids, is scalable to gram quantities, and allows for further derivatization to other nitrogen-containing molecules.
Collapse
Affiliation(s)
- Ruijing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Zou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yixin Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiyun Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Hazan S, Tauber M, Ben-Chaim Y. Voltage dependence of M2 muscarinic receptor antagonists and allosteric modulators. Biochem Pharmacol 2024; 227:116421. [PMID: 38996933 DOI: 10.1016/j.bcp.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Muscarinic receptors are G protein-coupled receptors (GPCRs) that play a role in various physiological functions. Previous studies have shown that these receptors, along with other GPCRs, are voltage-sensitive; both their affinity toward agonists and their activation are regulated by membrane potential. To our knowledge, whether the effect of antagonists on these receptors is voltage-dependent has not yet been studied. In this study, we used Xenopus oocytes expressing the M2 muscarinic receptor (M2R) to investigate this question. Our results indicate that the potencies of two M2R antagonists, atropine and scopolamine, are voltage-dependent; they are more effective at resting potential than under depolarization. In contrast, the M2R antagonist AF-DX 386 did not exhibit voltage-dependent potency.Furthermore, we discovered that the voltage dependence of M2R activation by acetylcholine remains unchanged in the presence of two allosteric modulators, the negative modulator gallamine and the positive modulator LY2119620. These findings enhance our understanding of GPCRs' voltage dependence and may have pharmacological implications.
Collapse
Affiliation(s)
- Shimrit Hazan
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Merav Tauber
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
6
|
Phutietsile GO, Fotaki N, Nishtala PS. Assessing the anticholinergic cognitive burden classification of putative anticholinergic drugs using drug properties. Br J Clin Pharmacol 2024; 90:2236-2255. [PMID: 38863280 DOI: 10.1111/bcp.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
AIMS This study evaluated the use of machine learning to leverage drug absorption, distribution, metabolism and excretion (ADME) data together with physicochemical and pharmacological data to develop a novel anticholinergic burden scale and compare its performance to previously published scales. METHODS Experimental and in silico ADME, physicochemical and pharmacological data were collected for antimuscarinic activity, blood-brain barrier penetration, bioavailability, chemical structure and P-glycoprotein (P-gp) substrate profile. These five drug properties were used to train an unsupervised model to assign anticholinergic burden scores to drugs. The model performance was evaluated through 10-fold cross-validation and compared with the clinical Anticholinergic Cognitive Burden (ACB) scale and nonclinical Anticholinergic Toxicity Scores (ATS) scale, which is based primarily on muscarinic binding affinity. RESULTS In silico software (ADMET Predictor) used for screening drugs for their blood-brain barrier (BBB) penetration correctly identified some drugs that do not cross the BBB. The mean area under the curve for the unsupervised and ACB scale based on the five selected variables was 0.76 and 0.64, respectively. The unsupervised model agreed with the ACB scale on the classification of more than half of the drugs (49 of 88) agreed on the classification of less than half the drugs in the ATS scale (12 of 25). CONCLUSIONS Our findings suggest that the commonly used ACB scale may misclassify certain drugs due to their inability to cross the BBB. By contrast, the ATS scale would misclassify drugs solely depending on muscarinic binding affinity without considering other drug properties. Machine learning models can be trained on these features to build classification models that are easy to update and have greater generalizability.
Collapse
Affiliation(s)
| | - Nikoletta Fotaki
- Department of Life Sciences, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Prasad S Nishtala
- Department of Life Sciences, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
7
|
Cai M, Gan L, Li J, Lei X, Yu J. CHRM3 (rs2165870) gene polymorphism is related to postoperative vomiting in female patients undergoing laparoscopic surgery. Prospective observational study. PLoS One 2024; 19:e0309136. [PMID: 39163289 PMCID: PMC11335095 DOI: 10.1371/journal.pone.0309136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Postoperative nausea and vomiting are common complications after surgery, and female patients are more likely to experience these adverse events. The goal of this study was to explore the relationship between the CHRM3 rs2165870 polymorphism and postoperative vomiting incidence in female patients who underwent laparoscopic surgery. METHODS Two hundred female patients who underwent elective laparoscopic surgery with subsequent patient-controlled intravenous analgesia using dexmedetomidine and sufentanil were prospectively enrolled. The CHRM3 rs2165870 and KCNB2 rs349358 polymorphisms were genotyped using MassARRAY SNP typing technology. Demographic data and preoperative laboratory results of all patients were recorded. Postoperative analgesia-related information, incidence of postoperative nausea and vomiting, and other adverse events were followed up and recorded for analysis. RESULTS No significant differences were observed in any of the demographic characteristics of these patients among the different genotype carriers (P>0.05). The percentages of patients with each genotype of CHRM3 were 67% (GG), 28.5% (GA) and 4.5% (AA). We found that the AA or A allele of the CHRM3 rs2165870 polymorphism elevated the risk of postoperative vomiting (AA versus GG; OR, 6.94; 95% CI, 1.49-32.46; P = 0.014; A versus G; OR, 2.52; 95% CI, 1.22-5.19; P = 0.012). The percentages of patients with each genotype of KCNB2 were 84.5% (TT), 15.5% (CT) and 0% (CC). There were no significant differences in the postoperative nausea or vomiting rate across the KCNB2 rs349358 polymorphisms (P>0.05). CONCLUSION The CHRM3 rs2165870 polymorphism is associated with the occurrence of postoperative vomiting in female patients who have undergone laparoscopic surgery. The AA genotype or A allele of the CHRM3 rs2165870 polymorphism elevates the risk of postoperative vomiting. TRIAL REGISTRATION www.chictr.org.cn, registration number: ChiCTR2200062425.
Collapse
Affiliation(s)
- Meng Cai
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Gan
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Lei
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Azargoonjahromi A. Current Findings and Potential Mechanisms of KarXT (Xanomeline-Trospium) in Schizophrenia Treatment. Clin Drug Investig 2024; 44:471-493. [PMID: 38904739 DOI: 10.1007/s40261-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Shiraz University of Medical Sciences, Janbazan Blv, 14th Alley, Jahrom, Shiraz, 7417773539, Fars, Iran.
| |
Collapse
|
10
|
Yanuar R, Semba S, Nezu A, Tanimura A. Muscarinic acetylcholine receptor-mediated phosphorylation of extracellular signal-regulated kinase in HSY salivary ductal cells involves distinct signaling pathways. J Oral Biosci 2024; 66:447-455. [PMID: 38336259 DOI: 10.1016/j.job.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Typical agonists of G protein-coupled receptors (GPCRs), including muscarinic acetylcholine receptors (mAChRs), activate both G-protein and β-arrestin signaling systems, and are termed balanced agonists. In contrast, biased agonists selectively activate a single pathway, thereby offering therapeutic potential for the specific activation of that pathway. The mAChR agonists carbachol and pilocarpine are known to induce phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2) via G-protein-dependent and -independent pathways, respectively. We investigated the involvement of β-arrestin and its downstream mechanisms in the ERK1/2 phosphorylation induced by carbachol and pilocarpine in the human salivary ductal cell line, HSY cells. METHODS HSY cells were stimulated with pilocarpine or carbachol, with or without various inhibitors. The cell lysates were analyzed by western blotting using the antibodies p44/p42MAPK and phosphor-p44/p42MAPK. RESULTS Western blot analysis revealed that carbachol elicited greater stimulation of ERK1/2 phosphorylation compared to pilocarpine. ERK1/2 phosphorylation was inhibited by atropine and gefitinib, suggesting that mAChR activation induces transactivation of epidermal growth factor receptors (EGFR). Moreover, inhibition of carbachol-mediated ERK1/2 phosphorylation was achieved by GF-109203X (a PKC inhibitor), a βARK1/GRK2 inhibitor, barbadin (a β-arrestin inhibitor), pitstop 2 (a clathrin inhibitor), and dynole 34-2 (a dynamin inhibitor). In contrast, pilocarpine-mediated ERK1/2 phosphorylation was only inhibited by barbadin (a β-arrestin inhibitor) and PP2 (a Src inhibitor). CONCLUSION Carbachol activates both G-protein and β-arrestin pathways, whereas pilocarpine exclusively activates the β-arrestin pathway. Additionally, downstream of β-arrestin, carbachol activates clathrin-dependent internalization, while pilocarpine activates Src.
