1
|
Ulhaq ZS, Ogino Y, Tse WKF. Transcriptome alterations in sf3b4-depleted zebrafish: Insights into cataract formation in retinitis pigmentosa model. Exp Eye Res 2024; 240:109819. [PMID: 38311285 DOI: 10.1016/j.exer.2024.109819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Posterior subcapsular cataract (PSC) frequently develops as a complication in patients with retinitis pigmentosa (RP). Despite numerous scientific investigations, the intricate pathomechanisms underlying cataract formation in individuals affected by RP remain elusive. Therefore, our study aims to elucidate the potential pathogenesis of cataracts in an RP model using splicing factor subunit 3b (sf3b4) mutant zebrafish. By analyzing our previously published transcriptome dataset, we identified that, in addition to RP, cataract was listed as the second condition in our transcriptomic analysis. Furthermore, we confirmed the presence of nucleus retention in the lens fiber cells, along with abnormal cytoskeleton expression in both the lens fiber cells and lens epithelial cells in sf3b4-depleted fish. Upon closer examination, we identified 20 differentially expressed genes (DEGs) that played a role in cataract formation, with 95 % of them related to the downregulation of structural lens proteins. Additionally, we also identified that among all the DEGs, 13 % were associated with fibrotic processes. It seems that the significant upregulation of inflammatory mediators, in conjunction with TGF-β signaling, plays a central role in the cellular biology of PSC and posterior capsular opacification (PCO) in sf3b4 mutant fish. In summary, our study provides valuable insights into cataract formation in the RP model of sf3b4 mutants, highlighting its complexity driven by changes in structural lens proteins and increased cytokines/growth factors.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Wei Z, Hao C, Chen JK, Gan L, Fan X. A tamoxifen-inducible Cre knock-in mouse for lens-specific gene manipulation. Exp Eye Res 2023; 226:109306. [PMID: 36372215 PMCID: PMC9839650 DOI: 10.1016/j.exer.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W, Wang J, Huang W, Chen D, Li J, Li H, Zhang J, Ma Y, Mu H, Zhang S, Liu M, Cui X, Hu Y. Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165724. [PMID: 32061775 DOI: 10.1016/j.bbadis.2020.165724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2β degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2β expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2β, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wen-Wen Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Chunxiao Du
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuwen Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Danling Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Shuman Zhang
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China; Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
4
|
Liang H, Xu J, Wang W. Ran1 is essential for parental macronuclear import of apoptosis-inducing factor and programmed nuclear death in Tetrahymena thermophila. FEBS J 2019; 286:913-929. [PMID: 30663224 DOI: 10.1111/febs.14761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023]
Abstract
During programmed nuclear death (PND), apoptosis-inducing factor (AIF) translocates from mitochondria to the parental macronucleus (MAC) in Tetrahymena thermophila. In the degenerating parental MAC, AIF induces chromatin condensation and large-scale DNA fragmentation in a caspase-independent manner. However, the regulation of AIF nuclear translocation and molecular mechanism of PND are less clear. In this study, we demonstrated that the asymmetric distribution of nuclear GDP-bound Ran1-mimetic mutant Ran1T25N and cytoplasmic GTP-bound Ran1-mimetic mutant Ran1Q70L exists across the parental macronuclear-cytoplasmic barrier during PND. Knockdown of RAN1 led to defects in PND progression and failure of parental macronuclear accumulation of AIF. Moreover, AIF parental macronuclear import occurred in Ran1T25N mutants, while it was inhibited in Ran1Q70L mutants. Importantly, artificial accumulation of AIF in the parental MAC rescued PND progression defects in RAN1 knockdown mutants. These data suggest that Ran1 is essential for parental macronuclear import of AIF and PND in T. thermophila.
Collapse
Affiliation(s)
- Haixia Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Nakamura T. Shadow Cell Differentiation: A Comparative Analysis of Modes of Cell Death with Apoptosis and Epidermal/Trichilemmal Keratinization. Dermatopathology (Basel) 2018; 5:86-97. [PMID: 30197883 PMCID: PMC6120400 DOI: 10.1159/000490491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022] Open
Abstract
Shadow cells are characterized by an eosinophilic cytoplasm and a ghost-like nuclear contour; the cell shape is preserved, in spite of nuclear disappearance. Shadow cell nests (SCNs) are frequently observed in pilomatricoma (PMX), where the transitional cells immediately adjacent to SCNs often have a crescent-shaped nucleus showing fragmentation similar to that of apoptotic bodies. They show nuclear accumulation of beta-catenin and DNA double strand breaks (as revealed by in situ 3′-tailing reaction or immunohistochemistry for single-stranded DNA [ssDNA]), while they are negative for cleaved caspase-3 or cleaved lamin A, suggesting that shadow cell differentiation (SCD) is a caspase-independent programmed cell death. SCD can be differentiated from epidermal keratinization (EK) and trichilemmal keratinization (TK) based on the expression pattern of beta-catenin, ssDNA, and caspase-14/CD138. SCD is observed not only in PMX, but also sometimes in basal cell carcinomas, gonadal teratomas, and various extra-cutaneous carcinomas. In particular, SCNs are found in 24$ of endometrial adenoacanthoma and are derived from squamoid morules. This establishes a link between basaloid cells in PMX and squamoid morules in endometrial adenoacanthomas as common precursors of shadow cells. Overall, it is suggested that SCD is different from, but partly similar to, apoptosis and that SCD and EK/TK should be differentiated from the standpoint of cell death/differentiation.
