1
|
Andrianto, Pikir BS, Suryawan IGR, Hermawan HO, Harsoyo PM. Isolation and Culture of Non-adherent Cells for Cell Reprogramming. J Stem Cells Regen Med 2022; 18:21-26. [PMID: 36003658 DOI: 10.46582/jsrm.1801004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Coronary heart disease (CHD) is a leading cause of death globally, while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration, and CD34+ cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However, the isolation and culture of non-adherent CD34+ cells is crucial to obtain adequate cells for high-efficiency genetic modification. This study aimed to investigate the optimal method for isolation and culture of CD34+ peripheral blood cells using certain culture media. A peripheral blood sample was obtained from a healthy subject and underwent pre-enrichment, isolation, and expansion. The culture was subsequently observed for their viability, adherence, and confluence. Day 0 observation of the culture showed a healthy CD34+ cell with a round cell shape, without any adherent cells present yet. Day 4 of observation showed that CD34+ cells within the blood plasma medium became adherent, indicated by their transformations into spindle or oval morphologies. Meanwhile, CD34+ cells in vitronectin and fibronectin media showed no adherent cells and many of them died. Day 7 observation revealed more adherent CD34+ cells in blood plasma medium, and which had 75% of confluence. In conclusion, the CD34+ cells that were isolated using a combination of density and magnetic methods may be viable and adequately adhere in culture using blood plasma medium, but not in cultures using fibronectin and vitronectin.
Collapse
Affiliation(s)
- Andrianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Budi Susetyo Pikir
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - I Gde Rurus Suryawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Hanestya Oky Hermawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Primasitha Maharany Harsoyo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Uchida N, Li L, Nassehi T, Drysdale CM, Yapundich M, Gamer J, Haro-Mora JJ, Demirci S, Leonard A, Bonifacino AC, Krouse AE, Linde NS, Allen C, Peshwa MV, De Ravin SS, Donahue RE, Malech HL, Tisdale JF. Preclinical evaluation for engraftment of CD34 + cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2021; 2:100247. [PMID: 33948577 PMCID: PMC8080237 DOI: 10.1016/j.xcrm.2021.100247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claire M. Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - N. Seth Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | | | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Tisdale JF, Pierciey FJ, Bonner M, Thompson AA, Krishnamurti L, Mapara MY, Kwiatkowski JL, Shestopalov I, Ribeil J, Huang W, Asmal M, Kanter J, Walters MC. Safety and feasibility of hematopoietic progenitor stem cell collection by mobilization with plerixafor followed by apheresis vs bone marrow harvest in patients with sickle cell disease in the multi-center HGB-206 trial. Am J Hematol 2020; 95:E239-E242. [PMID: 32401372 DOI: 10.1002/ajh.25867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/09/2022]
Affiliation(s)
- John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute National Institutes of Health Bethesda Maryland USA
| | | | | | - Alexis A. Thompson
- Division of Hematology, Oncology & Stem Cell Transplant Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University Chicago Illinois USA
| | - Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta Emory University Atlanta Georgia USA
| | - Markus Y. Mapara
- Division of Hematology/Oncology, Columbia Center for Translational Immunology Columbia University Medical Center New York New York USA
| | - Janet L. Kwiatkowski
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| | | | | | | | | | - Julie Kanter
- Division of Hematology/Oncology University of Alabama at Birmingham Birmingham Alabama USA
| | - Mark C. Walters
- University of California San Francisco, Benioff Children's Hospital Oakland Oakland California USA
| |
Collapse
|
4
|
Khantakova JN, Silkov AN, Tereshchenko VP, Gavrilova EV, Maksyutov RA, Sennikov SV. Transfection of bone marrow derived cells with immunoregulatory proteins. Cytokine 2018; 108:82-88. [PMID: 29579547 DOI: 10.1016/j.cyto.2018.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins.