Collapse
Affiliation(s)
- Rezon Yanuar
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shingo Semba
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Akihiro Nezu
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
11
|
Evans CNB, Badenhorst A, Van Wijk FJ. The impact of pharmacotherapy on sexual function in female patients being treated for idiopathic overactive bladder: a systematic review. BMC Womens Health 2024; 24:290. [PMID: 38755593 PMCID: PMC11097459 DOI: 10.1186/s12905-024-03103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Overactive bladder (OAB) is a condition defined by urgency with or without incontinence which disproportionately affects female patients and has a negative impact on sexual enjoyment and avoidance behaviour. Pharmacotherapy can be considered one of the main options for treating OAB. This research set out to determine the impact of pharmacotherapy on sexual function in females with OAB. METHODS This research used the robust methodology of a systematic review. The clinical question was formulated using the PICO (population, intervention, control, and outcomes) format to include females being treated with pharmacotherapy (anticholinergics or beta-3 adrenergic agonists) for idiopathic OAB with the use of a validated questionnaire assessing self-reported sexual function at baseline and post-treatment. The review incorporated the MEDLINE, PubMed and EMBASE databases. The AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) appraisal tool was used to guide the review process. Two reviewers worked independently in screening abstracts, deciding on the inclusion of full-texts, data extraction and risk of bias assessment. RESULTS In female patients with OAB, pharmacotherapy does seem to offer at least partial improvement in self-reported sexual function outcomes after 12 weeks of therapy. Still, the value of this finding is limited by an overall poor quality of evidence. Patients with a higher degree of bother at baseline stand to benefit the most from treatment when an improvement within this health-related quality of life domain is sought. CONCLUSION This research should form the basis for a well-conducted randomized controlled study to accurately assess sexual function improvements in females being treated with pharmacotherapy for OAB.
Collapse
Affiliation(s)
- Christopher Neal Bruce Evans
- Surgery Masters in Urology, the University of Edinburgh (Edinburgh Surgery Online, Deanery of Clinical Sciences) and Life Groenkloof Hospital, Suite 209, Life Groenkloof Hospital, 50 George Storrar Drive, Groenkloof, Pretoria, 0181, South Africa.
| | - Anja Badenhorst
- General Practitioner, University of Pretoria, Pretoria, South Africa
| | - Frans Jacob Van Wijk
- Private Uro-Gynaecologist/Urologist, Pelvic Wellness Unit, The Urology Hospital, Pretoria, South Africa
| |
Collapse
|
12
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
13
|
Chancellor MB, Lucioni A, Staskin D. Oxybutynin-associated Cognitive Impairment: Evidence and Implications for Overactive Bladder Treatment. Urology 2024; 186:123-129. [PMID: 38296001 DOI: 10.1016/j.urology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 03/21/2024]
Abstract
Anticholinergic medications have long been a mainstay of overactive bladder (OAB) treatment. Oxybutynin, a first-generation anticholinergic, still accounts for more than half of all OAB medication prescriptions, despite associations with impaired memory and cognition, as well as mounting evidence that it may increase the risk of incident dementia. This review details the current literature regarding oxybutynin and cognition, including evidence from preclinical, clinical, and real-world studies that show that oxybutynin binds nonspecifically to muscarinic receptors in the brain and is associated with adverse cognitive outcomes. We also discuss society recommendations to reduce use of oxybutynin and other anticholinergics to treat OAB.
Collapse
Affiliation(s)
- Michael B Chancellor
- Corewell Health Beaumont University Hospital, Oakland University William Beaumont School of Medicine, Royal Oak, MI.
| | | | | |
Collapse
|
14
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Konesan J, Moore KH, Mansfield KJ, Liu L. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or d-mannose. Pathog Dis 2024; 82:ftae026. [PMID: 39363231 DOI: 10.1093/femspd/ftae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.
Collapse
Affiliation(s)
- Jenane Konesan
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW 2217, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lu Liu
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Sugimoto K, Miyaoka H, Sozu T, Sekikawa N, Wada R, Watanabe Y, Tamura A, Yamazaki T, Ohta S, Suzuki S. Associations of age-adjusted coefficient of variation of R-R intervals with autonomic and peripheral nerve function in non-elderly persons with diabetes. J Diabetes Investig 2024; 15:186-196. [PMID: 37845838 PMCID: PMC10804892 DOI: 10.1111/jdi.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
AIMS/INTRODUCTION Early diagnosis of diabetes-associated cardiac autonomic neuropathy using the coefficient of variation of R-R intervals (CVRR) may improve outcomes for individuals with diabetes. The present study examined the associations of decreased CVRR at rest and during deep breathing (DB) with other autonomic nerve function parameters. MATERIALS AND METHODS The electronic records of 141 inpatients with diabetes (22-65 years) admitted to our hospital between March 2015 and March 2019 were analyzed retrospectively. After assessment by exclusion criteria, 51 inpatients were included. All inpatients were assessed for peripheral and autonomic nerve function, clinical characteristics, and physical abilities. RESULTS Inpatients with decreased CVRR at rest (n = 9 (17.6%)) and during DB (n = 12 (23.5%)) had a longer duration of known diabetes, a higher prevalence of diabetic retinopathy, lower body mass index (BMI), skeletal mass index (SMI), and knee extension strength, and a higher proportion of impaired standing balance. Decreased CVRR at rest was associated with a greater fall in diastolic BP from supine to standing, higher resting HR, longer QTc, longer time of voiding, and sensory symptoms. CONCLUSIONS Decreased CVRR at rest and during deep breathing was associated with lower BMI, SMI, and knee strength and a higher proportion of impaired standing balance among non-elderly inpatients with diabetes. Decreased CVRR at rest appeared more strongly associated with a greater orthostatic BP decline, higher resting heart rate, longer QTc, lower urinary tract dysfunction, and sensory symptoms than a decreased CVRR during deep breathing.
