1
|
Aleotti A, Goulty M, Lewis C, Giorgini F, Feuda R. The origin, evolution, and molecular diversity of the chemokine system. Life Sci Alliance 2024; 7:e202302471. [PMID: 38228369 DOI: 10.26508/lsa.202302471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Chemokine signalling performs key functions in cell migration via chemoattraction, such as attracting leukocytes to the site of infection during host defence. The system consists of a ligand, the chemokine, usually secreted outside the cell, and a chemokine receptor on the surface of a target cell that recognises the ligand. Several noncanonical components interact with the system. These include a variety of molecules that usually share some degree of sequence similarity with canonical components and, in some cases, are known to bind to canonical components and/or to modulate cell migration. Whereas canonical components have been described in vertebrate lineages, the distribution of the noncanonical components is less clear. Uncertainty over the relationships between canonical and noncanonical components hampers our understanding of the evolution of the system. We used phylogenetic methods, including gene-tree to species-tree reconciliation, to untangle the relationships between canonical and noncanonical components, identify gene duplication events, and clarify the origin of the system. We found that unrelated ligand groups independently evolved chemokine-like functions. We found noncanonical ligands outside vertebrates, such as TAFA "chemokines" found in urochordates. In contrast, all receptor groups are vertebrate-specific and all-except ACKR1-originated from a common ancestor in early vertebrates. Both ligand and receptor copy numbers expanded through gene duplication events at the base of jawed vertebrates, with subsequent waves of innovation occurring in bony fish and mammals.
Collapse
Affiliation(s)
- Alessandra Aleotti
- https://ror.org/04h699437 Neurogenetics Group, University of Leicester, Leicester, UK
- https://ror.org/04h699437 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew Goulty
- https://ror.org/04h699437 Neurogenetics Group, University of Leicester, Leicester, UK
- https://ror.org/04h699437 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Clifton Lewis
- https://ror.org/04h699437 Neurogenetics Group, University of Leicester, Leicester, UK
- https://ror.org/04h699437 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Flaviano Giorgini
- https://ror.org/04h699437 Neurogenetics Group, University of Leicester, Leicester, UK
- https://ror.org/04h699437 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Roberto Feuda
- https://ror.org/04h699437 Neurogenetics Group, University of Leicester, Leicester, UK
- https://ror.org/04h699437 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Mavri M, Kubale V, Depledge DP, Zuo J, Huang CA, Breuer J, Vrecl M, Jarvis MA, Jovičić EJ, Petan T, Ehlers B, Rosenkilde MM, Spiess K. Epstein-Barr Virus-Encoded BILF1 Orthologues From Porcine Lymphotropic Herpesviruses Display Common Molecular Functionality. Front Endocrinol (Lausanne) 2022; 13:862940. [PMID: 35721730 PMCID: PMC9204316 DOI: 10.3389/fendo.2022.862940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Infection of immunosuppressed transplant patients with the human γ-herpesvirus Epstein-Barr virus (EBV) is associated with post-transplant lymphoproliferative disease (PTLD), an often fatal complication. Immunosuppressed miniature pigs infected with γ-herpesvirus porcine lymphotropic herpesvirus 1 (PLHV1) develop a similar disease, identifying pigs as a potential preclinical model for PTLD in humans. BILF1 is a G protein-coupled receptor (GPCR) encoded by EBV with constitutive activity linked to tumorigenesis and immunoevasive function downregulating MHC-I. In the present study, we compared BILF1-orthologues encoded by the three known PLHVs (PLHV1-3) with EBV-BILF1 to determine pharmacological suitability of BILF1 orthologues as model system to study EBV-BILF1 druggability. Cell surface localization, constitutive internalization, and MHC-I downregulation as well as membrane proximal constitutive Gαi signaling patterns were conserved across all BILFs. Only subtle differences between the individual BILFs were observed in downstream transcription factor activation. Using Illumina sequencing, PLHV1 was observed in lymphatic tissue from PTLD-diseased, but not non-diseased pigs. Importantly, these tissues showed enhanced expression of PLHV1-BILF1 supporting its involvement in PTLD infection.