Collapse
Affiliation(s)
- Julia N Khantakova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya St. 14, Novosibirsk 630099, Russia
| | - Alexander N Silkov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya St. 14, Novosibirsk 630099, Russia
| | - Valeriy P Tereshchenko
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya St. 14, Novosibirsk 630099, Russia
| | - Elena V Gavrilova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk 630559, Russia
| | - Sergey V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya St. 14, Novosibirsk 630099, Russia.
| |
Collapse
|
5
|
Helfer BM, Balducci A, Sadeghi Z, O'Hanlon C, Hijaz A, Flask CA, Wesa A. ¹⁹F MRI tracer preserves in vitro and in vivo properties of hematopoietic stem cells. Cell Transplant 2012; 22:87-97. [PMID: 22862925 DOI: 10.3727/096368912x653174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have numerous therapeutic applications including immune reconstitution, enzyme replacement, regenerative medicine, and immunomodulation. The trafficking and persistence of these cells after administration is a fundamental question for future therapeutic applications of HSCs. Here, we describe the safe and efficacious labeling of human CD34(+) HSCs with a novel, self-delivering perfluorocarbon ¹⁹F magnetic resonance imaging (MRI) tracer, which has recently been authorized for use in a clinical trial to track therapeutic cells. While various imaging contrast agents have been used to track cellular therapeutics, the impact of this MRI tracer on HSC function has not previously been studied. Both human CD34(+) and murine bone marrow (BM) HSCs were effectively labeled with the MRI tracer, with only a slight reduction in viability, relative to mock-labeled cells. In a pilot study, ¹⁹F MRI enabled the rapid evaluation of HSC delivery/retention following administration into a rat thigh muscle, revealing the dispersal of HSCs after injection, but not after surgical implantation. To investigate effects on cell functionality, labeled and unlabeled human HSCs were tested in in vitro colony forming unit (CFU) assays, which resulted in equal numbers of total CFU as well as individual CFU types, indicating that labeling did not alter multipotency. Cobblestone assay forming cell precursor frequency was also unaffected, providing additional evidence that stem cell function was preserved after labeling. In vivo tests of multipotency and reconstitution studies in mice with murine BM containing labeled HSCs resulted in normal development of CFU in the spleen, compared to unlabeled cells, and reconstitution of both lymphoid and myeloid compartments. The lack of interference in these complex biological processes provides strong evidence that the function and therapeutic potential of the HSCs are likely maintained after labeling. These data support the safety and efficacy of the MRI tracer for clinical tracking of human stem cells.
Collapse
Affiliation(s)
- Brooke M Helfer
- Celsense, Inc., Department of Research and Development, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Yien YY, Bieker JJ. Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2Cβ. J Biol Chem 2012; 287:15193-204. [PMID: 22393050 DOI: 10.1074/jbc.m112.350496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF; KLF1) is an erythroid-specific transcription factor required for the transcription of genes that regulate erythropoiesis. In this paper, we describe the identification of a novel EKLF interactor, Ppm1b, a serine-threonine protein phosphatase that has been implicated in the attenuation of NFκB signaling and the regulation of Cdk9 phosphorylation status. We show that Ppm1b interacts with EKLF via its PEST1 sequence. However, its genetic regulatory role is complex. Using a promoter-reporter assay in an erythroid cell line, we show that Ppm1b superactivates EKLF at the β-globin and BKLF promoters, dependent on intact Ppm1b phosphatase activity. Conversely, depletion of Ppm1b in CD34(+) cells leads to a higher level of endogenous β-globin gene activation after differentiation. We also observe that Ppm1b likely has an indirect role in regulating EKLF turnover via its zinc finger domain. Together, these studies show that Ppm1b plays a multilayered role in regulating the availability and optimal activity of the EKLF protein in erythroid cells.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental and Regenerative Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
7
|
