1
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Colitti N, Desmoulin F, Le Friec A, Labriji W, Robert L, Michaux A, Conchou F, Cirillo C, Loubinoux I. Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue. Front Cell Neurosci 2022; 16:871532. [PMID: 35928573 PMCID: PMC9345199 DOI: 10.3389/fncel.2022.871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.
Collapse
Affiliation(s)
- Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Wafae Labriji
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Amandine Michaux
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
- *Correspondence: Isabelle Loubinoux,
| |
Collapse
|
3
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
4
|
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20:175-193. [PMID: 30655609 PMCID: PMC7325303 DOI: 10.1038/s41580-018-0089-8] [Citation(s) in RCA: 1177] [Impact Index Per Article: 235.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Yao L, Lu P, Ling EA. Melatonin Suppresses Toll Like Receptor 4-Dependent Caspase-3 Signaling Activation Coupled with Reduced Production of Proinflammatory Mediators in Hypoxic Microglia. PLoS One 2016; 11:e0166010. [PMID: 27812200 PMCID: PMC5094586 DOI: 10.1371/journal.pone.0166010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022] Open
Abstract
Microglia activation and associated inflammatory response play pivotal roles in the pathogenesis of different neurodegenerative diseases including neonatal hypoxic brain injury. Here we show that caspase3 expression was upregulated in activated microglia after hypoxic exposure, and remarkably, the cell viability remained unaffected alluding to the possibility of a non-apoptotic role of caspase3 in activated microglia. Chemical inhibition of caspase3 suppressed microglia activation as evident by an obvious reduction in expression of proinflammatory mediators and NF-κB signaling activation. Hypoxia induced caspase3 activation was TLR4 dependent as supported by the fact that caspase3 activation was hindered in cells with TLR4 knockdown. Interestingly, melatonin treatment significantly suppressed caspase3 activation. More importantly, melatonin also inhibited the increase in TLR4 protein and mRNA expression in hypoxic microglia. Inhibition of TLR4 expression by melatonin was also found in microglia of postnatal rats subjected to hypoxic exposure. Taken together, it is concluded that melatonin could inhibit TLR4 expression in hypoxic microglia followed by suppression of caspase3 activation leading to decrease in production of proinflammatory mediators.
Collapse
Affiliation(s)
- Linli Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
6
|
Zhang T, Wang W, Huang J, Liu X, Zhang H, Zhang N. Metabolomic investigation of regional brain tissue dysfunctions induced by global cerebral ischemia. BMC Neurosci 2016; 17:25. [PMID: 27206925 PMCID: PMC4875627 DOI: 10.1186/s12868-016-0256-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/11/2016] [Indexed: 11/14/2022] Open
Abstract
Background To get a broader view of global ischemia-induced cerebral disorders at the metabolic level, a nuclear magnetic resonance-based metabolomic study was performed to evaluate the metabolic profile changes on regional brain tissues of female and male mice upon bilateral common carotid arteries occlusion (BCCAO) operation. Results Significant metabolic disorders were observed in both cerebral cortex and hippocampus tissues of the experimental mice upon global cerebral ischemic attack. Multiple amino acids were identified as the dominantly perturbed metabolites. It was also shown that although the metabolic profile change patterns in the brain tissues were quite similar in male and female BCCAO mice, metabolic disorders in the cortex tissues were more severe in the female mice than in the male mice. Conclusions In the present study, significant changes in amino acid metabolic pathways were confirmed in the early stage of global ischemia. Meanwhile, cerebral metabolic dysfunctions were more severe in the female BCCAO mice than in the male mice, suggesting that gender may play a role in different metabolic responses to the ischemic attack, which may provide an important hypothesis for a better understanding of the clinically observed gender-dependent pathological outcome of cerebral ischemia. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0256-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianshu Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xia Liu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
7
|
Fossati S, Giannoni P, Solesio ME, Cocklin SL, Cabrera E, Ghiso J, Rostagno A. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiol Dis 2015; 86:29-40. [PMID: 26581638 DOI: 10.1016/j.nbd.2015.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD.