Collapse
Affiliation(s)
- Maša Mavri
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel P. Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christene A. Huang
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Division of Transplant Surgery, Anschutz Medical Campus, University of Colorado, Denver, CO, United States
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michael A. Jarvis
- The Vaccine Group Ltd, Plymouth; and the University of Plymouth, Plymouth, United Kingdom
| | - Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Bernhard Ehlers
- Division 12, Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Katja Spiess, ; ; Mette M. Rosenkilde,
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Katja Spiess, ; ; Mette M. Rosenkilde,
| |
Collapse
|
4
|
Knerr JM, Kledal TN, Rosenkilde MM. Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers (Basel) 2021; 13:4079. [PMID: 34439235 PMCID: PMC8392491 DOI: 10.3390/cancers13164079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The γ-herpesvirus Epstein-Barr Virus (EBV) establishes lifelong infections in approximately 90% of adults worldwide. Up to 1,000,000 people yearly are estimated to suffer from health conditions attributed to the infection with this virus, such as nasopharyngeal and gastric carcinomas as well as several forms of B, T and NK cell lymphoma. To date, no EBV-specific therapeutic option has reached the market, greatly reducing the survival prognoses of affected patients. Similar to other herpesviruses, EBV encodes for a G protein-coupled receptor (GPCR), BILF1, affecting a multitude of cellular signaling pathways. BILF1 has been identified to promote immune evasion and tumorigenesis, effectively ensuring a life-long persistence of EBV in, and driving detrimental health conditions to its host. This review summarizes the epidemiology of EBV-associated malignancies, their current standard-of-care, EBV-specific therapeutics in development, GPCRs and their druggability, and most importantly consolidates the findings of over 15 years of research on BILF1 in the context of EBV-specific drug development. Taken together, BILF1 constitutes a promising target for the development of novel EBV-specific therapeutics.
Collapse
Affiliation(s)
- Julius Maximilian Knerr
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| | | | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| |
Collapse
|
5
|
Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules 2020; 25:E5710. [PMID: 33287269 PMCID: PMC7730005 DOI: 10.3390/molecules25235710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.
Collapse
Affiliation(s)
- Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, Sutton, Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| |
Collapse
|
6
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
7
|
Hendrik Schmidt J, Perslev M, Bukowski L, Stoklund M, Herborg F, Herlo R, Lindegaard Madsen K. Constitutive internalization across therapeutically targeted GPCRs correlates with constitutive activity. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:116-121. [DOI: 10.1111/bcpt.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Hendrik Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Mathias Perslev
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Lina Bukowski
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Mikkel Stoklund
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Rasmus Herlo
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience, Lundbeck Foundation Center for Biomembranes in Nanomedicine, The Panum Institute – Mærsk Tower University of Copenhagen Copenhagen Denmark
| |
Collapse
|
8
|
Ligand-selective small molecule modulators of the constitutively active vGPCR US28. Eur J Med Chem 2018; 155:244-254. [PMID: 29886326 DOI: 10.1016/j.ejmech.2018.05.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
US28 is a broad-spectrum constitutively active G protein-coupled receptor encoded by the human cytomegalovirus (HCMV). It binds and scavenges multiple CC-chemokines as well as CX3CL1 (fractalkine) by constitutive receptor endocytosis to escape immune surveillance. We herein report the design and characterization of a novel library of US28-acting commercially available ligands based on the molecular descriptors of two previously reported US28-acting structures. Among these, we identify compounds capable of selectively recognizing CCL2-and CCL4-, but not CX3CL1-induced receptor conformations. Moreover, we find a direct correlation between the binding properties of small molecule ligands to CCL-induced conformations at the wild-type receptor and functional activity at the C-terminal truncated US28Δ300. As US28Δ300 is devoid of arrestin-recruitment and endocytosis, this highlights the potential usefulness of this construct in future drug discovery efforts aimed at specific US28 conformations. The new scaffolds identified herein represent valuable starting points for the generation of novel anti-HCMV therapies targeting the virus-encoded chemokine receptor US28 in a conformational-selective manner.
Collapse
|
9
|
Liu M, Wang P, Zhao M, Liu DY. Intestinal Dendritic Cells Are Altered in Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure. PLoS One 2016; 11:e0166165. [PMID: 27832135 PMCID: PMC5104363 DOI: 10.1371/journal.pone.0166165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/23/2016] [Indexed: 01/01/2023] Open
Abstract