Collapse
Affiliation(s)
| | - Hirozumi Miyaoka
- Department of Information and Computer TechnologyTokyo University of Science Graduate School of EngineeringTokyoJapan
| | - Takashi Sozu
- Department of Information and Computer Technology, Faculty of EngineeringTokyo University of ScienceTokyoJapan
| | | | - Ryota Wada
- Diabetes CenterOhta Nishinouchi HospitalKoriyamaJapan
| | - Yuko Watanabe
- Diabetes CenterOhta Nishinouchi HospitalKoriyamaJapan
| | - Akira Tamura
- Diabetes CenterOhta Nishinouchi HospitalKoriyamaJapan
| | | | - Setsu Ohta
- Diabetes CenterOhta Nishinouchi HospitalKoriyamaJapan
| | - Susumu Suzuki
- Diabetes CenterOhta Nishinouchi HospitalKoriyamaJapan
| |
Collapse
|
17
|
Sabbir MG. Cholinergic Receptor Muscarinic 1 Co-Localized with Mitochondria in Cultured Dorsal Root Ganglion Neurons, and Its Deletion Disrupted Mitochondrial Ultrastructure in Peripheral Neurons: Implications in Alzheimer's Disease. J Alzheimers Dis 2024; 98:247-264. [PMID: 38427478 DOI: 10.3233/jad-230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Loss of Cholinergic Receptor Muscarinic 1 (CHRM1) has been linked to the pathogenesis of Alzheimer's disease (AD). Our recent study found significantly lower CHRM1 protein levels in AD patient cortices, linked to reduced survival. Furthermore, using knockout mice (Chrm1-/-) we demonstrated that deletion of Chrm1 alters cortical mitochondrial structure and function, directly establishing a connection between its loss and mitochondrial dysfunction in the context of AD. While CHRM1's role in the brain has been extensively investigated, its impact on peripheral neurons in AD remains a crucial area of research, especially considering reported declines in peripheral nerve conduction among AD patients. Objective The objective was to characterize Chrm1 localization and mitochondrial deficits in Chrm1-/- dorsal root ganglion (DRG) neurons. Methods Recombinant proteins tagged with Green or Red Fluorescent Protein (GFP/RFP) were transiently expressed to investigate the localization of Chrm1 and mitochondria, as well as mitochondrial movement in the neurites of cultured primary mouse DRG neurons, using confocal time-lapse live cell imaging. Transmission electron microscopy was performed to examine the ultrastructure of mitochondria in both wild-type and Chrm1-/- DRGs. Results Fluorescence imaging revealed colocalization and comigration of N-terminal GFP-tagged Chrm1 and mitochondrial localization signal peptide-tagged RFP-labelled mitochondria in the DRGs neurons. A spectrum of mitochondrial structural abnormalities, including disruption and loss of cristae was observed in 87% neurons in Chrm1-/- DRGs. Conclusions This study suggests that Chrm1 may be localized in the neuronal mitochondria and loss of Chrm1 in peripheral neurons causes sever mitochondrial structural aberrations resembling AD pathology.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Department of Psychology and Neuroscience, Collegeof Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
- Alzo Biosciences Inc., San Diego, CA, USA
| |
Collapse
|
18
|
Millard M, Kilian J, Ozenil M, Mogeritsch M, Schwingenschlögl-Maisetschläger V, Holzer W, Hacker M, Langer T, Pichler V. Design, synthesis and preclinical evaluation of muscarine receptor antagonists via a scaffold-hopping approach. Eur J Med Chem 2023; 262:115891. [PMID: 37897926 DOI: 10.1016/j.ejmech.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Our research group recently identified a rearrangement product of pirenzepine as starting point for a comprehensive rational drug design approach towards orthosteric muscarinic acetylcholine receptor ligands. Chemical reduction and bioscaffold hop lead to the development of sixteen promising compounds featuring either a benzimidazole or carbamate moiety, all exhibiting comparable pharmacophoric characteristics. The synthesized compounds were characterized by NMR, HR-MS, and RP-HPLC techniques. Subsequent evaluation encompassed binding affinity assessment on CHO-hM1-5 cells, mode of action determination, and analysis of physico-chemical parameters. The CNS MPO score indicated favorable drug-like attributes and potential CNS activity for the antagonistic ligands. The most promising compounds displayed Ki-values within a desirable low nanomolar range, and their structural features allow for potential carbon-11 radiolabeling. Our optimization efforts resulted in compounds with a remarkable 138-fold increase in binding affinity compared to the previously mentioned rearrangement product towards human M5, suggesting their prospective utility in positron emission tomography applications.
Collapse
Affiliation(s)
- Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jonas Kilian
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Mariella Mogeritsch
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Verena Schwingenschlögl-Maisetschläger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Saz HG, Yalçın N, Demirkan K, Halil MG. Clinical pharmacist-led assessment and management of anticholinergic burden and fall risk in geriatric patients. BMC Geriatr 2023; 23:863. [PMID: 38102545 PMCID: PMC10724986 DOI: 10.1186/s12877-023-04599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The aim of this study was to examine the risk of fall with the surrogate outcome of the Aachen Falls Prevention Scale and to assess the clinical pharmacist interventions in order to minimize anticholinergic drug burden and associated risk of fall according to a fall risk assessment scale in the older adults. METHODS Patients who admitted to the geriatric outpatient clinic of a university hospital and taking at least one anticholinergic drug were evaluated both retrospectively and prospectively as groups of different patients by the clinical pharmacist. Patients' anticholinergic burden was assessed using the Anticholinergic Cognitive Burden Scale. For fall risk assessment, the Aachen Falls Prevention Scale was also administered to each patient whose anticholinergic burden was determined in the prospective phase of the study. RESULTS A total of 601 patients were included. Risk of falls increased 2.50 times in patients with high anticholinergic burden (OR (95% CI) = 2.503 (1.071-5.852); p = 0.034), and the existing history of falls increased the risk of high anticholinergic burden 2.02 times (OR (95%CI) = 2.026 (1.059-3.876); p = 0.033). In addition, each unit increase in the fall scale score in the prospective phase increased the risk of high anticholinergic burden by 22% (p = 0.028). Anticholinergic burden was significantly reduced as a result of interventions by the clinical pharmacist in the prospective phase (p = 0.010). CONCLUSION Our study revealed that incorporating a clinical pharmacist in the handling of geriatric patients aids in the detection, reduction, and prevention of anticholinergic adverse effects.
Collapse
Affiliation(s)
- Hilal Gökçay Saz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, 06230, Turkey
| | - Nadir Yalçın
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, 06230, Turkey.
| | - Kutay Demirkan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, 06230, Turkey
| | - Meltem Gülhan Halil
- Division of Geriatric Medicine, Department of Internal Medine, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
21
|
Oliveira AL, Medeiros ML, Gomes EDT, Mello GC, Costa SKP, Mónica FZ, Antunes E. TRPA1 channel mediates methylglyoxal-induced mouse bladder dysfunction. Front Physiol 2023; 14:1308077. [PMID: 38143915 PMCID: PMC10739337 DOI: 10.3389/fphys.2023.1308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: The transient receptor potential ankyrin 1 channel (TRPA1) is expressed in urothelial cells and bladder nerve endings. Hyperglycemia in diabetic individuals induces accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO), which modulates TRPA1 activity. Long-term oral intake of MGO causes mouse bladder dysfunction. We hypothesized that TRPA1 takes part in the machinery that leads to MGO-induced bladder dysfunction. Therefore, we evaluated TRPA1 expression in the bladder and the effects of 1 h-intravesical infusion of the selective TRPA1 blocker HC-030031 (1 nmol/min) on MGO-induced cystometric alterations. Methods: Five-week-old female C57BL/6 mice received 0.5% MGO in their drinking water for 12 weeks, whereas control mice received tap water alone. Results: Compared to the control group, the protein levels and immunostaining for the MGO-derived hydroimidazolone isomer MG-H1 was increased in bladders of the MGO group, as observed in urothelium and detrusor smooth muscle. TRPA1 protein expression was significantly higher in bladder tissues of MGO compared to control group with TRPA1 immunostaining both lamina propria and urothelium, but not the detrusor smooth muscle. Void spot assays in conscious mice revealed an overactive bladder phenotype in MGO-treated mice characterized by increased number of voids and reduced volume per void. Filling cystometry in anaesthetized animals revealed an increased voiding frequency, reduced bladder capacity, and reduced voided volume in MGO compared to vehicle group, which were all reversed by HC-030031 infusion. Conclusion: TRPA1 activation is implicated in MGO-induced mouse overactive bladder. TRPA1 blockers may be useful to treat diabetic bladder dysfunction in individuals with high MGO levels.
Collapse
Affiliation(s)
- Akila L. Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Matheus L. Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabíola Z. Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
22
|
Hardy CC, Korstanje R. Aging and urinary control: Alterations in the brain-bladder axis. Aging Cell 2023; 22:e13990. [PMID: 37740454 PMCID: PMC10726905 DOI: 10.1111/acel.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Age-associated alterations in bladder control affect millions of older adults, with a heavy burden added to families both economically and in quality of life. Therapeutic options are limited with poor efficacy in older adults, lending to a growing need to address the gaps in our current understanding of urinary tract aging. This review summarizes the current knowledge of age-associated alterations in the structure and function of the brain-bladder axis and identifies important gaps in the field that have yet to be addressed. Urinary aging is associated with decreased tissue responsiveness, decreased control over the voiding reflex, signaling dysfunction along the brain-bladder axis, and structural changes within the bladder wall. Studies are needed to improve our understanding of how age affects the brain-bladder axis and identify genetic targets that correlate with functional outcomes.