Sumiyoshi T, Holt NG, Hollis RP, Ge S, Cannon PM, Crooks GM, Kohn DB. Stable transgene expression in primitive human CD34+ hematopoietic stem/progenitor cells, using the Sleeping Beauty transposon system. Hum Gene Ther 2010; 20:1607-26. [PMID: 19689196 DOI: 10.1089/hum.2009.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sleeping Beauty (SB) transposon-mediated integration has been shown to achieve long-term transgene expression in a wide range of host cells. In this study, we improved the SB transposon-mediated gene transfer system for transduction of human CD34(+) stem/progenitor cells by two approaches: (1) to increase the transposition efficacy, a hyperactive mutant of SB, HSB, was used; (2) to improve the expression of the SB transposase and the transgene cassette carried by the transposon, different viral and cellular promoters were evaluated. SB components were delivered in trans into the target cells by Nucleoporation. The SB transposon-mediated integration efficacy was assessed by integrated transgene (enhanced green fluorescent protein [eGFP]) expression both in vitro and in vivo. In purified human cord blood CD34(+) cells, HSB achieved long-term transgene expression in nearly 7-fold more cells than the original SB transposase. Significantly brighter levels of eGFP expression (5-fold) were achieved with the human elongation factor 1alpha (EF1-alpha) promoter in Jurkat human T cells, compared with that achieved with the modified myeloproliferative sarcoma virus long terminal repeat enhancer-promoter (MNDU3); in contrast, the MNDU3 promoter expressed eGFP at the highest level in K-562 myeloid cells. In human CD34(+) cord blood cells studied under conditions directing myeloid differentiation, the highest transgene integration and expression were achieved using the EF1-alpha promoter to express the SB transposase combined with the MNDU3 promoter to express the eGFP reporter. Stable transgene expression was achieved at levels up to 27% for more than 4 weeks of culture after improved gene transfer to CD34(+) cells (average, 17%; n = 4). In vivo studies evaluating engraftment and differentiation of the SB-modified human CD34(+) cells demonstrated that SB-modified human CD34(+) cells engrafted in NOD/SCID/gamma chain(null) (NSG) mice and differentiated into multilineage cell types with eGFP expression. More importantly, secondary transplantation studies demonstrated that the integrated transgene was stably expressed in more primitive CD34(+) hematopoietic stem cells (HSCs) with long-term repopulating capability. This study demonstrates that an improved HSB gene transfer system can stably integrate genes into primitive human HSCs while maintaining the pluripotency of the stem cells, which shows promise for further advancement of non-virus-based gene therapy using hematopoietic stem cells.
Collapse
Affiliation(s)
- Teiko Sumiyoshi
- Division of Research Immunology/Bone Marrow Transplantation, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Collapse
Affiliation(s)
- Caroline Pendaries
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
9
|
Abstract
Dose-limiting toxicity of chemotherapeutic agents, i.e., myelosuppression, can limit their effectiveness. The transfer and expression of drug-resistance genes might decrease the risks associated with acute hematopoietic toxicity. Protection of hematopoietic stem/progenitor cells by transfer of drug-resistance genes provides the possibility of intensification or escalation of antitumor drug doses and consequently an improved therapeutic index. This chapter reviews drug-resistance gene transfer strategies for either myeloprotection or therapeutic gene selection. Selecting candidate drug-resistance gene(s), gene transfer methodology, evaluating the safety and the efficiency of the treatment strategy, relevant in vivo models, and oncoretroviral transduction of human hematopoietic stem/progenitor cells under clinically applicable conditions are described.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johson Medical School, University of Medicine & Dentistry of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
10
|
Dao MA, Creer MH, Nolta JA, Verfaillie CM. Biology of umbilical cord blood progenitors in bone marrow niches. Blood 2007; 110:74-81. [PMID: 17371947 PMCID: PMC1896129 DOI: 10.1182/blood-2006-08-034447] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Within the bone marrow (BM), hematopoietic progenitor cells (HPCs) are localized in poorly oxygenated niches where they interact with the surrounding osteoblasts (OBs) through VLA4/VCAM-1 engagement, and are exposed to interleukin-6 (IL-6), stem cell factor (SCF), and chemokines such as CXCL12 (OB factors). Umbilical cord (UC) is more highly oxygenated that the BM microenvironment. When UC-HPCs are exposed to the 2% to 3% O(2) concentration found in the bone endosteum, their survival is significantly decreased. However, engagement of VLA-4 integrins on UCB-derived CD34(+) cells reduced cell death in 2% to 3% O(2) conditions, which was associated with an increase in phospho-Ser473 AKT and an increase in phospho-Ser9 GSK3b. Consistent with the role of GSK3b in destabilizing beta-catenin, there was more cytoplasmic beta-catenin in UC-HPCs exposed to 2% to 3% O(2) on fibronectin, compared with suspension culture. UC-HPCs cultured at 2% to 3% O(2) with OB factors showed an increase in nuclear beta-catenin and persistence of a small pool of CD34(+)38(-) HPCs. CFU assays followed by surface phenotyping of the plated colonies showed improved maintenance of mixed lineage colonies with both erythroid and megakaryocytic precursors. These studies provide a biologic perspective for how UC-derived HPCs adapt to the bone endosteum, which is low in oxygen and densely populated by osteoblasts.