Fulminant hepatic failure (FHF) is defined as rapid acute liver injury, often complicated with spontaneous bacterial peritonitis (SBP). The precise onset of FHF with SBP is still unknown, but it is thought that SBP closely correlates with a weakened intestinal barrier. Dendritic cells (DCs) play a crucial role in forming the intestinal immune barrier, therefore the number, maturity and chemotactic ability of intestinal DCs were studied in FHF. Mouse intestinal and spleen DCs were isolated by magnetic-activated cell sorting (MACS) and surface markers of DCs, namely CD11c, CD74, CD83 and CD86, were identified using flow cytometry. Immunohistochemistry and Western blotting were performed to detect the distribution and expression of CC-chemokine receptor 7 (CCR7) and CC-chemokine receptor 9 (CCR9), as well as their ligands-CC-chemokine ligand 21 (CCL21) and CC-chemokine ligand 25 (CCL25). Real-time PCR was used to detect CCR7 and CCR9 mRNA, along with their ligands-CCL21 and CCL25 mRNA. Flow cytometry analysis showed that the markers CD74, CD83 and CD86 of CD11c+DCs were lower in the D-galactosamine (D-GalN) group and were significantly decreased in the FHF group, while there were no significant changes in the expression of these markers in the lipopolysaccharide (LPS) group. Immunohistochemistry results showed that staining for CCR7 and CCR9, as well as their ligands CCL21 and CCL25, was significantly weaker in the D-GalN and FHF groups compared with the normal saline (NS) group or the LPS group; the FHF group even showed completely unstained parts. Protein expression of CCR7 and CCR9, as well as their ligands- CCL21 and CCL25, was also lower in the D-GalN group and decreased even more significantly in the FHF group. At the gene level, CCR7 and CCR9, along with CCL21 and CCL25 mRNA expression, was lower in the D-GalN group and significantly decreased in the FHF group compared to the NS and LPS groups, consisting with the protein expression. Our study indicated that intestinal DCs were decreased in number, maturity and chemotactic ability in FHF and might contribute to a decreased function of the intestinal immune barrier in FHF.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Blotting, Western
- CD11c Antigen/immunology
- CD11c Antigen/metabolism
- Cell Count
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CCL21/metabolism
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemotaxis/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Gene Expression/immunology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunohistochemistry
- Intestines/immunology
- Liver Failure, Acute/genetics
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Male
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Receptors, CCR7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- CD83 Antigen
Collapse
Affiliation(s)
- Mei Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Peng Wang
- The second department of urology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Min Zhao
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - DY Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
10
|
Vanheule V, Vervaeke P, Mortier A, Noppen S, Gouwy M, Snoeck R, Andrei G, Van Damme J, Liekens S, Proost P. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem Pharmacol 2015; 100:73-85. [PMID: 26551597 DOI: 10.1016/j.bcp.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 and CXCL12γ have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Vincent Vanheule
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Peter Vervaeke
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Anneleen Mortier
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sam Noppen
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sandra Liekens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
El-Tholoth M, El-Kenawy AA. G-Protein-Coupled Chemokine Receptor Gene in Lumpy Skin Disease Virus Isolates from Cattle and Water Buffalo (Bubalus bubalis) in Egypt. Transbound Emerg Dis 2015; 63:e288-e295. [PMID: 25754131 DOI: 10.1111/tbed.12344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Indexed: 12/01/2022]
Abstract
Lumpy skin disease virus (LSDV), sheep poxvirus (SPV) and goat poxvirus (GPV) are the most serious poxviruses of ruminants. In this study, we analysed the G-protein-coupled chemokine receptor (GPCR) genes of LSDV isolates from cattle and water buffalo (Bubalus bubalis) in Egypt during the summer of 2011. Multiple alignments of the nucleotide sequences revealed that the water buffalo LSDV isolate differed from the cattle isolate at four nucleotide positions, and both isolates had nine nucleotide mutations from the reference strain, Egyptian tissue culture-adapted cattle LSDV/Ismailyia88 strain. Compared with the GPCR sequences of SPV and GPV strains, a 21 nucleotide insertion and a 12 nucleotide deletion were identified in the GPCR genes of our used isolates and other LSDVs. The amino acid sequences of GPCR genes of our isolates contained the unique signature of LSDV (A11 , T12 , T34 , S99 and P199 ). Phylogenetic analyses showed that the GPCR genes of cattle and water buffalo LSDVs were closest genetically, indicating a potential transmission of cattle LSDV to water buffalo.
Collapse
Affiliation(s)
- M El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - A A El-Kenawy
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Stevens CW. Bioinformatics and evolution of vertebrate nociceptin and opioid receptors. VITAMINS AND HORMONES 2015; 97:57-94. [PMID: 25677768 DOI: 10.1016/bs.vh.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are ancestrally related membrane proteins on cells that mediate the pharmacological effect of most drugs and neurotransmitters. GPCRs are the largest group of membrane receptor proteins encoded in the human genome. One of the most famous types of GPCRs is the opioid receptors. Opioid family receptors consist of four closely related proteins expressed in all vertebrate brains and spinal cords examined to date. The three classical types of opioid receptors shown unequivocally to mediate analgesia in animal models and in humans are the mu- (MOR), delta- (DOR), and kappa-(KOR) opioid receptor proteins. The fourth and most recent member of the opioid receptor family discovered is the nociceptin or orphanin FQ receptor (ORL). The role of ORL and its ligands in producing analgesia is not as clear, with both analgesic and hyperalgesic effects reported. All four opioid family receptor genes were cloned from expressed mRNA in a number of vertebrate species, and there are enough sequences presently available to carry out bioinformatic analysis. This chapter presents the results of a comparative analysis of vertebrate opioid receptors using pharmacological studies, bioinformatics, and the latest data from human whole-genome studies. Results confirm our initial hypotheses that the four opioid receptor genes most likely arose by whole-genome duplication, that there is an evolutionary vector of opioid receptor type divergence in sequence and function, and that the hMOR gene shows evidence of positive selection or adaptive evolution in Homo sapiens.