Collapse
Affiliation(s)
- Silvia Fossati
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| | - Patrizia Giannoni
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Maria E Solesio
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Sarah L Cocklin
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Erwin Cabrera
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
8
|
Barros-Miñones L, Orejana L, Goñi-Allo B, Suquía V, Hervías I, Aguirre N, Puerta E. Modulation of the ASK1-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate. Br J Pharmacol 2015. [PMID: 23186227 DOI: 10.1111/bph.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE PD5 inhibitors have recently been reported to exert beneficial effects against ischaemia-reperfusion injury in several organs. However, there are few studies regarding their neuroprotective effects in brain ischaemia. The present study was designed to assess the effects of sildenafil against chemical hypoxia induced by malonate. Intrastriatal injection of malonate produces energy depletion and striatal lesions similar to that seen in cerebral ischaemia through mechanisms that involve generation of reactive oxygen species (ROS). EXPERIMENTAL APPROACH Volume lesion was analysed by cytochrome oxidase histochemistry. Generation of reactive species was determined by in situ visualization of superoxide production and nitrotyrosine measurement. Protein levels were determined by Western blot after subcellular fractionation. KEY RESULTS Sildenafil, given 30 min before malonate, significantly decreased the lesion volume in the rat. This protective effect cannot be attributed to any effect on ROS production but to the inhibition of downstream pathways. Thus, malonate induced the activation of apoptosis signal-regulating kinase-1 (ASK1) and two MAPK kinases, MKK3/6 and MKK7, which lead to an increased phosphorylation of JNK and p38 MAPK, effects that were blocked by sildenafil. Selective inhibitors of p38 and JNK (SB203580 or SP600125, respectively) were used in combination with malonate in order to evaluate the plausible implication of these pathways in the protection afforded by sildenafil. While inhibition of p38 provided a significant protection against malonate-induced neurotoxicity, inhibition of JNK did not. CONCLUSIONS AND IMPLICATIONS Sildenafil protects against the chemical hypoxia induced by malonate through the regulation of the ASK1-MKK3/6-p38/MAPK signalling pathway.
Collapse
Affiliation(s)
- L Barros-Miñones
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Roux C, Aligny C, Lesueur C, Girault V, Brunel V, Ramdani Y, Genty D, Driouich A, Laquerrière A, Marret S, Brasse-Lagnel C, Gonzalez BJ, Bekri S. NMDA receptor blockade in the developing cortex induces autophagy-mediated death of immature cortical GABAergic interneurons: An ex vivo and in vivo study in Gad67-GFP mice. Exp Neurol 2015; 267:177-93. [PMID: 25795167 DOI: 10.1016/j.expneurol.2015.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 01/16/2023]
Abstract
In neonates, excitotoxicity is a major process involved in hypoxic-ischemic brain lesions, and several research groups have suggested the use of NMDA antagonists for neuroprotection. However, despite their clinical interest, there is more and more evidence suggesting that, in the immature brain, these molecules exert deleterious actions on migrating GABAergic interneurons by suppressing glutamatergic trophic inputs. Consequently, preventing the side effects of NMDA antagonists would be therapeutically useful. Because macroautophagy is involved in the adaptive response to trophic deprivation, the aim of the present study was to investigate the impact of autophagy modulators on the MK801-induced death of immature GABAergic interneurons and to characterize the crosstalk between autophagic and apoptotic mechanisms in this cell type. Ex vivo, using cortical slices from NMRI and Gad67-GFP mice, we show that blockade of the NMDA receptor results in an accumulation of autophagosomes due to the disruption of the autophagic flux. This effect precedes the activation of the mitochondrial apoptotic pathway, and the degeneration of immature GABAergic neurons present in developing cortical layers II-IV and is prevented by 3-MA, an autophagy inhibitor. In contrast, modulators of autophagy (3-MA, rapamycin) do not interfere with the anti-excitotoxic and neuroprotective effect of MK801 observed in deep layers V and VI. In vivo, 3-MA blocks the rapid increase in caspase-3 cleavage induced by the blockade of NMDA receptors and prevents the resulting long-term decrease in Gad67-GFP neurons in layers II-IV. Together, these data suggest that, in the developing cortex, the suppression of glutamatergic inputs through NMDA receptor inhibition results in the impairment of the autophagic flux and the subsequent switch to apoptotic death of immature GABAergic interneurons. The concomitant inhibition of autophagy prevents this pro-apoptotic action of the NMDA blocker and favors the long-term rescue of GABAergic interneurons without interfering with its neuroprotective actions. The use of autophagy modulators in the developing brain would create new opportunities to prevent the side effects of NMDA antagonists used for neuroprotection or anesthesia.