Collapse
|
23
|
Muñoz JP, Calaf GM. Acetylcholine, Another Factor in Breast Cancer. BIOLOGY 2023; 12:1418. [PMID: 37998017 PMCID: PMC10669196 DOI: 10.3390/biology12111418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Acetylcholine (ACh) is a neurotransmitter that regulates multiple functions in the nervous system, and emerging evidence indicates that it could play a role in cancer progression. However, this function is controversial. Previously, we showed that organophosphorus pesticides decreased the levels of the enzyme acetylcholinesterase in vivo, increasing ACh serum levels and the formation of tumors in the mammary glands of rats. Furthermore, we showed that ACh exposure in breast cancer cell lines induced overexpression of estrogen receptor alpha (ERα), a key protein described as the master regulator in breast cancer. Therefore, here, we hypothesize that ACh alters the ERα activity through a ligand-independent mechanism. The results here reveal that the physiological concentration of ACh leads to the release of Ca+2 and the activity of MAPK/ERK and PI3K/Akt pathways. These changes are associated with an induction of p-ERα and its recruitment to the nucleus. However, ACh fails to induce overexpression of estrogen-responsive genes, suggesting a different activation mechanism than that of 17ß-estradiol. Finally, ACh promotes the viability of breast cancer cell lines in an ERα-dependent manner and induces the overexpression of some EMT markers. In summary, our results show that ACh promotes breast cancer cell proliferation and ERα activity, possibly in a ligand-independent manner, suggesting its putative role in breast cancer progression.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
24
|
Balla H, Borsodi K, Őrsy P, Horváth B, Molnár PJ, Lénárt Á, Kosztelnik M, Ruisanchez É, Wess J, Offermanns S, Nyirády P, Benyó Z. Intracellular signaling pathways of muscarinic acetylcholine receptor-mediated detrusor muscle contractions. Am J Physiol Renal Physiol 2023; 325:F618-F628. [PMID: 37675459 DOI: 10.1152/ajprenal.00261.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Acetylcholine plays an essential role in the regulation of detrusor muscle contractions, and antimuscarinics are widely used in the management of overactive bladder syndrome. However, several adverse effects limit their application and patients' compliance. Thus, this study aimed to further analyze the signal transduction of M2 and M3 receptors in the murine urinary bladder to eventually find more specific therapeutic targets. Experiments were performed on adult male wild-type, M2, M3, M2/M3, or Gαq/11 knockout (KO), and pertussis toxin (PTX)-treated mice. Contraction force and RhoA activity were measured in the urinary bladder smooth muscle (UBSM). Our results indicate that carbamoylcholine (CCh)-induced contractions were associated with increased activity of RhoA and were reduced in the presence of the Rho-associated kinase (ROCK) inhibitor Y-27632 in UBSM. CCh-evoked contractile responses and RhoA activation were markedly reduced in detrusor strips lacking either M2 or M3 receptors and abolished in M2/M3 KO mice. Inhibition of Gαi-coupled signaling by PTX treatment shifted the concentration-response curve of CCh to the right and diminished RhoA activation. CCh-induced contractile responses were markedly decreased in Gαq/11 KO mice; however, RhoA activation was unaffected. In conclusion, cholinergic detrusor contraction and RhoA activation are mediated by both M2 and M3 receptors. Furthermore, whereas both Gαi and Gαq/11 proteins mediate UBSM contraction, the activation at the RhoA-ROCK pathway appears to be linked specifically to Gαi. These findings may aid the identification of more specific therapeutic targets for bladder dysfunctions.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are of utmost importance in physiological regulation of micturition and also in the development of voiding disorders. We demonstrate that the RhoA-Rho-associated kinase (ROCK) pathway plays a crucial role in contractions induced by cholinergic stimulation in detrusor muscle. Activation of RhoA is mediated by both M2 and M3 receptors as well as by Gi but not Gq/11 proteins. The Gi-RhoA-ROCK pathway may provide a novel therapeutic target for overactive voiding disorders.
Collapse
Affiliation(s)
- Helga Balla
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Borsodi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Őrsy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Horváth
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Ádám Lénárt
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mónika Kosztelnik
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| |
Collapse
|
25
|
Novella A, Elli C, Ianes A, Pasina L. Anticholinergic Burden and Cognitive Impairment in Nursing Homes: A Comparison of Four Anticholinergic Scales. Drugs Aging 2023; 40:1017-1026. [PMID: 37620654 DOI: 10.1007/s40266-023-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Medications with anticholinergic effects are commonly used in nursing homes, and their cumulative effect is of particular concern for the risk of adverse effects on cognition. OBJECTIVE The relation between cognitive function and anticholinergic burden measured with four scales, the Anticholinergic Cognitive Burden (ACB) Scale, the Anticholinergic Risk Scale, the German Anticholinergic Burden Scale, and the CRIDECO Anticholinergic Load Scale, is assessed according to the hypothesis that a higher anticholinergic burden is associated with reduced cognitive performance. METHODS This retrospective cross-sectional multicenter study was conducted in a sample of Italian long-term-care nursing homes (NH). Sociodemographic details, diagnosis, and drug treatments of each NH resident were collected using medical records four times during 2018 and 2019. Cognitive status was rated with the Mini-Mental State Examination (MMSE). The prevalence of anticholinergic use and its burden were calculated referring to the last time point for each patient. A longitudinal analysis was done on NH residents with at least two MMSE between 2018 and 2019 to assess the relation between the anticholinergic load and decline in MMSE. The relationship between drug-related anticholinergic burden and cognitive performance was analyzed using Poisson regression model theory. Multivariate analyses were adjusted according to the known risk factors of reduced cognitive performance available [age, sex, history of stroke or transient ischemic attack (TIA), and number of non-anticholinergic drugs] and for cholinesterase inhibitors. In view of the high number of subjects with an MMSE score = 0 among residents with dementia, for this group a zero-inflated Poisson regression model was used to give more consistent results. The association of anticholinergic burden with mortality was examined from each patient's last visit using a multivariate logistic model adjusted for age, sex, and Charlson Comorbidity Index (CCI). RESULTS Among 1412 residents recruited, a clear direct relationship was found between higher anticholinergic burden and cognitive impairment only for the Anticholinergic Cognitive Burden Scale. Residents taking an anticholinergic who scored 5 or more had 2.5 points more decline than those not taking them (p < 0.001). Among residents without dementia there was a trend toward direct relationship for the Anticholinergic Cognitive Burden Scale and the Anticholinergic Risk Scale. Residents with higher scores had about 2 points more decline than residents not taking anticholinergic drugs. No relation was found between anticholinergic burden and cognitive decline or mortality. CONCLUSIONS The cumulative effect of medications with modest antimuscarinic activity may influence the cognitive performance of NH residents. The anticholinergic burden measured with the ACB scale should help identify NH residents who may benefit from reducing the anticholinergic burden. A clear direct relationship between anticholinergic burden and cognitive impairment was found only for the ACB Scale.
Collapse
Affiliation(s)
- Alessio Novella
- Laboratory of Clinical Pharmacology and Appropriateness of Drug Prescription, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Chiara Elli
- Laboratory of Clinical Pharmacology and Appropriateness of Drug Prescription, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | | | - Luca Pasina
- Laboratory of Clinical Pharmacology and Appropriateness of Drug Prescription, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy.