Collapse
Affiliation(s)
- Craig W Stevens
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA.
| |
Collapse
|
13
|
Arfelt KN, Fares S, Rosenkilde MM. EBV, the Human Host, and the 7TM Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:395-427. [DOI: 10.1016/bs.pmbts.2014.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ahmad R, Wojciech S, Jockers R. Hunting for the function of orphan GPCRs - beyond the search for the endogenous ligand. Br J Pharmacol 2014; 172:3212-28. [PMID: 25231237 DOI: 10.1111/bph.12942] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Seven transmembrane-spanning proteins (7TM), also called GPCRs, are among the most versatile and evolutionary successful protein families. Out of the 400 non-odourant members identified in the human genome, approximately 100 remain orphans that have not been matched with an endogenous ligand. Apart from the classical deorphanization strategies, several alternative strategies provided recent new insights into the function of these proteins, which hold promise for high therapeutic potential. These alternative strategies consist of the phenotypical characterization of organisms silenced or overexpressing orphan 7TM proteins, the search for constitutive receptor activity and formation of protein complexes including 7TM proteins as well as the development of synthetic, surrogate ligands. Taken together, a variety of ligand-independent functions can be attributed to orphan 7TM proteins that range from constitutive activity to complex formation with other proteins and include 'true' orphans for which no ligand exist and 'conditional' orphans that behave like orphans in the absence of ligand and as non-orphans in the presence of ligand.
Collapse
Affiliation(s)
- Raise Ahmad
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Stefanie Wojciech
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Ralf Jockers
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| |
Collapse
|
15
|
Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol 2014; 89:2253-67. [PMID: 25505061 DOI: 10.1128/jvi.02716-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Collapse
|
16
|
Abstract
Chemokines play important roles in atherosclerotic vascular disease. Expressed by not only cells of the vessel wall but also emigrated leukocytes, chemokines were initially discovered to direct leukocytes to sites of inflammation. However, chemokines can also exert multiple functions beyond cell recruitment. Here, we discuss novel and recently emerging aspects of chemokines and their involvement in atherosclerosis. While reviewing newly identified roles of chemokines and their receptors in monocyte and neutrophil recruitment during atherogenesis and atheroregression, we also revisit homeostatic functions of chemokines, including their roles in cell homeostasis and foam cell formation. The functional diversity of chemokines in atherosclerosis warrants a clear-cut mechanistic dissection and stage-specific assessment to better appreciate the full scope of their actions in vascular inflammation and to identify pathways that harbor the potential for a therapeutic targeting of chemokines in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany (A.Z.); Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (A.Z., C.W.); and Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.)
| | | |
Collapse
|
17
|
Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:81-119. [PMID: 24931193 DOI: 10.1016/b978-0-12-417197-8.00003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thyroid-stimulating hormone receptor (TSHR, or thyrotropin receptor) is a family A G protein-coupled receptor. It not only binds thyroid-stimulating hormone (TSH, or thyrotropin) but also interacts with autoantibodies under pathological conditions. The TSHR and TSH are essential for thyroid growth and function and thus for all thyroid hormone-associated physiological superordinated processes, including metabolism and development of the central nervous system. In vitro studies have found that the TSHR permanently stimulates ligand-independent (constitutive) activation of Gs, which ultimately leads to intracellular cAMP accumulation. Furthermore, a vast variety of constitutively activating mutations of TSHR-at more than 50 different amino acid positions-have been reported to enhance basal signaling. These lead in vivo to a "gain-of-function" phenotype of nonautoimmune hyperthyroidism or toxic adenomas. Moreover, many naturally occurring inactivating mutations are known to cause a "loss-of-function" phenotype, resulting in resistance to thyroid hormone or hyperthyrotropinemia. Several of these mutations are also characterized by impaired basal signaling, and these are designated here as "constitutively inactivating mutations" (CIMs). More than 30 amino acid positions with CIMs have been identified so far. Moreover, the permanent TSHR signaling capacity can also be blocked by inverse agonistic antibodies or small drug-like molecules, which both have a potential for clinical usage. In this chapter, information on constitutive activity in the TSHR is described, including up- and downregulation, linked protein conformations, physiological and pathophysiological conditions, and related intracellular signaling.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Identification of common mechanisms by which human and mouse cytomegalovirus seven-transmembrane receptor homologues contribute to in vivo phenotypes in a mouse model. J Virol 2013; 87:4112-7. [PMID: 23345521 DOI: 10.1128/jvi.03406-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mouse cytomegalovirus chemokine receptor homologue (CKR) M33 is required for salivary gland tropism and efficient reactivation from latency, phenotypes partially rescued by the human cytomegalovirus CKR US28. Herein, we demonstrate that complementation of salivary gland tropism is mediated predominantly by G protein-dependent signaling conserved with that of M33; in contrast, both G protein-dependent and -independent pathways contribute to the latency phenotypes. A novel M33-dependent replication phenotype in cultured bone marrow macrophages is also described.