Collapse
|
6
|
The hidden side of SERPINB1/Leukocyte Elastase Inhibitor. Semin Cell Dev Biol 2016; 62:178-186. [PMID: 27422329 DOI: 10.1016/j.semcdb.2016.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
SERPINB1, also called Leukocyte Elastase Inhibitor (LEI) is a member of the clade B of SERPINS. It is an intracellular protein and acts primarily to protect the cell from proteases released into the cytoplasm during stress. Its role in inflammation is clear due to its involvement in the resolution of chronic inflammatory lung and bowel diseases. LEI/SERPINB1 intrinsically possesses two enzymatic activities: an antiprotease activity dependent on its reactive site loop, which is analogous to the other proteins of the family and an endonuclease activity which is unveiled by the cleavage of the reactive site loop. The conformational change induced by this cleavage also unveils a bipartite nuclear localization signal allowing the protein to translocate to the nucleus. Recent data indicate that it has also a role in cell migration suggesting that it could be involved in diverse processes like wound healing and malignant metastases.
Collapse
|
7
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
8
|
Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. BIOCHEMISTRY (MOSCOW) 2013; 77:1436-51. [PMID: 23379520 DOI: 10.1134/s0006297912130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism's development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.
Collapse
Affiliation(s)
- N I Aleksandrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
9
|
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20. [PMID: 21760595 PMCID: PMC3252826 DOI: 10.1038/cdd.2011.96] [Citation(s) in RCA: 1866] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - I Vitale
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - T M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - V L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - W S El-Deiry
- Cancer Institute Penn State, Hershey Medical Center, Philadelphia, PA 17033, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt 60528, Germany
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - D R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - O Kepp
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - R A Knight
- Institute of Child Health, University College London, London WC1N 3JH, UK
| | - S Kumar
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S A Lipton
- Sanford-Burnham Medical Research Institute, San Diego, CA 92037, USA
- Salk Institute for Biological Studies, , La Jolla, CA 92037, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Univerisity of California, San Diego, La Jolla, CA 92093, USA
| | - X Lu
- Ludwig Institute for Cancer Research, Oxford OX3 7DQ, UK
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - W Malorni
- Department of Therapeutic Research and Medicines Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto San Raffaele Sulmona, 67039 Sulmona, Italy
| | - P Mehlen
- Apoptosis, Cancer and Development, CRCL, 69008 Lyon, France
- INSERM, U1052, 69008 Lyon, France
- CNRS, UMR5286, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - G Nuñez
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M E Peter
- Northwestern University Feinberg School of Medicine, Chicago, IL 60637, USA
| | - M Piacentini
- Laboratory of Cell Biology, National Institute for Infectious Diseases IRCCS ‘L Spallanzani', 00149 Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata', 00133 Rome, Italy
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Y Shi
- Shanghai Institutes for Biological Sciences, 200031 Shanghai, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - P Vandenabeele
- Department for Molecular Biology, Gent University, 9052 Gent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - E White
- The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - G Melino
- Biochemical Laboratory IDI-IRCCS, Department of Experimental Medicine, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - G Kroemer
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75908 Paris, France
- Université Paris Descartes, Paris 5, 75270 Paris, France
| |
Collapse
|
10
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 2011; 362:219-29. [PMID: 22173065 DOI: 10.1016/j.ydbio.2011.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 01/22/2023]
Abstract
Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Petty S, Trojanowski A, Knee K, Goulet D, Mukerji I, King J. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin. Invest Ophthalmol Vis Sci 2009; 51:672-8. [PMID: 19684009 DOI: 10.1167/iovs.09-3987] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mature-onset cataract results from the formation of light-scattering aggregates of lens crystallins. Although oxidative or mutational damage may be a prerequisite, little is known of the initiation or nucleation of these aggregated states. In mice carrying mutations in gamma-crystallin genes, a truncated form of gamma-crystallin formed intranuclear filamentous inclusions within lens fiber cells. Previous studies have shown that bovine crystallins and human gammaD-crystallin form amyloid fibrils under denaturing conditions in vitro. The amyloid fibril formation of human gammaC-crystallin (HgammaC-Crys) induced by low pH, together with characterization of a partially unfolded intermediate in the process were investigated. METHODS HgammaC-Crys was expressed and purified from Escherichia coli. Partially unfolded intermediates were detected by tryptophan fluorescence spectroscopy and UV resonance Raman spectroscopy. The aggregation into amyloid fibrils was monitored by solution turbidity and fluorescence assay. The morphology of aggregates was characterized using transmission electron microscopy (TEM). Secondary structure of the peptides in their fibrillar state was characterized using Fourier transform infrared spectroscopy (FTIR). RESULTS The structure of HgammaC-Crys was perturbed at low pH. Partially unfolded intermediates were detected when solution pH was lowered to pH 3. At pH 3, HgammaC-Crys aggregated into amyloid fibrils. The kinetics and extent of the reaction was dependent on protein concentration, pH, and temperature. TEM images of aggregates revealed aggregation stages from short to long fibrils and from long fibrils to light-scattering fibril networks. FTIR spectroscopy confirmed the cross-beta character of the secondary structure of these fibrils. CONCLUSIONS HgammaC-Crys formed amyloid fibrils on incubation at low pH via a partially unfolded intermediate. This process could contribute to the early stages of the formation of light-scattering species in the eye lens.