Collapse
Affiliation(s)
- Mo A Dao
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, USA
| | | | | | | |
Collapse
|
11
|
Huang KS, Lin YC, Su CC, Fang CS. Enhancement of an electroporation system for gene delivery using electrophoresis with a planar electrode. LAB ON A CHIP 2007; 7:86-92. [PMID: 17180209 DOI: 10.1039/b613753a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this paper a new electroporation (EP) system is developed, which includes an EP microchip and a logic circuit, which combined with electrophoresis (ES), can provide site-specific enhancement of gene concentration. In this ES-EP microchip, an arc planar electrode provides the ES function for DNA attraction, and interdigitated array electrodes provide appropriate electric fields for the EP on the chip surface. In addition, the adherent cells can be manipulated in situ without detachment of the ES-EP microchip, which performs the "Lab on a chip". Experimental results have shown that the efficiency of gene transfection with an attracting-electric field (35.89%) becomes much higher than that without an attracting-electric field (16.62%). Cell numbers as low as 10(4) cells, and DNA as little as 4 microg are sufficient for evaluating the phenotypic effects following the over-expression of the introduced genes on the ES-EP microchip. The proposed system has the advantages of portability, cost-effectiveness, a high transfection rate and ease of operation.
Collapse
Affiliation(s)
- Keng-Shiang Huang
- Department of Engineering Science, National Cheng Kung University, 1 University Road, 701 Tainan, Taiwan, R.O.C
| | | | | | | |
Collapse
|
12
|
Hollis RP, Nightingale SJ, Wang X, Pepper KA, Yu XJ, Barsky L, Crooks GM, Kohn DB. Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol 2006; 34:1333-43. [PMID: 16982326 DOI: 10.1016/j.exphem.2006.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Methods of gene transfer to hematopoietic stem cells that result in stable integration may provide treatments for many inherited and acquired blood diseases. It has been demonstrated previously that a gene delivery system based on the Sleeping Beauty (SB) transposon can be derived where a plasmid transiently expressing the SB transposase can mediate the stable chromosomal integration of a codelivered second plasmid containing a gene expression unit flanked by the inverted repeats derived from the transposon. METHODS Plasmid DNA containing the elements required for SB transposition was delivered to hematopoietic cells via electroporation. Integrated transgene (enhanced green fluorescent protein [eGFP]) expression was assessed in vitro and in vivo. RESULTS In the K562 human hematopoietic cell line, we observed stable expression of eGFP in >60% of cells for over 2 months after electroporation of the two plasmids; in contrast, in control cells either not treated with transposase or exposed to a defective mutant transposase, the level of gene expression had fallen to near background (<0.1%) by 2 weeks. In purified human cord blood CD34(+) progenitor cells, the transposase led to stable gene transfer at levels up to 6% for over 4 weeks, but gene transfer to more primitive nonobese diabetic/severe combined immunodeficient repopulating cells or CD34(+)/CD38(-) in long-term culture was low and electroporation of the cells with plasmid DNA caused significant cell death. CONCLUSION The long-term stable expression highlights the potential of this transposase-based gene delivery method for ameliorating diseases affecting the hematopoietic system, although further improvements in gene transfer efficacy are needed.