Collapse
|
19
|
Griffin BD, Gram AM, Mulder A, Van Leeuwen D, Claas FHJ, Wang F, Ressing ME, Wiertz E. EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. THE JOURNAL OF IMMUNOLOGY 2013; 190:1672-84. [PMID: 23315076 DOI: 10.4049/jimmunol.1102462] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coevolution of herpesviruses and their hosts has driven the development of both host antiviral mechanisms to detect and eliminate infected cells and viral ploys to escape immune surveillance. Among the immune-evasion strategies used by the lymphocryptovirus (γ(1)-herpesvirus) EBV is the downregulation of surface HLA class I expression by the virally encoded G protein-coupled receptor BILF1, thereby impeding presentation of viral Ags and cytotoxic T cell recognition of the infected cell. In this study, we show EBV BILF1 to be expressed early in the viral lytic cycle. BILF1 targets a broad range of HLA class I molecules, including multiple HLA-A and -B types and HLA-E. In contrast, HLA-C was only marginally affected. We advance the mechanistic understanding of the process by showing that the cytoplasmic C-terminal tail of EBV BILF1 is required for reducing surface HLA class I expression. Susceptibility to BILF1-mediated downregulation, in turn, is conferred by specific residues in the intracellular tail of the HLA class I H chain. Finally, we explore the evolution of BILF1 within the lymphocryptovirus genus. Although the homolog of BILF1 encoded by the lymphocryptovirus infecting Old World rhesus primates shares the ability of EBV to downregulate cell surface HLA class I expression, this function is not possessed by New World marmoset lymphocryptovirus BILF1. Therefore, this study furthers our knowledge of the evolution of immunoevasive functions by the lymphocryptovirus genus of herpesviruses.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jockers R, Gbahou F, Tadagaki K, Kamal M. Oligomérisation des protéines humaines et virales à sept domaines transmembranaires. Med Sci (Paris) 2012; 28:864-9. [DOI: 10.1051/medsci/20122810015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure? Adv Virol 2012; 2012:231813. [PMID: 22899926 PMCID: PMC3414077 DOI: 10.1155/2012/231813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/31/2012] [Indexed: 01/31/2023] Open
Abstract
Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several structural motifs like the DRY-motif in TM3 and the C-terminal tail. In the DRY-motif, the arginine residue serves important purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail constitutes another regulatory region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on these two structural motifs and discuss their role in viral 7TM receptor signaling compared to their endogenous counterparts.
Collapse
|
22
|
Daiyasu H, Nemoto W, Toh H. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors. Front Microbiol 2012; 3:264. [PMID: 22855685 PMCID: PMC3405870 DOI: 10.3389/fmicb.2012.00264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/05/2012] [Indexed: 01/10/2023] Open
Abstract
Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.
Collapse
Affiliation(s)
- Hiromi Daiyasu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University Osaka, Japan
| | | | | |
Collapse
|
23
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M. Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 2011; 82:610-9. [PMID: 21684267 PMCID: PMC3156895 DOI: 10.1016/j.bcp.2011.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that infects up to 80% of the human population and causes severe complications in immunocompromised patients. HCMV expresses four seven transmembrane (7TM) spanning/G protein-coupled receptors (GPCRs) – US28, US27, UL33 and UL78 – that show close homology to human chemokine receptors. While US28 was shown to bind several chemokines and to constitutively activate multiple signaling cascades, the function(s) of US27, UL33 and UL78 in the viral life cycle have not yet been identified. Here we investigated the possible interaction/heteromerization of US27, UL33 and UL78 with US28 and the functional consequences thereof. We provide evidence that these receptors not only co-localize, but also heteromerize with US28 in vitro. While the constitutive activation of the US28-mediated Gαq/phospholipase C pathway was not affected by receptor heteromerization, UL33 and UL78 were able to silence US28-mediated activation of the transcription factor NF-κB. Summarized, we provide evidence that these orphan viral receptors have an important regulatory capacity on the function of US28 and as a consequence, may ultimately impact on the viral life cycle of HCMV.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
25
|
Gong X, Padhi A. Evidence for positive selection in the extracellular domain of human cytomegalovirus encoded G protein-coupled receptor US28. J Med Virol 2011; 83:1255-61. [PMID: 21520142 DOI: 10.1002/jmv.22098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 11/09/2022]
Abstract
The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 is also a seven-transmembrane G-protein coupled receptor, whose signaling pathway is known for its involvement in host immune system evasion. HCMV infection can result in serious disease in immunocompromised individuals and is also linked to atherosclerosis and cardiovascular disease. Identifying amino acid residues that play a crucial role in successful viral adaptation in response to the host's immune defense is critical for effective drug design. In this study maximum likelihood-based codon substitution analyses were carried out to determine whether any codon of US28 has evolved adaptively. If the rate of nonsynonymous (dn) to the rate of synonymous (ds) nucleotide substitutions (ω = dn/ds) is greater than one, the codon is said to be under positive selection, indicating adaptive evolution. Although the overall ω for US28 gene was 0.154, indicating that most codon sites were subject to strong purifying selection, five codon sites are under strong positive selection. Three (E18D/L, D19A/E/G, and R267K/Q) of these positively selected sites are located in extracellular domains, the domains that play a crucial role for successful viral adaptation in response to the host's immune defense. The C-terminal (R329Q/W) and the fifth transmembrane domain (V190I), each have one positively selected site. These results suggest that relative to the extracellular domains, amino acid residues present in intracellular domains are more selectively constrained. A few amino acid residues in extracellular domains of US28 evolved more rapidly, presumably due to positive selection pressure resulting from ligand-binding and pathogen interactions of extracellular domains.