Collapse
Affiliation(s)
- Christian Roux
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France
| | - Caroline Aligny
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France
| | - Céline Lesueur
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Virginie Girault
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France
| | - Valery Brunel
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Yasmina Ramdani
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France
| | - Damien Genty
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Azeddine Driouich
- Research Platform of Cell Imagery (PRIMACEN), France; Laboratory of Glycobiology and Plant Extracellular Matrix (GLYCOMEV) EA 4358, France
| | - Annie Laquerrière
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Pathology, Rouen University Hospital, Rouen, France
| | - Stéphane Marret
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Carole Brasse-Lagnel
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Bruno J Gonzalez
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France.
| | - Soumeya Bekri
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| |
Collapse
|
10
|
Barros-Miñones L, Martín-de-Saavedra D, Perez-Alvarez S, Orejana L, Suquía V, Goñi-Allo B, Hervias I, López MG, Jordan J, Aguirre N, Puerta E. Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta Mol Basis Dis 2013; 1832:705-17. [PMID: 23415811 DOI: 10.1016/j.bbadis.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors have recently been reported to exert beneficial effects against ischemia-reperfusion injury in several organs but their neuroprotective effects in brain stroke models are scarce. The present study was undertaken to assess the effects of sildenafil against cell death caused by intrastriatal injection of malonate, an inhibitor of succinate dehydrogenase; which produces both energy depletion and lesions similar to those seen in cerebral ischemia. Our data demonstrate that sildenafil (1.5mg/kg by mouth (p.o.)), given 30min before malonate (1.5μmol/2μL), significantly decreased the lesion volume caused by this toxin. This protective effect can be probably related to the inhibition of excitotoxic pathways. Thus, malonate induced the activation of the calcium-dependent protease, calpain and the cyclin-dependent kinase 5, cdk5; which resulted in the hyperphosphorylation of tau and the cleavage of the protective transcription factor, myocyte enhancer factor 2, MEF2. All these effects were also significantly reduced by sildenafil pre-treatment, suggesting that sildenafil protects against malonate-induced cell death through the regulation of the calpain/p25/cdk5 signaling pathway. Similar findings were obtained using inhibitors of calpain or cdk5, further supporting our contention. Sildenafil also increased MEF2 phosphorylation and Bcl-2/Bax and Bcl-xL/Bax ratios, effects that might as well contribute to prevent cell death. Finally, sildenafil neuroprotection was extended not only to rat hippocampal slices subjected to oxygen and glucose deprivation when added at the time of reoxygenation, but also, in vivo when administered after malonate injection. Thus, the therapeutic window for sildenafil against malonate-induced hypoxia was set at 3h.