Collapse
Affiliation(s)
- Yongting Wang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Torriglia A, Leprêtre C, Padrón-Barthe L, Chahory S, Martin E. Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis. Biochem Pharmacol 2008; 76:1490-502. [DOI: 10.1016/j.bcp.2008.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 01/22/2023]
|
14
|
Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2008; 16:3-11. [PMID: 18846107 DOI: 10.1038/cdd.2008.150] [Citation(s) in RCA: 2066] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Collapse
|
15
|
Leprêtre C, Scovassi AI, Shah GM, Torriglia A. Regulation of poly(ADP-ribose) polymerase-1 functions by leukocyte elastase inhibitor/LEI-derived DNase II during caspase-independent apoptosis. Int J Biochem Cell Biol 2008; 41:1046-54. [PMID: 18951996 DOI: 10.1016/j.biocel.2008.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an important regulator of apoptosis. Its over-activation at the onset of apoptosis can inhibit the action of apoptotic endonucleases like caspase-activated DNase and DNAS1L3. Therefore, controlled PARP-1 proteolysis during caspase-dependent apoptosis is considered essential to promote DNA degradation. Yet, little is known about the interplay of PARP-1 and endonucleases that operate during caspase-independent cell death. Here we show that in the long-term cultured HeLa cells which undergo caspase-independent death, PARP-1 co-immunoprecipitates with leukocyte elastase inhibitor-derived DNase II (L-DNase II), an acid DNase implicated in this death pathway and activated by serine proteases. Our results indicate that, despite having putative poly(ADP-ribose)-acceptor sites, LEI/L-DNase II is neither significantly poly(ADP-ribosyl)ated nor inhibited by PARP-1 during caspase-independent apoptosis. Unexpectedly, caspase-independent apoptosis induced by hexa-methylene amiloride, LEI/L-DNase II can activate PARP-1 and promote its auto-poly(ADP-ribosyl)ation, thus inhibiting PARP-1 activity. Moreover, overexpression of LEI blocks the pro-survival effect of PARP-1 in this model of cell death. Our results provide the original evidence for a new mechanism of PARP-1 activity regulation in the caspase-independent death pathway involving LEI/L-DNase II.
Collapse
Affiliation(s)
- C Leprêtre
- Université Pierre et Marie Curie-Paris 6, France; Université Paris Descartes-Paris 5, France.
| | | | | | | |
Collapse
|
16
|
Padrón-Barthe L, Courta J, Leprêtre C, Nagbou A, Torriglia A. Leukocyte Elastase Inhibitor, the precursor of L-DNase II, inhibits apoptosis by interfering with caspase-8 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1755-66. [DOI: 10.1016/j.bbamcr.2008.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 11/29/2022]
|
17
|
On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res 2008; 88:133-9. [PMID: 18840431 DOI: 10.1016/j.exer.2008.08.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 11/20/2022]
Abstract
The programmed elimination of cytoplasmic organelles occurs during terminal differentiation of erythrocytes, keratinocytes and lens fiber cells. In each case, the process is relatively well understood phenomenologically, but the underlying molecular mechanisms have been surprisingly slow to emerge. This brief review considers the particular case of the lens where, in addition to their specialized physiological roles, organelles represent potential sources of light scattering. The article describes how the elimination of organelles from lens cells located on the visual axis contributes to the transparency of lens tissue. Classic anatomical studies of lens organelle degradation are discussed, along with more contemporary work utilizing confocal microscopy and other imaging modalities. Finally, recent data on the biochemistry of organelle degradation are reviewed. Several review articles on lens organelle degradation are available [Wride, M.A., 1996. Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61, 77-93; Wride, M.A., 2000. Minireview: apoptosis as seen through a lens. Apoptosis 5, 203-209; Bassnett, S., 2002. Lens organelle degradation. Exp. Eye Res. 74, 1-6; Dahm, R., 2004. Dying to see. Sci. Am. 291, 82-89] and readers are directed to these for a comprehensive discussion of the earlier literature on this topic.
Collapse
|
18
|
O'Connell AR, Stenson-Cox C. A more serine way to die: defining the characteristics of serine protease-mediated cell death cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1491-9. [PMID: 17888529 DOI: 10.1016/j.bbamcr.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/11/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The morphological features observed by Kerr, Wylie and Currie in 1972 define apoptosis, necrosis and autophagy. An appreciable number of alternative systems do not fall neatly under these categories, warranting a review of alternative proteolytic machinery and its contribution to cell death. This review aims to pinpoint key molecular features of serine protease-mediated pro-apoptotic signalling. The profile created will contribute to a standard set of biochemical criteria that can serve in differentiating within cell death subtypes.