| |
Collapse
|
26
|
Anwar A, Gorka V, Chahal HS, Sharma S, Tandon S, Singhal N, Narwade PC, Chauhan N, Bansal N, Kaur S. Comparison of Efficacy and Safety of a Combination of Tamsulosin and Mirabegron versus Tamsulosin Alone in the Management of Overactive Bladder in Males with Lower Urinary Tract Symptoms - TAME-Overactive Bladder: An Open-labeled Randomized Controlled Trial. Int J Appl Basic Med Res 2023; 13:218-223. [PMID: 38229731 PMCID: PMC10789471 DOI: 10.4103/ijabmr.ijabmr_331_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 01/18/2024] Open
Abstract
Background Overactive bladder (OAB) is a common condition in elderly men with coexisting benign prostatic enlargement (BPE), and it significantly impairs their quality of life (QoL). Aim This study aimed to assess the safety and efficacy of adding beta-3 adrenergic receptor agonist (mirabegron 50 mg) to tamsulosin 0.4 mg for symptomatic men with BPE and OAB symptoms (OABS). Materials and Methods It was an open-labeled randomized controlled trial. Ninety men with BPE and International Prostate Symptom Score (IPSS) of more than seven with predominant OABS were enrolled for the study. A detailed history, uroflowmetry, and baseline scores, including IPSS, OABS score (OABSS), and QoL assessment, were done for each patient. After written informed consent, patients were randomized into two groups of 45 each. Group-1 received tamsulosin 0.4 mg and placebo, and Group-2 received a combination of tamsulosin 0.4 mg plus mirabegron 50 mg once daily at bedtime. Follow-up of patients was done at 2nd, 4th, and 8th weeks. Efficacy at 8 weeks was assessed using repeat history for symptoms, uroflowmetry, IPSS, OABSS, and QoL score. Results After 8 weeks of therapy, collected data were compared to baseline parameters in both groups. Significant improvement with respect to OABSS (P = 0.046), IPSS (P = 0.006), and QoL (P = 0.038) was observed with combination therapy versus tamsulosin alone. There were mild adverse effects, which were self-limiting. Conclusions A combination of tamsulosin with mirabegron is effective and safe in improving the OABSS, IPSS, and QoL in men with BPE who have predominant OABS.
Collapse
Affiliation(s)
- Azhar Anwar
- Department of Urology, Galaxy Hospital, Varanasi, Uttar Pradesh, India
| | - Vivek Gorka
- Department of Urology, Fortis Hospital, Amritsar, Punjab, India
| | | | - Sandeep Sharma
- Department of Urology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Sunit Tandon
- Department of Urology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Naman Singhal
- Department of Urology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | | | - Nikhil Chauhan
- Department of Urology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Namita Bansal
- Department of Research and Development, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Simran Kaur
- Department of Nephrology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
27
|
Kontogiannopoulos KN, Kapourani A, Gkougkourelas I, Anagnostaki ME, Tsalikis L, Assimopoulou AN, Barmpalexis P. A Review of the Role of Natural Products as Treatment Approaches for Xerostomia. Pharmaceuticals (Basel) 2023; 16:1136. [PMID: 37631049 PMCID: PMC10458472 DOI: 10.3390/ph16081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Xerostomia, commonly known as dry mouth, is a widespread oral health malfunction characterized by decreased salivary flow. This condition results in discomfort, impaired speech and mastication, dysphagia, heightened susceptibility to oral infections, and ultimately, a diminished oral health-related quality of life. The etiology of xerostomia is multifaceted, with primary causes encompassing the use of xerostomic medications, radiation therapy to the head and neck, and systemic diseases such as Sjögren's syndrome. Consequently, there is a growing interest in devising management strategies to address this oral health issue, which presents significant challenges due to the intricate nature of saliva. Historically, natural products have served medicinal purposes, and in contemporary pharmaceutical research and development, they continue to play a crucial role, including the treatment of xerostomia. In this context, the present review aims to provide an overview of the current state of knowledge regarding natural compounds and extracts for xerostomia treatment, paving the way for developing novel therapeutic strategies for this common oral health issue.
Collapse
Affiliation(s)
- Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.G.); (M.-E.A.); (P.B.)
| | - Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.G.); (M.-E.A.); (P.B.)
| | - Ioannis Gkougkourelas
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.G.); (M.-E.A.); (P.B.)
| | - Maria-Emmanouela Anagnostaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.G.); (M.-E.A.); (P.B.)
| | - Lazaros Tsalikis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.G.); (M.-E.A.); (P.B.)
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
28
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
29
|
Nguyen TTT, Lu W, Zhu WS, Ansel KM, Liang HE, Weiss A. Stimulation of ectopically expressed muscarinic receptors induces IFN-γ but suppresses IL-2 production by inhibiting activation of pAKT pathways in primary T cells. Proc Natl Acad Sci U S A 2023; 120:e2300987120. [PMID: 37307442 PMCID: PMC10288620 DOI: 10.1073/pnas.2300987120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
T cell antigen receptor stimulation induces tyrosine phosphorylation of downstream signaling molecules and the phosphatidylinositol, Ras, MAPK, and PI3 kinase pathways, leading to T cell activation. Previously, we reported that the G-protein-coupled human muscarinic receptor could bypass tyrosine kinases to activate the phosphatidylinositol pathway and induce interleukin-2 production in Jurkat leukemic T cells. Here, we demonstrate that stimulating G-protein-coupled muscarinic receptors (M1 and synthetic hM3Dq) can activate primary mouse T cells if PLCβ1 is coexpressed. Resting peripheral hM3Dq+PLCβ1 (hM3Dq/β1) T cells did not respond to clozapine, an hM3Dq agonist, unless they were preactivated by TCR and CD28 stimulation which increased hM3Dq and PLCβ1 expression. This permitted large calcium and phosphorylated ERK responses to clozapine. Clozapine treatment induced high IFN-γ, CD69, and CD25 expression, but surprisingly did not induce substantial IL-2 in hM3Dq/β1 T cells. Importantly, costimulation of both muscarinic receptors plus the TCR even led to reduced IL-2 expression, suggesting a selective inhibitory effect of muscarinic receptor costimulation. Stimulation of muscarinic receptors induced strong nuclear translocation of NFAT and NFκB and activated AP-1. However, stimulation of hM3Dq led to reduced IL-2 mRNA stability which correlated with an effect on the IL-2 3'UTR activity. Interestingly, stimulation of hM3Dq resulted in reduced pAKT and its downstream pathway. This may explain the inhibitory impact on IL-2 production in hM3Dq/β1T cells. Moreover, an inhibitor of PI3K reduced IL-2 production in TCR-stimulated hM3Dq/β1 CD4 T cells, suggesting that activating the pAKT pathway is critical for IL-2 production in T cells.
Collapse
Affiliation(s)
- Trang T. T. Nguyen
- Rosalind Russell-Ephraim Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Wen Lu
- Rosalind Russell-Ephraim Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Wandi S. Zhu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA94143
| | - K. Mark Ansel
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA94143
| | - Hong-Erh Liang
- Rosalind Russell-Ephraim Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
- Department of Medicine, University of California San Francisco, San Francisco, 94143
| | - Arthur Weiss
- Rosalind Russell-Ephraim Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
| |
Collapse
|
30
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
31
|
El-Atawneh S, Goldblum A. Activity Models of Key GPCR Families in the Central Nervous System: A Tool for Many Purposes. J Chem Inf Model 2023. [PMID: 37257045 DOI: 10.1021/acs.jcim.2c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
G protein-coupled receptors (GPCRs) are targets of many drugs, of which ∼25% are indicated for central nervous system (CNS) disorders. Drug promiscuity affects their efficacy and safety profiles. Predicting the polypharmacology profile of compounds against GPCRs can thus provide a basis for producing more precise therapeutics by considering the targets and the anti-targets in that family of closely related proteins. We provide a tool for predicting the polypharmacology of compounds within prominent GPCR families in the CNS: serotonin, dopamine, histamine, muscarinic, opioid, and cannabinoid receptors. Our in-house algorithm, "iterative stochastic elimination" (ISE), produces high-quality ligand-based models for agonism and antagonism at 31 GPCRs. The ISE models correctly predict 68% of CNS drug-GPCR interactions, while the "similarity ensemble approach" predicts only 33%. The activity models correctly predict 56% of reported activities of DrugBank molecules for these CNS receptors. We conclude that the combination of interactions and activity profiles generated by screening through our models form the basis for subsequent designing and discovering novel therapeutics, either single, multitargeting, or repurposed.