Collapse
Affiliation(s)
- Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | | |
Collapse
|
26
|
The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J Virol 2010; 85:1604-14. [PMID: 21123379 DOI: 10.1128/jvi.01608-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite triggering strong immune responses, Epstein-Barr virus (EBV) has colonized more than 90% of the adult human population. Successful persistence of EBV depends on the establishment of a balance between host immune responses and viral immune evasion. Here we have extended our studies on the EBV-encoded BILF1 protein, which was recently identified as an immunoevasin that functions by enhancing degradation of major histocompatibility complex class I (MHC-I) antigens via lysosomes. We now demonstrate that disruption of the EKT signaling motif of BILF1 by a K122A mutation impairs the ability of BILF1 to enhance endocytosis of surface MHC-I molecules, while subsequent lysosomal degradation was impaired by deletion of the 21-residue C-terminal tail of BILF1. Furthermore, we identified another mechanism of BILF1 immunomodulation: it targets newly synthesized MHC-I/peptide complexes en route to the cell surface. Importantly, although the diversion of MHC-I on the exocytic pathway caused a relatively modest reduction in cell surface MHC-I, presentation of endogenously processed target peptides to immune CD8(+) effector T cells was reduced by around 65%. The immune-modulating functions of BILF1 in the context of the whole virus were confirmed in cells lytically infected with a recombinant EBV in which BILF1 was deleted. This study therefore extends our initial observations on BILF1 to show that this immunoevasin can target MHC-I antigen presentation via both the exocytic and endocytic trafficking pathways. The results also emphasize the merits of including functional T cell recognition assays to gain a more complete picture of immunoevasin effects on the antigen presentation pathway.
Collapse
|
27
|
Tschische P, Moser E, Thompson D, Vischer HF, Parzmair GP, Pommer V, Platzer W, Schwarzbraun T, Schaider H, Smit MJ, Martini L, Whistler JL, Waldhoer M. The G-protein coupled receptor associated sorting protein GASP-1 regulates the signalling and trafficking of the viral chemokine receptor US28. TRAFFIC (COPENHAGEN, DENMARK) 2010; 11:660-74. [PMID: 20102549 DOI: 10.1111/j.1600-0854.2010.1045.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (HCMV) encodes the seven transmembrane(7TM)/G-protein coupled receptor (GPCR) US28, which signals and endocytoses in a constitutive, ligand-independent manner. Here we show that, following endocytosis, US28 is targeted to the lysosomes for degradation as a consequence of its interaction with the GPCR-associated sorting protein-1 (GASP-1). We find that GASP-1 binds to US28 in vitro and that disruption of the GASP-1/US28 interaction by either (i) overexpression of dominant negative cGASP-1 or by (ii) shRNA knock-down of endogenous GASP-1 is sufficient to inhibit the lysosomal targeting of US28 and slow its post-endocytic degradation. Furthermore, we found that GASP-1 affects US28-mediated signalling. The knock-down of endogenous GASP-1 impairs the US28-mediated Galphaq/PLC/inositol phosphate (IP) accumulation as well as the activation of the transcription factors Nuclear Factor-kappaB (NF-kappaB) and cyclic AMP responsive element binding protein (CREB). Overexpression of GASP-1 enhances both IP accumulation and transcription factor activity. Thus, GASP-1 is an important cellular determinant that not only regulates the post-endocytic trafficking of US28, but also regulates the signalling capacities of US28.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lyngaa R, Nørregaard K, Kristensen M, Kubale V, Rosenkilde MM, Kledal TN. Cell transformation mediated by the Epstein-Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene 2010; 29:4388-98. [PMID: 20543866 DOI: 10.1038/onc.2010.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epstein-Barr virus (EBV) open reading frame BILF1 encodes a seven trans-membrane (TM) G protein-coupled receptor that signals with high constitutive activity through Galpha(i) (Beisser et al., 2005; Paulsen et al., 2005). In this paper, the transforming potential of BILF1 is investigated in vitro in a foci formation assay using retrovirally transduced NIH3T3 cells, as well as in vivo by using nude mice. BILF1 revealed a substantial transforming potential that was dependent on constitutive signaling, as a signaling-deficient mutant completely lost its ability to transform cells in vitro, and an intermediately active triple-mutated receptor possessed an intermediate transforming potential. Furthermore, BILF1 expression induced vascular endothelial growth factor secretion in a constitutively active manner. In nude mice, BILF1 promoted tumor formation in 90% of cases, ORF74 (from Kaposi's sarcoma-associated herpes virus) in 100% of cases, whereas the signaling-deficient receptor resulted in tumor establishment in 40% of cases. These data suggest that BILF1, when expressed during EBV infection, could indeed be involved in the pathogenesis of EBV-associated diseases and malignancies. Furthermore, the correlation between receptor activity and the ability to mediate cell transformation in vitro and tumor formation in vivo supports the idea that inverse agonists for BILF1 could inhibit cell transformation and be relevant therapeutic candidates.