Collapse
Affiliation(s)
- A R O'Connell
- National Centre for Biomedical and Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
19
|
Padron-Barthe L, Leprêtre C, Martin E, Counis MF, Torriglia A. Conformational modification of serpins transforms leukocyte elastase inhibitor into an endonuclease involved in apoptosis. Mol Cell Biol 2007; 27:4028-36. [PMID: 17403905 PMCID: PMC1900025 DOI: 10.1128/mcb.01959-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The best-characterized biochemical feature of apoptosis is degradation of genomic DNA into oligonucleosomes. The endonuclease responsible for DNA degradation in caspase-dependent apoptosis is caspase-activated DNase. In caspase-independent apoptosis, different endonucleases may be activated according to the cell line and the original insult. Among the known effectors of caspase-independent cell death, L-DNase II (LEI [leukocyte elastase inhibitor]-derived DNase II) has been previously characterized by our laboratory. We have thus shown that this endonuclease derives from the serpin superfamily member LEI by posttranslational modification (A. Torriglia, P. Perani, J. Y. Brossas, E. Chaudun, J. Treton, Y. Courtois, and M. F. Counis, Mol. Cell. Biol. 18:3612-3619, 1998). In this work, we assessed the molecular mechanism involved in the change in the enzymatic activity of this molecule from an antiprotease to an endonuclease. We report that the cleavage of LEI by elastase at its reactive center loop abolishes its antiprotease activity and leads to a conformational modification that exposes an endonuclease active site and a nuclear localization signal. This represents a novel molecular mechanism for a complete functional conversion induced by changing the conformation of a serpin. We also show that this molecular transformation affects cellular fate and that both endonuclease activity and nuclear translocation of L-DNase II are needed to induce cell death.
Collapse
Affiliation(s)
- Laura Padron-Barthe
- INSERM U598, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
20
|
Abstract
The ocular lens is a distinct system to study cell death for the following reasons. First, during animal development, the ocular lens is crafted into its unique shape. The crafting processes include cell proliferation, cell migration, and apoptosis. Moreover, the lens epithelial cells differentiate into lens fiber cells through a process, which utilizes the same regulators as those in apoptosis at multiple signaling steps. In addition, introduction of exogenous wild-type or mutant genes or knock-out of the endogenous genes leads to apoptosis of the lens epithelial cells followed by absence of the ocular lens or formation of abnormal lens. Finally, both in vitro and in vivo studies have shown that treatment of adult lens with stress factors induces apoptosis of lens epithelial cells, which is followed by cataractogenesis. The present review summarizes the current knowledge on apoptosis in the ocular lens with emphasis on its role in lens development and pathology.
Collapse
Affiliation(s)
- Qin Yan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | | | | |
Collapse
|
21
|
Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie 2006; 88:1851-8. [PMID: 16989934 DOI: 10.1016/j.biochi.2006.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/05/2006] [Indexed: 01/11/2023]
Abstract
Apoptosis is characterized by cell shrinkage, nuclear condensation and internucleosomal DNA cleavage. Besides the central role of caspases and other proteases, cell death triggers DNA degradation so that DNases have an active role in apoptotic cell death. The best-characterized apoptotic DNase is CAD, a neutral Mg-dependent endonuclease. Its activity is regulated by its inhibitor, ICAD, which is cleaved by caspases. Other neutral DNases have been shown to cleave nuclear DNA in apoptotic conditions: endonuclease G, GADD. In cells, the cytosolic pH is maintained to 7.2, mostly due to the activity of the Na(+)/H(+) exchanger. In many apoptotic conditions, a decrease of the intracellular pH has been shown. This decrease may activate different acid DNases, mostly when pH decreases below 6.5. Three acidic DNases II are so far known: DNase II alpha, DNase II beta and L-DNase II, a DNase II, derived from the serpin LEI (Leukocyte Elastase Inhibitor). Their activation during cell death is discussed in this review.
Collapse
Affiliation(s)
- Marie-France Counis
- INSERM U 598, Centre de Recherches Biomédicales des Cordeliers, Paris, France.
| | | |
Collapse
|
22
|
Takle H, McLeod A, Andersen O. Cloning and characterization of the executioner caspases 3, 6, 7 and Hsp70 in hyperthermic Atlantic salmon (Salmo salar) embryos. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:188-98. [PMID: 16574452 DOI: 10.1016/j.cbpb.2006.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/30/2006] [Accepted: 02/12/2006] [Indexed: 01/20/2023]
Abstract
Hyperthermia during embryogenesis has been reported to induce deformities in Atlantic salmon (Salmo salar). To examine the involvement of executioner caspases in hyperthermia-induced cell-death in a poikilotherm vertebrate species, five genes encoding caspase-3,-6, and -7 were cloned from Atlantic salmon, and the expression was studied in thermal stressed salmon embryos. The salmon genome contained two genetically distinct variants of both salmon caspase-3 and caspase-6 that is likely the result of two independent chromosome or genome duplications. Whereas only partial caspase-3A encoding sequences were isolated, the full-length caspase-3B cDNA encodes the inactive proenzyme of 279 amino acids (aa) consisting of an N-terminal prodomain and the large and the small subunit. The salmon caspase-6A and caspase-6B proenzymes include an additional linker region between the two subunits. The deduced salmon caspase-7 consists of only 245 aa and lacks the prodomain and part of the large subunit similar to the predicted caspase-7 of the puffer fish Tetraodon sp.. Increased apoptotic activity as evidenced by cleavage of nuclear DNA was demonstrated in salmon embryos incubated at 18-20 degrees C for 84 h after acclimatization at 8 degrees C. Hyperthermia-induced activation of the executioner caspases was indicated by the increased mRNA levels of caspase-3B, caspase-6A/B and caspase-7 after 54 h heat exposure as quantified by real-time RT-PCR. The 2-2.5 fold increase in the mRNA expression of the heat shock protein Hsp70 gene coincided with the peak mRNA values of the executioner caspases. Whole-mount in situ hybridization of the salmon embryo identified caspase-7 mRNA in the lens exclusively, while caspase-3B and caspase-6A/B were expressed in multiple tissues of exposed and control embryos. Interestingly, cardiac expression of caspase-6A/B was only identified in heat stressed embryos. Altogether, these results shed light on evolutionary aspects of the executioner caspases in vertebrates and their expression in salmon embryos exposed to hyperthermia. In particular, the heat sensitive caspase-6 expression in the embryonic heart is of interest since cardiac malformations are an emergent problem in salmon aquaculture.