Collapse
Affiliation(s)
- Shayma El-Atawneh
- Molecular Modelling and Drug Design Lab, Institute for Drug Research and Fraunhofer Project Center for Drug Discovery and Delivery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Amiram Goldblum
- Molecular Modelling and Drug Design Lab, Institute for Drug Research and Fraunhofer Project Center for Drug Discovery and Delivery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
32
|
Choi NR, Jeong H, Choi WG, Park JW, Ko SJ, Kim BJ. A Study on the Effects of Muscarinic and Serotonergic Regulation by Bojanggunbi-tang on the Pacemaker Potential of the Interstitial Cells of Cajal in the Murine Small Intestine. Int J Med Sci 2023; 20:1000-1008. [PMID: 37484801 PMCID: PMC10357445 DOI: 10.7150/ijms.83986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
In traditional Korean medicine, the 16-herb concoction Bojanggunbi-tang (BGT) is used to treat various gastrointestinal (GI) diseases. In this study, we investigated the regulatory mechanism underlying the influence of BGT on the interstitial cells of Cajal (ICCs), pacemaker cells in the GI tract. Within 12 h of culturing ICCs in the small intestines of mice, the pacemaker potential of ICCs was recorded through an electrophysiological method. An increase in the BGT concentration induced depolarization and decreased firing frequency. This reaction was suppressed by cholinergic receptor muscarinic 3 (CHRM3) antagonists, as well as 5-hydroxytryptamine receptor (5HTR) 3 and 4 antagonists. Nonselective cation channel inhibitors, such as thapsigargin and flufenamic acid, along with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors, also suppressed the BGT reaction. Guanylate cyclase and protein kinase G (PKG) antagonists inhibited BGT, but adenylate cyclase and protein kinase A antagonists had no effect. In conclusion, we demonstrated that BGT acts through CHRM3, 5HTR3, and 5HTR4 to regulate intracellular Ca2+ concentrations and the PKC, MAPK, guanylate cycle, and PKG signaling pathways.
Collapse
Affiliation(s)
- Na Ri Choi
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Haejeong Jeong
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
33
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
34
|
Igarashi-Hisayoshi Y, Ihara E, Bai X, Higashi C, Ikeda H, Tanaka Y, Hirano M, Ogino H, Chinen T, Taguchi Y, Ogawa Y. Determination of Region-Specific Roles of the M 3 Muscarinic Acetylcholine Receptor in Gastrointestinal Motility. Dig Dis Sci 2023; 68:439-450. [PMID: 35947306 DOI: 10.1007/s10620-022-07637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 μM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.
Collapse
Affiliation(s)
- Yoko Igarashi-Hisayoshi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan.
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chika Higashi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan
| | - Hiroko Ikeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasushi Taguchi
- Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, 412-8524, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
35
|
Gong S, Gong F, Kabarriti A. Top 50 Most Cited Articles About OAB: A Bibliometric Analysis. Urology 2023; 172:69-78. [PMID: 36435347 DOI: 10.1016/j.urology.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify key articles about overactive bladder (OAB) using citation number and bibliometric analysis. METHODS We searched for articles in the Web of Science Core Collection between 1900 and 2022 using terms specific to OAB. We identified relevant OAB articles and selected the top 50 most cited. A bibliometric analysis was performed to collect and analyze data about authorship, title, publication year, total citations, journal, journal impact factor, country, institution, study type, citation index, conflict of interest (COI), and conclusions. RESULTS A total of 12,200 records were identified. The top 50 most cited articles were published between 1997 and 2015 in nine countries, across over 30 different institutions, and in 19 journals. The country, institution, and journal which produced the greatest number of articles were the USA, Southmead General Hospital in England, and BJU International, respectively. The mean number of citations per article was 365.66. Observational studies and clinical trials were the most common. Most articles were published in 2006 and were sponsored. The most cited article also had the most citations per year. This study is limited by using a single database and a single parameter as a proxy for paper importance. CONCLUSION Bibliometric analyses are an important resource for clinicians to understand the body of knowledge of OAB by identifying landmark papers. This objective approach to literature review can facilitate future research and scholarly efforts.
Collapse
Affiliation(s)
- Susan Gong
- Department of Urology, State University of New York Downstate Health Science University, Brooklyn, NY.
| | - Fred Gong
- Department of Urology, State University of New York Downstate Health Science University, Brooklyn, NY
| | - Abdo Kabarriti
- Department of Urology, State University of New York Downstate Health Science University, Brooklyn, NY
| |
Collapse
|
36
|
Nicholls C, Chyou TY, Nishtala PS. Analysis of the nervous system and gastrointestinal adverse events associated with solifenacin in older adults using the US FDA adverse event reporting system. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2023; 34:63-73. [PMID: 35491805 DOI: 10.3233/jrs-210054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Antimuscarinics are the backbone of the pharmacological management of overactive bladder. Still, concerns have been raised over the nervous system (NS) adverse drug events (AEs) due to their dissimilarities to muscarinic receptor-subtype affinities. OBJECTIVE This study aimed to identify the nervous system and gastrointestinal adverse drug events (ADEs) associated with solifenacin use in older adults (≥65 years). METHODS A case/non-case analysis was performed on the reports submitted to the FDA Adverse Event Reporting System (FAERS) between 01/01/2004 and 30/06/2020. Cases were reports for solifenacin with ≥1 ADEs as preferred terms included in the Medical Dictionary of Regulatory Activities (MedDRA) system organ classes 'nervous system' or 'gastrointestinal' disorders. Non-cases were all other remaining reports for solifenacin. The case/non-cases was compared between solifenacin and other bladder antimuscarinics. Frequentist approaches, including the proportional reporting ratio (PRR) and reporting odds ratio (ROR), were used to measure disproportionality. The empirical Bayesian Geometric Mean (EBGM) score and information component (IC) value were calculated using a Bayesian approach. A signal was defined as the lower limit of 95% confidence intervals of ROR ≥ 2, PRR ≥ 2, IC > 0, EBGM > 1, for ADEs with ≥4 reports. RESULTS 107 MedDRA preferred terms (PTs) comprising 970 ADE reports were retrieved for nervous system disorders associated with solifenacin. For gastrointestinal disorders, 129 MedDRA PTs comprising 1817 ADE reports were retrieved. Statistically significant results were found for 'altered state of consciousness': ROR = 9.71 (2.13-44.35), PRR = 9.69 (2.12-44.2) and IC = 1.29 (0.93-1.66). CONCLUSIONS The disproportionality reporting of 'altered state of consciousness', a previously unidentified ADE, was unexpected. Further monitoring of this ADE is needed to ensure patient safety, as this could be linked to poor balance and falls in older adults.
Collapse
Affiliation(s)
- Connie Nicholls
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Te-Yuan Chyou
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Prasad S Nishtala
- Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
37
|
Kidambi N, Elsayed OH, El-Mallakh RS. Xanomeline-Trospium and Muscarinic Involvement in Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1145-1151. [PMID: 37193547 PMCID: PMC10183173 DOI: 10.2147/ndt.s406371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/01/2023] [Indexed: 05/18/2023] Open
Abstract
Schizophrenia is a severe mental illness that has its onset in late adolescence or early adulthood and is associated with significant dysfunction across multiple domains. The pathogenesis of schizophrenia remains unknown, but physiologic understanding of the illness has been driven by the dopamine hypothesis. However, acetylcholine (ACh) clearly plays a role with mixed results regarding effect on psychosis. Selective muscarinic M1 and M4 agonists, such as xanomeline, originally developed to aid in cognitive loss with Alzheimer's, showed promise in proof-of-concept study in 20 patients with schizophrenia. Unfortunately, tolerability problems made muscarinic agonists impractical in either condition. However, coadministration of trospium, a lipophobic, non-selective muscarinic antagonist previously used for the treatment of overactive bladder, with xanomeline resulted in a significant reduction of cholinergic adverse effects. A recent randomized, placebo-controlled study of the antipsychotic effects of this combination in 182 patients with acute psychosis revealed improved tolerability with 80% of subjects staying to the end of the 5 weeks study. At the end of the trial, the treatment group saw a -17.4 change in the positive and negative symptom scale (PANSS) score from baseline compared to a -5.9 change in the placebo arm (P < 0.001). Furthermore, the negative symptom subscore, was also superior in the active arm (P < 0.001). These early studies are exciting because they suggest that the cholinergic system may be recruited to treat a severe and disabling disorder with suboptimal treatment options. Xanomeline-trospium combination is currently in phase III studies.