Collapse
Affiliation(s)
- R Lyngaa
- Laboratory for Cell biology and Virology, Department of Micro and Nano-technology, the Danish Technical University, DTU-Nanotech, Roskilde, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Bestebroer J, de Haas CJ, van Strijp JA. How microorganisms avoid phagocyte attraction. FEMS Microbiol Rev 2010; 34:395-414. [DOI: 10.1111/j.1574-6976.2009.00202.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
30
|
Abstract
Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Tschische P, Moser E, Thompson D, Vischer HF, Parzmair GP, Pommer V, Platzer W, Schwarzbraun T, Schaider H, Smit MJ, Martini L, Whistler JL, Waldhoer M. The G-protein Coupled Receptor Associated Sorting Protein GASP-1 Regulates the Signalling and Trafficking of the Viral Chemokine Receptor US28. Traffic 2010. [DOI: 10.1111/j.1600-0854.2010.01045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 2010; 27 Suppl 2:S31-42. [PMID: 19956178 DOI: 10.1038/onc.2009.351] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of acute-transforming retroviruses and their oncogenes and of the multiple mechanisms deployed by DNA viruses to circumvent the growth-suppressive and proapoptotic function of tumor suppressor genes has provided the foundation of our current understanding of cancer biology. Unlike acute-transforming animal viruses, however, human tumor-associated viruses lead to malignancies with a prolonged latency and in conjunction with other environmental and host-related cooperating events. The relevance of viral infection to human cancer development has often been debated. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Hence, the opportunity exists to fight cancer at the global scale by preventing the spread of these viruses, by the development and distribution of effective and safe antiviral vaccines, and by identifying their oncogenic mechanism. Here, we discuss the molecular events underlying the neoplastic potential of the human tumor-associated viruses, with emphasis on the enigmatic KSHV and its numerous virally hijacked proangiogenic, immune-evasive and tumor-promoting genes. The emerging information may facilitate the development of new molecular-targeted approaches to prevent and treat virally associated human malignancies.
Collapse
|
33
|
Maussang D, Vischer HF, Schreiber A, Michel D, Smit MJ. Pharmacological and biochemical characterization of human cytomegalovirus-encoded G protein-coupled receptors. Methods Enzymol 2009; 460:151-71. [PMID: 19446724 DOI: 10.1016/s0076-6879(09)05207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Human cytomegalovirus (HCMV) is a widely spread herpesvirus that can have serious consequences in immunocompromised hosts. Interestingly, HCMV genome encodes for four viral G protein-coupled receptors (vGPCRs), namely, US27, US28, UL33, and UL78. Thus far, US28 and UL33 have been shown to activate signaling pathways in a ligand-independent manner. US28 is the best characterized vGPCR and has been shown to be potentially involved in the development of HCMV-related diseases. As such, detailed investigation of these viral GPCR is of importance in order to understand molecular events occurring during viral pathogenesis and the potential identification of novel therapeutic targets. Herewith, we describe several approaches to study these HCMV-encoded vGPCRs. Using molecular biology, tags can be introduced in the vGPCRs, which may facilitate the study of their protein expression with various techniques, such as microscopy, Western blotting, enzyme-linked immunosorbent assay (ELISA), and flow cytometry. Furthermore, radioligand binding studies can be performed to screen for ligands for vGPCRs, but also to study kinetics of internalization. We also describe several signal transduction assays that can evaluate the signaling activity of these vGPCRs. In addition, we discuss different proliferation assays and an in vivo xenograft model that were used to identify the oncogenic potential of US28. The study of these vGPCRs in their viral context can be examined using recombinant HCMV strains generated by bacterial artificial chromosome mutagenesis. Finally, we show how these mutants can be used in several pharmacological and biochemical assays.