Collapse
Affiliation(s)
- Harald Takle
- AKVAFORSK (Institute of Aquaculture Research), Norwegian University of Life Sciences, P.O. Box 5010, N-1432 Aas, Norway.
| | | | | |
Collapse
|
23
|
Oliver L, Vallette FM. The role of caspases in cell death and differentiation. Drug Resist Updat 2005; 8:163-70. [PMID: 15946892 DOI: 10.1016/j.drup.2005.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/21/2005] [Accepted: 05/24/2005] [Indexed: 12/19/2022]
Abstract
The complexity, redundancy and interdependence of the biological systems involved in tumour response to different treatments hamper progress towards developing specific and effective therapies. In addition, the many and even contradictory roles played by certain key proteins can significantly amend our view on tumourigenesis. The role of caspases in the modulation of cell death and differentiation is a prominent example of such a complexity. Here we focus on the role of caspases in apoptotic cell death, mainly in haematological malignancies, tumourigenesis, sepsis, T-cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Lisa Oliver
- Equipe 4 Labellisée Ligue contre le Cancer, UMR 601 INSERM/Université de Nantes, 9 Quai Moncousu, 44035 Nantes Cedex 01, France.
| | | |
Collapse
|
24
|
Abstract
Patterns of cell death have been divided into apoptosis, which is actively executed by specific proteases, the caspases, and accidental necrosis. However, there is now accumulating evidence indicating that cell death can occur in a programmed fashion but in complete absence and independent of caspase activation. Alternative models of programmed cell death (PCD) have therefore been proposed, including autophagy, paraptosis, mitotic catastrophe, and the descriptive model of apoptosis-like and necrosis-like PCD. Caspase-independent cell death pathways are important safeguard mechanisms to protect the organism against unwanted and potential harmful cells when caspase-mediated routes fail but can also be triggered in response to cytotoxic agents or other death stimuli. As in apoptosis, the mitochondrion can play a key role but also other organelles such as lysosomes and the endoplasmic reticulum have an important function in the release and activation of death factors such as cathepsins, calpains, and other proteases. Here we review the various models of PCD and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of caspase-independent cell death pathways for cancer.
Collapse
Affiliation(s)
- Linda E Bröker
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
25
|
Abstract
Many cells die with apoptotic morphology and with documented activation of an effector caspase, but there are also many exceptions. Cells frequently display activation of other proteases, including granzymes, lysosomal cathepsins, matrix metalloproteinases, and proteasomal proteases, and others display morphologies that are not fully consistent with classical apoptosis. In some experimental situations, evidence of caspase-dependent death is indirect, demonstrating that the cell can activate caspases rather than that it does. In other situations, such as involution of mammary or prostate tissue, many cells display autophagic or other morphology different from apoptosis, and there is considerable evidence for the activation of a lysosomal system. Prior to total collapse and necrosis, cells that are in trouble can activate numerous physiological pathways toward self-destruction. Intrinsic or extrinsic routes to effector caspase activation are frequently the most rapid and efficient. If neither of these routes is immediately available, owing to mutation, genetic manipulation, inhibitor, or the biology of the cell, other routes may be followed, leading to variant forms of cell death that may display one or more characteristics of apoptosis. Experimental and therapeutic procedures must account for this possibility.
Collapse
Affiliation(s)
- Richard A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | | |
Collapse
|
26
|
Abstract
Programmed cell death is a major component of both normal development and disease. The roles of cell death during either embryogenesis or pathogenesis, the signals that modulate this event, and the mechanisms of cell demise are the major subjects that drive research in this field. Increasing evidence obtained both in vitro and in vivo supports the hypothesis that a variety of cell death programs may be triggered in distinct circumstances. Contrary to the view that caspase-mediated apoptosis represents the standard programmed cell death, recent studies indicate that an apoptotic morphology can be produced independent of caspases, that autophagic execution pathways of cell death may be engaged without either the involvement of caspases or morphological signs of apoptosis, and that even the necrotic morphology of cell death may be consistently produced in some cases, including certain plants. Alternative cell death programs may imply novel therapeutic targets, with important consequences for attempts to treat diseases associated with disregulated programmed cell death.