Collapse
Affiliation(s)
- Neil Kidambi
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Omar H Elsayed
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Correspondence: Rif S El-Mallakh, Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA, Tel +1 502 588 4450, Fax +1 502 588 9539, Email
| |
Collapse
|
38
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
39
|
Lisibach A, Gallucci G, Benelli V, Kälin R, Schulthess S, Beeler PE, Csajka C, Lutters M. Evaluation of the association of anticholinergic burden and delirium in older hospitalised patients - A cohort study comparing 19 anticholinergic burden scales. Br J Clin Pharmacol 2022; 88:4915-4927. [PMID: 35675080 PMCID: PMC9796852 DOI: 10.1111/bcp.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS A recent review identified 19 anticholinergic burden scales (ABSs) but no study has yet compared the impact of all 19 ABSs on delirium. We evaluated whether a high anticholinergic burden as classified by each ABS is associated with incident delirium. METHOD We performed a retrospective cohort study in a Swiss tertiary teaching hospital using data from 2015-2018. Included were patients aged ≥65, hospitalised ≥48 hours with no stay >24 hours in intensive care. Delirium was defined twofold: (i) ICD-10 or CAM and (ii) ICD-10 or CAM or DOSS. Patients' cumulative anticholinergic burden score, calculated within 24 hours after admission, was classified using a binary (<3: low, ≥3: high burden) and a categorical approach (0: no, 0.5-3: low, ≥3: high burden). Association was analysed using multivariable logistic regression. RESULTS Over 25 000 patients (mean age 77.9 ± 7.6 years) were included. Of these, (i) 864 (3.3%) and (ii) 2770 (11.0%) developed delirium. Depending on the evaluated ABS, 4-63% of the patients were exposed to at least one anticholinergic drug. Out of 19 ABSs, (i) 14 and (ii) 16 showed a significant association with the outcomes. A patient with a high anticholinergic burden score had odds ratios (ORs) of 1.21 (95% confidence interval [CI]: 1.03-1.42) to 2.63 (95% CI: 2.28-3.03) for incident delirium compared to those with low or no burden. CONCLUSION A high anticholinergic burden within 24 hours after admission was significantly associated with incident delirium. Although prospective studies need to confirm these results, discontinuing or substituting drugs with a score of ≥3 at admission might be a targeted intervention to reduce incident delirium.
Collapse
Affiliation(s)
- Angela Lisibach
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland,Center for Research and Innovation in Clinical Pharmaceutical SciencesUniversity Hospital and University of LausanneLausanneSwitzerland,School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland,Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaUniversity of LausanneSwitzerland
| | - Giulia Gallucci
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland
| | - Valérie Benelli
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland
| | - Ramona Kälin
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland
| | - Sven Schulthess
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland
| | - Patrick E. Beeler
- Division of Occupational and Environmental Medicine, Epidemiology, Biostatistics and Prevention InstituteUniversity of Zurich & University Hospital ZurichZurichSwitzerland
| | - Chantal Csajka
- Center for Research and Innovation in Clinical Pharmaceutical SciencesUniversity Hospital and University of LausanneLausanneSwitzerland,School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland,Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaUniversity of LausanneSwitzerland
| | - Monika Lutters
- Clinical Pharmacy, Department Medical ServicesCantonal Hospital of BadenBadenSwitzerland,Swiss Federal Institute of TechnologyZurichSwitzerland
| |
Collapse
|
40
|
Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 2022; 23:13075. [PMID: 36361865 PMCID: PMC9656441 DOI: 10.3390/ijms232113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2023] Open
Abstract
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| |
Collapse
|
41
|
Effects of tiotropium on the risk of coronary heart disease in patients with COPD: a nationwide cohort study. Sci Rep 2022; 12:16674. [PMID: 36198721 PMCID: PMC9535029 DOI: 10.1038/s41598-022-21038-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Inhaled long-acting muscarinic antagonist (LAMA) is recommended for the treatment of chronic obstructive pulmonary disease (COPD). However, there is still concern that LAMA may cause cardiovascular adverse events in COPD patients. Therefore, this study aimed to determine whether the administration of tiotropium, the first commercially available LAMA, could increase the risk of coronary heart disease (CHD) in COPD patients through a nationwide cohort study. We used the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC) database between 2002 and 2014 for the analysis. We applied a washout period of COPD diagnosis during 2002–2003 and excluded the patients who used an inhaler before the diagnosis of COPD. We also excluded patients who were diagnosed with CHD before inhaler use. Among a total of 5787 COPD patients, 1074 patients were diagnosed with CHD. In the Cox regression models with time-dependent tiotropium usage, we found that tiotropium significantly increased the risk of CHD in a subgroup of age \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge \hspace{0.17em}$$\end{document}≥55 years compared to non-users of tiotropium (adjusted hazard ratio [aHR], 1.24; 95% confidence interval [CI], 1.003–1.54). When analyzed by dividing into tertiles (high/middle/low) according to the cumulative tiotropium exposure, the high tertile exposure group of tiotropium was associated with a higher risk of CHD compared with the low tertile exposure group of tiotropium. Additionally, the risk of CHD was higher in the high tertile exposure group of tiotropium in the age 55 and older group and in the never smoker group. When prescribing tiotropium for COPD patients, particularly those over 55 years of age and never-smokers, it is desirable to evaluate the risk of CHD in advance and closely follow-up for CHD occurrence.
Collapse
|
42
|
Sabbir MG, Speth RC, Albensi BC. Loss of Cholinergic Receptor Muscarinic 1 (CHRM1) Protein in the Hippocampus and Temporal Cortex of a Subset of Individuals with Alzheimer’s Disease, Parkinson’s Disease, or Frontotemporal Dementia: Implications for Patient Survival. J Alzheimers Dis 2022; 90:727-747. [DOI: 10.3233/jad-220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Dysfunction of cholinergic neurotransmission is a hallmark of Alzheimer’s disease (AD); forming the basis for using acetylcholine (ACh) esterase (AChE) inhibitors to mitigate symptoms of ACh deficiency in AD. The Cholinergic Receptor Muscarinic 1 (CHRM1) is highly expressed in brain regions impaired by AD. Previous analyses of postmortem AD brains revealed unaltered CHRM1 mRNA expression compared to normal brains. However, the CHRM1 protein level in AD and other forms of dementia has not been extensively studied. Reduced expression of CHRM1 in AD patients may explain the limited clinical efficacy of AChE inhibitors. Objective: To quantify CHRM1 protein in the postmortem hippocampus and temporal cortex of AD, Parkinson’s disease (PD), and frontotemporal dementia (FTD) patients. Methods: Western blotting was performed on postmortem hippocampus (N = 19/73/7/9: unaffected/AD/FTD/PD) and temporal cortex (N = 9/74/27: unaffected/AD/PD) using a validated anti-CHRM1 antibody. Results: Quantification based on immunoblotting using a validated anti-CHRM1 antibody revealed a significant loss of CHRM1 protein level (<50%) in the hippocampi (78% AD, 66% PD, and 85% FTD) and temporal cortices (56% AD and 42% PD) of dementia patients. Loss of CHRM1 in the temporal cortex was significantly associated with early death (<65–75 years) for both AD and PD patients. Conclusion: Severe reduction of CHRM1 in a subset of AD and PD patients can explain the reported low efficacy of AChE inhibitors as a mitigating treatment for dementia patients. Based on this study, it can be suggested that future research should prioritize therapeutic restoration of CHRM1 protein levels in cholinergic neurons.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Alzo Biosciences Inc., San Diego, CA, USA
- St. Boniface Hospital Albrechtsen Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
- Nova Southeastern University, College of Pharmacy, Davie, FL, USA
| | - Robert C. Speth
- Nova Southeastern University, College of Pharmacy, Davie, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Benedict C. Albensi
- Nova Southeastern University, College of Pharmacy, Davie, FL, USA
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, Manitoba, Canada
- University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
43
|
Shim KH, Kang MJ, Sharma N, An SSA. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:33. [PMID: 36109439 PMCID: PMC9478010 DOI: 10.1007/s13659-022-00357-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Tropane alkaloids (TAs) are among the most valued chemical compounds known since pre-historic times. Poisonous plants from Solanaceae family (Hyoscyamus niger, Datura, Atropa belladonna, Scopolia lurida, Mandragora officinarum, Duboisia) and Erythroxylaceae (Erythroxylum coca) are rich sources of tropane alkaloids. These compounds possess the anticholinergic properties as they could block the neurotransmitter acetylcholine action in the central and peripheral nervous system by binding at either muscarinic and/or nicotinic receptors. Hence, they are of great clinical importance and are used as antiemetics, anesthetics, antispasmodics, bronchodilator and mydriatics. They also serve as the lead compounds to generate more effective drugs. Due to the important pharmacological action they are listed in the WHO list of essential medicines and are available in market with FDA approval. However, being anticholinergic in action, TA medication are under the suspicion of causing dementia and cognitive decline like other medications with anticholinergic action, interestingly which is incorrect. There are published reviews on chemistry, biosynthesis, pharmacology, safety concerns, biotechnological aspects of TAs but the detailed information on anticholinergic mechanism of action, clinical pharmacology, FDA approval and anticholinergic burden is lacking. Hence the present review tries to fill this lacuna by critically summarizing and discussing the above mentioned aspects.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, South Korea
| | - Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea.