Collapse
Affiliation(s)
- Roger P Hollis
- Division of Research Immunology/Bone Marrow Transplant, The Saban Research Institute of Childrens Hospital Los Angeles, Departments of Pediatrics, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wiehe JMI, Niesler C, Torzewski J, Zimmermann O, Wiesneth M, Schmitt M, Schwarz K, Döhner H, Hombach V, Greiner J. Efficient transient genetic labeling of human CD34+ progenitor cells for in vivo application. Regen Med 2006; 1:223-34. [PMID: 17465806 DOI: 10.2217/17460751.1.2.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic labeling of human hematopoietic progenitor cells (HPC) and their consecutive fate-mapping in vivo is an approach to answer intriguing questions in stem cell biology. We recently reported efficient transient genetic labeling of human CD34+ HPC with the truncated low-affinity nerve growth factor receptor (ΔLNGFR) for in vivo application. Here we investigate whether HPC labeling with ΔLNGFR affects lineage-specific cell differentiation, whether ΔLNGFR expression is maintained during lineage-specific cell differentiation and which leukemia cell line might be an appropriate cell culture model for human CD34+ HPC. Human CD34+ peripheral blood stem cells and various leukemia cell lines were characterized by immunophenotyping. Cells were transfected using nucleofection. Hematopoietic differentiation was studied by colony-forming assays. ΔLNGFR expression was assessed using reverse transcription-PCR, immunofluorescence and flow cytometry. Nucleofection was efficient and did not significantly reduce hematopoietic cell differentiation. Mature myeloid cells (CD66b+) derived from human CD34+ HPC and Mutz2 cells maintained ΔLNGFR expression at a high percentage (70 ± 2% and 58 ± 2%, respectively). Mutz2 cells may serve as an in vitro model for human myeloid HPC. The method described herein has been adopted to Good Manufacturing Practices (GMP) guidelines and is ready for in vivo application.
Collapse
|
14
|
Papapetrou EP, Zoumbos NC, Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2006; 12 Suppl 1:S118-30. [PMID: 16231044 DOI: 10.1038/sj.gt.3302626] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.
Collapse
Affiliation(s)
- E P Papapetrou
- Department of Biology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
15
|
Hackett PB, Ekker SC, Largaespada DA, McIvor RS. Sleeping Beauty Transposon‐Mediated Gene Therapy for Prolonged Expression. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 2 2005; 54:189-232. [PMID: 16096013 DOI: 10.1016/s0065-2660(05)54009-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty (SB) transposon system represents a new vector for non-viral gene transfer that melds advantages of viruses and other forms of naked DNA transfer. The transposon itself is comprised of two inverted terminal repeats of about 340 base pairs each. The SB system directs precise transfer of specific constructs from a donor plasmid into a mammalian chromosome. The excision of the transposon from a donor plasmid and integration into a chromosomal site is mediated by Sleeping Beauty transposase, which can be delivered to cells vita its gene or its mRNA. As a result of its integration in chromosomes, and its lack of viral sequences that are often detected by poorly understood cellular defense mechanisms, a gene in a chromosomally integrated transposon can be expressed over the lifetime of a cell. SB transposons integrate nearly randomly into chromosomes at TA-dinucleotide base pairs although the sequences flanking the TAs can influence the probability of integration at a given site. Although random integration of vectors into human genomes is often thought to raise significant safety issues, evidence to date does not indicate that random insertions of SB transposons represent risks that are equal to those of viral vectors. Here we review the activities of the SB system in mice used as a model for human gene therapy, methods of delivery of the SB system, and its efficacy in ameliorating disorders that model human disease.