Collapse
|
27
|
Sanders EJ, Parker E. Retroviral overexpression of bcl-2 in the embryonic chick lens influences denucleation in differentiating lens fiber cells. Differentiation 2003; 71:425-33. [PMID: 12969335 DOI: 10.1046/j.1432-0436.2003.7107005.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the course of their differentiation, embryonic lens fibers undergo loss of their cytoplasmic organelles and nuclei. The denucleation process bears similarities to the nuclear breakdown that occurs during apoptosis. This has given rise to the hypothesis that this denucleation is analogous to apoptosis, but without the plasma membrane changes characteristic of apoptotic cell death. Previous work has shown that several members of the apoptotic cascade are active during denucleation. Here, we have overexpressed the anti-apoptotic molecule bcl-2 in developing lenses of the 8-day-old chick embryo in ovo, using the replication-competent retrovirus RCAS. We find that lenses overexpressing bcl-2 show varying degrees of distortion in comparison with untreated and negative insert controls, including a more spherical shape and disorganized fiber cells. All overexpressing lenses showed significantly higher numbers of smaller nuclei in the lens core, where denucleation begins. There was no change in cell size or pattern of proliferation. These in vivo results were confirmed in vitro using lens epithelial cell cultures, which differentiate into lentoids. The lentoids in treated cultures showed the same effect on nuclear number and size. We further found that in lenses overexpressing bcl-2 there was a reduction in the activation of caspase-9 and the cleavage of the caspase substrate DFF45, and, in the lens core, a failure of the nuclear chromatin to condense. These results provide strong support for the view that embryonic lens fiber cell denucleation is analogous to the nuclear degradation that occurs during apoptosis, and that similar control pathways are involved in both these phenomena.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
28
|
Altairac S, Zeggai S, Perani P, Courtois Y, Torriglia A. Apoptosis induced by Na+/H+ antiport inhibition activates the LEI/L-DNase II pathway. Cell Death Differ 2003; 10:548-57. [PMID: 12728253 DOI: 10.1038/sj.cdd.4401195] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
L-DNase II is derived from its precursor leucocyte elastase inhibitor (LEI) by post-translational modification. In vitro, the conversion of LEI into L-DNase II can be induced by incubation of LEI at an acidic pH. In this study, we proposed to analyze the effects of intracellular acidification on this transformation. Amiloride derivatives, like hexamethylene amiloride (HMA), are known to provoke a decrease of cytosolic pH by inhibiting the Na(+)/H(+) antiport. In BHK cells, treatment with HMA-induced apoptosis accompanied by an increase in L-DNase II immunoreactivity and L-DNase II enzymatic activity. Overexpression of L-DNase II precursor led to a significant increase of apoptosis in these cells supporting the involvement of L-DNase II in HMA induced apoptosis. As previously shown in other cells, etoposide-induced apoptosis did not activate L-DNase. On the contrary, LEI overexpression significantly increased cell survival in etoposide-induced apoptosis. Together these results suggest differential roles of LEI and L-DNase II in response to different types of apoptotic inducers.
Collapse
Affiliation(s)
- S Altairac
- Développement, Pathologie et Vieillissement de la Rétine, INSERM U450, Association Claude Bernard, Institut Biomédical des Corderliers, 15 rue de l'Ecole de Médecine, Paris, France
| | | | | | | | | |
Collapse
|
29
|
Dahm R, Bramke S, Dawczynski J, Nagaraj RH, Kasper M. Developmental aspects of galectin-3 expression in the lens. Histochem Cell Biol 2003; 119:219-26. [PMID: 12649736 DOI: 10.1007/s00418-003-0508-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2003] [Indexed: 11/29/2022]
Abstract
In order to investigate the temporal and spatial expression pattern of the lectin galectin-3 during lens development we performed immunohistochemical studies using monoclonal and polyclonal antibodies against galectin-3 on paraffin sections of human, mouse and rat eyes. Galectin-3 has been shown to be involved in various biological functions related to cell adhesion, proliferation, apoptosis and differentiation in other tissues. In the human lens, galectin-3 shows a selective expression pattern during lens development. It is present in all cells of the early lens vesicle and at later stages it is strongly expressed during the elongation phase in differentiating primary lens fibres. From about 7 weeks onwards the anterior lens epithelium fails to express galectin-3. Adult lenses, however, exhibit immunoreactivity in the anterior epithelial cells and in the early differentiating secondary fibres of the lens' outer cortex prior to the onset of degradation of the nuclei. In contrast to the observed expression pattern in prenatal human lenses, mouse and rat lenses exhibited immunoreactivity for galectin-3 during postnatal and adult stages only. At these stages, the expression pattern closely resembles that seen in the corresponding human lenses. The spatiotemporal pattern of galectin-3 distribution during lens development favours a role of this lectin in adhesion processes and in the regulation of programmed organelle elimination during lens cell differentiation.