| | - Seong Soo A An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea.
| |
Collapse
|
44
|
Catalfamo LM, Marrone G, Basilicata M, Vivarini I, Paolino V, Della-Morte D, De Ponte FS, Di Daniele F, Quattrone D, De Rinaldis D, Bollero P, Di Daniele N, Noce A. The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11187. [PMID: 36141454 PMCID: PMC9517535 DOI: 10.3390/ijerph191811187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.
Collapse
Affiliation(s)
- Luciano Maria Catalfamo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Ilaria Vivarini
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Francesco Saverio De Ponte
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Francesca Di Daniele
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domenico Quattrone
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Danilo De Rinaldis
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
45
|
Zhang Y, Zhang J, Hong M, Huang J, Xu S, Wang R, Zhou N, Huang P, Tan B, Cao H. Suo Quan Wan ameliorates bladder overactivity and regulates neurotransmission via regulating Myosin Va protein expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154265. [PMID: 35763954 DOI: 10.1016/j.phymed.2022.154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ancient prescriptions of Suo Quan Wan (SQW) have therapeutic effects on diabetic bladder dysfunction. However, the underlying mechanism remains unclear. Here, we hypothesized that SQW ameliorates bladder overactivity and regulates neurotransmission via regulating Myosin Va protein expression. METHODS After diabetic rats were induced by streptozotocin (65 mg/kg), the model of diabetic bladder dysfunction was established by detecting fasting blood glucose, urodynamic test, in vitro muscle strip experiments, and histological examination. One week after induction, SQW was given to observe the therapeutic effect. The expression levels of Myosin Va in control, Model, SQW L and SQW H groups were detected by RT-qPCR, RNAscope and immunofluorescence assay. The expression levels of ChAT, SP, nNOS and VIP proteins were observed by immunofluorescence assay. After knockdown and overexpression of Myosin Va, the expression changes of ChAT, SP, nNOS and VIP and the regulatory role of SQW were observed. RESULTS STZ-induced DM rats had significantly higher serum glucose levels and lower body weight. Compared with the diabetic rats, SQW treatment significantly improved urination function with decreased residual volume (RV), bladder compliance (BC), non-voiding contractions (NVCs), and increased voided efficiency (VE). In addition, contractile responses of muscle strips to electrical-field stimulation (EFS), carbachol (CCh), KCl were significantly lower in the SQW H and SQW L groups than those in the model group. RT-qPCR found that the expression of Myosin Va in the bladder tissue or bladder neurons in model group was significantly increased compared with the control group, and SQW treatment significantly decreased the levels of Myosin Va. In DM rats, ChAT and SP expression were significantly increased, while nNOS and VIP expression were significantly decreased, and SQW improved this phenomenon. Interestingly, SQW ameliorated the abnormal expression of ChAT, SP, nNOS and VIP caused by myosin Va knockdown, and Myosin Va overexpression results are consistent with these. CONCLUSIONS SQW ameliorates overactive bladder and regulate neurotransmission via regulating Myosin Va mRNA and protein expression.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ming Hong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Na Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Aronowitz AL, Ali SR, Glaun MDE, Amit M. Acetylcholine in Carcinogenesis and Targeting Cholinergic Receptors in Oncology. Adv Biol (Weinh) 2022; 6:e2200053. [PMID: 35858206 DOI: 10.1002/adbi.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tumor cells modulate and are modulated by their microenvironments, which include the nervous system. Accumulating evidence links the overexpression and activity of nicotinic and muscarinic cholinergic receptor subtypes to tumorigenesis in breast, ovarian, prostate, gastric, pancreatic, and head and neck cancers. Nicotinic and muscarinic receptors have downstream factors are associated with angiogenesis, cell proliferation and migration, antiapoptotic signaling, and survival. Clinical trials analyzing the efficacy of various therapies targeting cholinergic signaling or downstream pathways of acetylcholine have shed promising light on novel cancer therapeutics. Although the evidence for cholinergic signaling involvement in tumor development is substantial, a more detailed understanding of the acetylcholine-induced mechanisms of tumorigenesis remains to be unlocked. Such an understanding would enable the development of clinical applications ranging from the identification of novel biomarkers to the utilization of existing drugs to modulate cholinergic signaling to the development of novel cancer therapies, as discussed in this review.
Collapse
Affiliation(s)
- Alexandra L Aronowitz
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,McGovern Medical School at UTHealth, Houston, TX, 77555, USA
| | - Shahrukh R Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Medical Branch, Galveston, TX, 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
47
|
Chandramouleeshwaran S, Ghazala Z, Nobrega JN, Raymond R, Gambino S, Pollock BG, Rajji TK. Cell-based serum anticholinergic activity assay and working memory in cognitively healthy older adults before and after scopolamine: An exploratory study. J Psychopharmacol 2022; 36:1070-1076. [PMID: 36112867 DOI: 10.1177/02698811221122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A new cell-based serum anticholinergic activity (cSAA) assay that measures anticholinergic activity specifically at muscarinic M1 receptors and eliminates many of the drawbacks of the existing assay was developed by our team. AIMS We aimed to study the relationship between changes in working memory and executive function with changes in cSAA using the new assay in cognitively healthy older adults. METHODS Cognitively healthy participants aged 50 years and above, received a single dose of 0.4 mg of intravenous scopolamine. Cognition and cSAA levels were measured before and 30 min after receiving scopolamine. Cognition was measured using the Cambridge Neuropsychological Test Automated Battery. RESULTS Ten participants were recruited, and nine (mean age = 69.8, SD = 9.5, range 59-86 years) completed the study. Following scopolamine, participants experienced an increase in cSAA (cSAA pre = 0.90 ± 0.97 vs cSAA post = 12.0 ± 3.70 pmol/L; t-test (df = (8) = -9.5, p < 0.001). In addition, there was an association between change in cSAA and changes in working memory (Spearman's ρ = 0.68, p = 0.042) and executive function (Spearman's ρ = 0.72, p = 0.027). CONCLUSIONS In our sample of cognitively healthy older adults, the new cSAA assay was able to quantify the scopolamine induced increase in anticholinergic load which correlated significantly with the observed decline in working memory and executive function.
Collapse
Affiliation(s)
- Susmita Chandramouleeshwaran
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,University of Ottawa, Ottawa, ON, Canada
| | - Zaid Ghazala
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Roger Raymond
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sara Gambino
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bruce G Pollock
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int J Mol Sci 2022; 23:ijms23158206. [PMID: 35897782 PMCID: PMC9332211 DOI: 10.3390/ijms23158206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.
Collapse
|
49
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
50
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|