Collapse
Affiliation(s)
- Perry B Hackett
- Department of Genetics, Cell Biology and Development Arnold and Mabel Beckman Center for Transposon Research University of Minnesota Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
16
|
Smith SL, Kiss J, Siatskas C, Medin JA, Moldwin RL. Enhanced effect of vascular endothelial growth factor, thrombopoietin peptide agonist, SCF, and Flt3-L on LTC-IC and reporter gene transduction from umbilical cord blood CD34+ cells. Transfusion 2004; 44:438-49. [PMID: 14996204 DOI: 10.1111/j.1537-2995.2003.00661.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hemangioblastic precursors have been identified that give rise to both endothelial cells and HPCs, suggesting that common growth factor requirements may exist. STUDY DESIGN AND METHODS The effect of vascular endothelial growth factor (VEGF) in combination with thrombopoietin peptide agonist (TPOA), Flt-3 L (F), and SCF (S) on long-term culture-initiating cell (LTC-IC), CFU, differentiation, and transduction of cord blood (CB) CD34+ were evaluated up to 4 weeks in culture. RESULTS At Week 4, in cultures containing T/F/S and VEGF, the LTC-IC increased 1000-fold (from 37 +/- 8 to 37,012 +/- 14,329) with a frequency of 3.4 in 10,000 cells. In the T/F/S cultures without VEGF, the LTC-IC increased 675-fold (to 25,086 +/- 12,102) with a frequency of one LTC-IC in 10,000 cells. The addition of VEGF significantly increased (p < 0.05) the LTC-IC per 10,000 CB CD34+ cells. Transduction with reporter gene enhanced green fluorescent protein (EGFP), resulted in an increase in EGFP+ CFU at Week 1 and EGFP + LTC-IC at Weeks 1 and 4. The cells maintained their multilineage expression when cultured in conditions for erythroid, myeloid, or megakaryocytic differentiation. Peak percentage EGFP coexpression of GlyA and CD11b was 51 +/- 6 percent and 63 +/- 15 percent, respectively, at Week 2, while CD41a was 34 +/- 17 percent at Week 4. CONCLUSION T/F/S and VEGF have an enhanced effect on total LTC-IC output and frequency but do not appear to significantly alter the differentiation or transducibility characteristics of CB HPCs in vitro.
Collapse
Affiliation(s)
- Stephen L Smith
- Institute for Transfusion Medicine, Stem Cell Services, Glenview, Illinois, USA.
| | | | | | | | | |
Collapse
|
17
|
Gewinnung und Präparation von peripheren Blutstammzellen. TRANSFUSIONSMEDIZIN 2004. [DOI: 10.1007/978-3-662-10597-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Wu MH, Smith SL, Dolan ME. High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2002; 19:492-9. [PMID: 11713340 DOI: 10.1634/stemcells.19-6-492] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human umbilical cord blood provides an alternative source of hematopoietic cells for purposes of transplantation or ex vivo genetic modification. The objective of this study was to evaluate electroporation as a means to introduce foreign genes into human cord blood CD34+ cells and evaluate gene expression in CD34+/CD38(dim) and committed myeloid progenitors (CD33+, CD11b+). CD34+ cells were cultured in X-VIVO 10 supplemented with thrombopoietin, stem cell factor, and Flt-3 ligand. Electroporation efficiency and cell viability measured by flow cytometry using enhanced green fluorescent protein (EGFP) as a reporter indicated 31% +/- 2% EGFP+ /CD34+ efficiency and 77% +/- 3% viability as determined 48 hours post-electroporation. The addition of allogeneic cord blood plasma increased the efficiency to 44% +/- 5% with no effect on viability. Of the total CD34+ cells 48 hours post-electroporation, 20% were CD38(dim)/EGFP+. CD34+ cells exposed to interleukin-3, GM-CSF and G-CSF for an additional 11 days differentiated into CD33+ and CD11b+ cells, and 9% +/- 3% and 8% +/- 7% were expressing the reporter gene, respectively. We show that electroporation can be used to introduce foreign genes into early hematopoietic stem cells (CD34+/CD38(dim)), and that the introduced gene is functionally expressed following expansion into committed myeloid progenitors (CD33+, CD11b+) in response to corresponding cytokines. Further investigation is needed to determine the transgene expression in functional terminal cells derived from the genetically modified CD34+ cells, such as T cells and dendritic cells.
Collapse
Affiliation(s)
- M H Wu
- Section of Hematology-Oncology, Department of Medicine and Cancer Research Center, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | |
Collapse
|