Collapse
Affiliation(s)
- Ralf Dahm
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
30
|
Sanders EJ, Parker E. The role of mitochondria, cytochrome c and caspase-9 in embryonic lens fibre cell denucleation. J Anat 2002; 201:121-35. [PMID: 12220121 PMCID: PMC1570907 DOI: 10.1046/j.1469-7580.2002.00081.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the differentiation of secondary lens fibre cells from the lens epithelium, the fibre cells lose all of their cytoplasmic organelles as well as their nuclei. The fibre cells, containing crystallins, which confer optical clarity, then persist in the adult lens. The process of denucleation of these cells has been likened to an apoptotic event which is not followed by the plasma membrane changes that are characteristic of apoptosis. We have examined the expression and subcellular translocation of molecules of the apoptotic cascade in differentiating lens epithelial cells in culture. In this culture system, the epithelial cells differentiate into lentoids composed of lens fibre cells. We find that caspase-9, which is expressed and activated before embryonic day 12 in intact lenses, is localized in the cytosol outside mitochondria in non-differentiating cultured cells. In lentoid cells, caspase-9 migrates into mitochondria after the latter undergo a membrane permeability transition that is characteristic of apoptotic cells. At the same time, caspase-9 co-localizes with cytochrome c in the cytosol. The cytochrome c is apparently released from the mitochondria in lentoid cells after the mitochondrial membrane permeability transition and during the period of nuclear shrinkage. Also during this time, the mitochondria aggregate around the degenerating nuclei. Cytochrome c disappears rapidly, while mitochondrial breakdown occurs approximately coincident with the disappearance of the nuclei, but mitochondrial remnants persist together with cytochrome c oxidase, which is a mitochondrial marker protein. Apaf-1, another cytosolic protein of the apoptotic cascade, also migrates to the permeabilized mitochondria and also co-localizes with caspase-9 and cytochrome c in the cytosol or mitochondria of denucleating cells, thus providing evidence for the formation of an 'apoptosome' in these cells, as in apoptotic cells. At no time did we observe the translocation of molecules between cytoplasmic compartments and the nucleus in differentiating lentoid cells. We suggest that the uncoupling of nuclear and membrane apoptotic events in these cells may be due to the early permeability changes in the mitochondria, resulting in the loss of mitochondrial signalling molecules, or to the failure of molecules to migrate to the nucleus in these cells, thus failing to activate nuclear-plasma membrane signalling pathways.
Collapse
Affiliation(s)
- E J Sanders
- Department of Physiology, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
31
|
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367-93. [PMID: 11965491 DOI: 10.1038/sj.cdd.4400950] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.
Collapse
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| |
Collapse
|
32
|
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology and Visual Sciences and of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
33
|
Belkacémi Y, Touboul E, Méric JB, Rat P, Warnet JM. [Radiation-induced cataract: physiopathologic, radiobiologic and clinical aspects]. Cancer Radiother 2001; 5:397-412. [PMID: 11525197 DOI: 10.1016/s1278-3218(01)00111-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cataractogenesis is a widely reported late effect of irradiated crystalline lens. In this review the authors discussed the different aspects of radiation cataract pathogenesis, and the different mechanisms involved in the lens opacification, particularly the epithelium modifications such as epithelial cell death. The authors also reported the influence of radiation exposure on cataract formation following total body irradiation (TBI) and autologous or allogeneic bone marrow transplantation for hematologic malignancies. Moreover, the radiobiological parameters are not studied for the crystalline lens of human. We applied for the first time the linear-quadratic (LQ) and biological effective dose (BED) concept to TBI data. The calculated value of alpha/beta of 1 Gy is in the range of the values reported for the other late responding tissues. The other risk factors for cataract development after TBI such as age, gender, central nervous system boost, long-term steroid therapy and heparin administration are discussed. In terms of cataract or sicca syndrome prevention, numerous compounds have been successfully tested in experimental models or used for the prevention of radiation-induced xerostomia in patients treated for head and neck cancer. However, none of them has been clinically evaluated for ocular radiation late effects prevention. In this report the authors discussed some of the radioprotectors potentially interesting for radiation-induced cataract or sicca syndrome prevention.
Collapse
Affiliation(s)
- Y Belkacémi
- Laboratoire de toxicologie, UFR pharmacie, université Paris V. Unité de pharmacotoxicologie cellulaire, service pharmacie, 75012 Paris, France.
| | | | | | | | | |
Collapse
|
34
|
Green GR, Ferlita RR, Walkenhorst WF, Poccia DL. Linker DNA destabilizes condensed chromatin. Biochem Cell Biol 2001. [DOI: 10.1139/o01-115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.Key words: chromatin condensation, sea urchin sperm, chicken red blood cell, nuclei, linker DNA, histone variants, micrococcal nuclease, nucleosome, trypsin, gel electrophoresis.
Collapse
|
35
|
Torriglia A, Chaudun E, Chany-Fournier F, Courtois Y, Counis MF. Involvement of L-DNase II in nuclear degeneration during chick retina development. Exp Eye Res 2001; 72:443-53. [PMID: 11273672 DOI: 10.1006/exer.2000.0969] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the development of the neural retina, 50% of the neurons die physiologically by apoptosis. In the chick embryo, the apoptotic wave starts at E8 and ends at E18, with a peak at E11. The onset of apoptosis is accompanied by the activation of several degradative enzymes. Among these, the activation of the endonucleases leads to the degradation of the genomic DNA of the cell which is thought to be the final event in apoptosis. Here, we have investigated the endonucleases activated during apoptosis associated with retinal development. We have found that Ca2+-Mg2+-dependent endonucleases, as well as acid endonucleases are activated. The results obtained in vitro using purified nuclei from chicken retina indicate that the endonuclease activity resulting from the activation of L-DNase II, an acid DNase is responsible for most of the DNA degradation observed in these cells.