Collapse
Affiliation(s)
- David Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Le Goff C, Lamien CE, Fakhfakh E, Chadeyras A, Aba-Adulugba E, Libeau G, Tuppurainen E, Wallace DB, Adam T, Silber R, Gulyaz V, Madani H, Caufour P, Hammami S, Diallo A, Albina E. Capripoxvirus G-protein-coupled chemokine receptor: a host-range gene suitable for virus animal origin discrimination. J Gen Virol 2009; 90:1967-1977. [PMID: 19339476 DOI: 10.1099/vir.0.010686-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genus Capripoxvirus within the family Poxviridae comprises three closely related viruses, namely goat pox, sheep pox and lumpy skin disease viruses. This nomenclature is based on the animal species from which the virus was first isolated, respectively, goat, sheep and cattle. Since capripoxviruses are serologically identical, their specific identification relies exclusively on the use of molecular tools. We describe here the suitability of the G-protein-coupled chemokine receptor (GPCR) gene for use in host-range grouping of capripoxviruses. The analysis of 58 capripoxviruses showed three tight genetic clusters consisting of goat pox, sheep pox and lumpy skin disease viruses. However, a few discrepancies exist with the classical virus-host origin nomenclature: a virus isolated from sheep is grouped in the goat poxvirus clade and vice versa. Intra-group diversity was further observed for the goat pox and lumpy skin disease virus isolates. Despite the presence of nine vaccine strains, no genetic determinants of virulence were identified on the GPCR gene. For sheep poxviruses, the addition or deletion of 21 nucleic acids (7 aa) was consistently observed in the 5' terminal part of the gene. Specific signatures for each cluster were also identified. Prediction of the capripoxvirus GPCR topology, and its comparison with other known mammalian GPCRs and viral homologues, revealed not only a classical GPCR profile in the last three-quarters of the protein but also unique features such as a longer N-terminal end with a proximal hydrophobic alpha-helix and a shorter serine-rich C-tail.
Collapse
Affiliation(s)
| | - Charles Euloge Lamien
- Animal Production Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Wagramer Strasse 5, PO Box 100, A-1400 Vienna, Austria
| | | | | | | | | | - Eeva Tuppurainen
- Institute of Animal Health, Pirbright Laboratory, Woking, Surrey GU24 ONF, UK
| | - David B Wallace
- Department of Veterinary Tropical Diseases, University of Pretoria, Faculty of Veterinary Science, Private Bag X4, Onderstepoort 0110, South Africa.,Biotechnology Division, ARC-Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort 0110, South Africa
| | - Tajelser Adam
- Department of Viral Vaccines Production, Central Veterinary Research Laboratories Centre, Animal Resources Research Corporation, Ministry of Science and Technology, Khartoum, Sudan
| | - Roland Silber
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Security, Robert Koch Gasse 17, A-2340 Mödling, Austria
| | - Velý Gulyaz
- Pendik Veterinary Control and Research Institute, Pendik, Istanbul, Turkey
| | - Hafsa Madani
- Institut National de la Médecine Vétérinaire, Laboratoire Central Vétérinaire d'Alger, BP 205 Hacen Badi, El Harrach, Alger, Algeria
| | | | | | - Adama Diallo
- Animal Production Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Wagramer Strasse 5, PO Box 100, A-1400 Vienna, Austria
| | - Emmanuel Albina
- CIRAD, UMR Contrôle des Maladies, F-34398 Montpellier, France
| |
Collapse
|
35
|
Maussang D, Langemeijer E, Fitzsimons CP, Stigter-van Walsum M, Dijkman R, Borg MK, Slinger E, Schreiber A, Michel D, Tensen CP, van Dongen GAMS, Leurs R, Smit MJ. The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 2009; 69:2861-9. [PMID: 19318580 DOI: 10.1158/0008-5472.can-08-2487] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human cytomegalovirus (HCMV), potentially associated with the development of malignancies, encodes the constitutively active chemokine receptor US28. Previously, we have shown that US28 expression induces an oncogenic phenotype both in vitro and in vivo. Microarray analysis revealed differential expression of genes involved in oncogenic signaling in US28-expressing NIH-3T3 cells. In particular, the expression of cyclooxygenase-2 (COX-2), a key mediator of inflammatory diseases and major determinant in several forms of cancer, was highly up-regulated. US28 induced increases in COX-2 expression via activation of nuclear factor-kappaB, driving the production of vascular endothelial growth factor. Also, in HCMV-infected cells, US28 contributed to the viral induction of COX-2. Finally, the involvement of COX-2 in US28-mediated tumor formation was evaluated using the COX-2 selective inhibitor Celecoxib. Targeting COX-2 in vivo with Celecoxib led to a marked delay in the onset of tumor formation in nude mice injected with US28-transfected NIH-3T3 cells and a reduction of subsequent growth by repressing the US28-induced angiogenic activity. Hence, the development of HCMV-related proliferative diseases may partially be ascribed to the ability of US28 to activate COX-2.
Collapse
Affiliation(s)
- David Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 2009; 5:e1000255. [PMID: 19119421 PMCID: PMC2603334 DOI: 10.1371/journal.ppat.1000255] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 12/05/2008] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8(+) T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 gamma(1)-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV gamma(2)-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8(+) T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.
Collapse
|
37
|
Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, Rowe M, Wiertz EJHJ. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol 2008; 18:397-408. [PMID: 18977445 DOI: 10.1016/j.semcancer.2008.10.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.
Collapse
Affiliation(s)
- Maaike E Ressing
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|