Collapse
Affiliation(s)
- A Torriglia
- Unité 450 INSERM, Affiliée CNRS, Association Claude Bernard, 29 rue Wilhem, 75016 Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Sinha D, Wyatt MK, Sarra R, Jaworski C, Slingsby C, Thaung C, Pannell L, Robison WG, Favor J, Lyon M, Wistow G. A temperature-sensitive mutation of Crygs in the murine Opj cataract. J Biol Chem 2001; 276:9308-15. [PMID: 11121426 DOI: 10.1074/jbc.m010583200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Opj, an inherited cataract in mice, opacity is associated with a mutation in Crygs, the gene for gammaS-crystallin, the first mutation to be associated with this gene. A single base change causes replacement of Phe-9, a key hydrophobic residue in the core of the N-terminal domain, by serine. Despite this highly non-conservative change, mutant protein folds normally at low temperature. However, it exhibits a marked, concentration-dependent decrease in solubility, associated with loss of secondary structure, at close to physiological temperatures. This is reminiscent of processes thought to occur in human senile cataracts in which normal proteins become altered and aggregate. The Opj cataract is progressive and more severe in Opj/Opj than in Opj/+. Lens histology shows that whereas fiber cell morphology in Opj/+ mice is essentially normal, in Opj/Opj, cortical fiber cell morphology and the loss of maturing fiber cell nuclei are both severely disrupted from early stages. This may indicate a loss of function of gammaS-crystallin which would be consistent with ideas that members of the betagamma-crystallin superfamily may have roles associated with maintenance of cytoarchitecture.
Collapse
Affiliation(s)
- D Sinha
- NEI and the NIDDK, National Institutes of Health, Bethesda, Maryland 20892-2740, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Torriglia A, Perani P, Brossas JY, Altairac S, Zeggai S, Martin E, Tréton J, Courtois Y, Counis MF. A caspase-independent cell clearance program. The LEI/L-DNase II pathway. Ann N Y Acad Sci 2001; 926:192-203. [PMID: 11193035 DOI: 10.1111/j.1749-6632.2000.tb05612.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery of caspase-mitochondrial pathway counts as one of the most important discovery in apoptosis biochemistry. Today, however, we begin to recognize its limits. Inhibition of caspase does not prevent cell death in many mammalian models. Targeted disruption of caspases does not impair every type of apoptosis. Other pathways, caspase independent, are now described. Here we present one of these pathways. It is a serine-protease dependent pathway and its key event is the transformation of LEI (a serine protease inhibitor) into L-DNase II (an endonuclease). When using this apoptotic pathway the cell activates, at the same time, its endonuclease activity (L-DNase II appears) and its protease activity (there is a release of inhibition of proteases).
Collapse
Affiliation(s)
- A Torriglia
- Unité 450 INSERM, Association Claude Bernard, 75016 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sibirtsev Y, Menzorova NI, Shastina VV, Rasskazov VA. DNAase multiplicity in sea urchin Strongylocentrotus intermedius spermatozoa. DOKL BIOCHEM BIOPHYS 2001; 376:4-6. [PMID: 11712131 DOI: 10.1023/a:1018831605850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Y Sibirtsev
- Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, pr. Stoletiya Vladivostoka 159, Far East State University, Ministry of Education of the Russian Federation, Vladivostok, Russia
| | | | | | | |
Collapse
|
39
|
Abstract
Here we review the different apoptotic DNases. From a functional point of view, DNases implicated in apoptosis may be classified into three groups: the Ca2+/Mg2+endonucleases, the Mg2+-endonucleases, and the cation-independent endonucleases. The first group includes DNase I which has no specificity for the linker region, DNase gamma which has some homology with DNase I, and other DNases which cleave DNA in the linker region. Both DNase I and DNase gamma have been cloned. The other nucleases of this category have dispersed molecular weights. Their sequences are unknown and it is difficult to determine their role(s) in apoptosis. It seems that different pathways are present and that these nucleases may be activated either by caspases or serine proteases. The caspase 3 activated DNase (CAD, CPAN, or DFF40) belongs to the Mg2+-dependent endonucleases. DNase II belongs to the third group of acid endonucleases or cation-independent DNases. We have shown the involvement of DNase II in lens cell differentiation. Recently, the molecular structure of two different enzymes has been elucidated, one of which has a signal peptide and appears to be secreted. The other, called L-DNase II, is an intracellular protein having two enzymatic activities; in its native form, it is an anti-protease, and after posttranslational modification, it becomes a nuclease.Key words: endonucleases, apoptosis, caspases, serine proteases.
Collapse
|
40
|
Wride MA, Parker E, Sanders EJ. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev Biol 1999; 213:142-56. [PMID: 10452852 DOI: 10.1006/dbio.1999.9375] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis.
Collapse
Affiliation(s)
- M A Wride
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | | | | |
Collapse
|