Collapse
|
11
|
Electroacupuncture confers beneficial effects through ionotropic glutamate receptors involving phosphatidylinositol-3 kinase/Akt signaling pathway in focal cerebral ischemia in rats. Eur J Integr Med 2012. [DOI: 10.1016/j.eujim.2012.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
El Ghazi F, Desfeux A, Brasse-Lagnel C, Roux C, Lesueur C, Mazur D, Remy-Jouet I, Richard V, Jégou S, Laudenbach V, Marret S, Bekri S, Prevot V, Gonzalez BJ. NO-dependent protective effect of VEGF against excitotoxicity on layer VI of the developing cerebral cortex. Neurobiol Dis 2011; 45:871-86. [PMID: 22209711 DOI: 10.1016/j.nbd.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/13/2011] [Accepted: 12/04/2011] [Indexed: 01/07/2023] Open
Abstract
In industrialized countries, cerebral palsy affects 2.5‰ of preterm and term infants. At a neurochemical level, the massive release of glutamate constitutes a major process leading to excitotoxicity and neonatal brain lesions. Previous studies, conducted in the laboratory, revealed that, in (δ/δ)VEGF(A) transgenic mice, glutamate-induced brain lesions are exacerbated suggesting that VEGF(A) could play a protective action against excitotoxicity. Using a model of cultured cortical brain slices, the aim of the study was to characterize the central effects of VEGF against glutamate-induced excitotoxicity in neonates. Exposure of brain slices to glutamate induced a strong increase of necrotic cell death in the deep cortical layer VI and a decrease of apoptotic death in superficial layers II-IV. When administered alone, a 6-h treatment with VEGF(A) had no effect on both apoptotic and necrotic deaths. In contrast, VEGF(A) abolished the glutamate-induced necrosis observed in layer VI. While MEK and PI3-K inhibitors had no effect on the protective action of VEGF(A), L-NAME, a pan inhibitor of NOS, abrogated the effect of VEGF(A) and exacerbated the excitotoxic action of glutamate. Calcimetry experiments performed on brain slices revealed that VEGF(A) reduced the massive calcium influx induced by glutamate in layer VI and this effect was blocked by L-NAME. Neuroprotective effect of VEGF(A) was also blocked by LNIO and NPLA, two inhibitors of constitutive NOS, while AGH, an iNOS inhibitor, had no effect. Nitrite measurements, electron paramagnetic resonance spectroscopy and immunohistochemistry indicated that glutamate was a potent inducer of NO production via activation of nNOS in the cortical layer VI. In vivo administration of nNOS siRNA promoted excitotoxicity and mimicked the effects of L-NAME, LNIO and NPLA. A short-term glutamate treatment increased nNOS Ser1412 phosphorylation, while a long-term exposure inhibited nNOS/NR2B protein-protein interactions. Altogether, these findings indicate that, in deep cortical layers of mice neonates, glutamate stimulates nNOS activity. Contrasting with mature brain, NO production induced by high concentrations of glutamate is neuroprotective and is required for the anti-necrotic effect of VEGF(A).
Collapse
Affiliation(s)
- Faiza El Ghazi
- EA NeoVasc 4309, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Rouen Institute for Biomedical Research, European Institute for Peptide Research (IFR 23), University of Rouen, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are suggested to have key roles in the pathogenesis of several neurodegenerative disorders. We recently published an article in Nature revealing an unexpected role for executioner caspases in the microglia activation process. We showed that caspases 8 and 3/7, commonly known to have executioner roles for apoptosis, can promote microglia activation in the absence of death. We found these caspases to be activated in microglia of PD and AD subjects. Inhibition of this signaling pathway hindered microglia activation and importantly reduced neurotoxicity in cell and animal models of disease. Here we review evidence suggesting that microglia can have a key role in the pathology of neurodegenerative disorders. We discuss possible underlying mechanisms regulating their activation and neurotoxic effect. We focus on the provocative hypothesis that caspase inhibition can be neuroprotective by targeting the microglia rather than the neurons themselves.
Collapse
|
14
|
miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A 2011; 108:11662-7. [PMID: 21709246 DOI: 10.1073/pnas.1102635108] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is increasingly recognized that the mechanisms underlying ischemic cell death are sexually dimorphic. Stroke-induced cell death in males is initiated by the mitochondrial release of apoptosis-inducing factor, resulting in caspase-independent cell death. In contrast, ischemic cell death in females is primarily triggered by mitochondrial cytochrome c release with subsequent caspase activation. Because X-linked inhibitor of apoptosis (XIAP) is the primary endogenous inhibitor of caspases, its regulation may play a unique role in the response to injury in females. XIAP mRNA levels were higher in females at baseline. Stroke induced a significant decrease in XIAP mRNA in females, whereas no changes were seen in the male brain. However, XIAP protein levels were decreased in both sexes after stroke. MicroRNAs (miRNAs) predominantly induce translational repression and are emerging as a major regulators of mRNA and subsequent protein expression after ischemia. The miRNA miR-23a was predicted to bind XIAP mRNA. miR-23a directly bound the 3' UTR of XIAP, and miR-23a inhibition led to an increase in XIAP mRNA in vitro, demonstrating that XIAP is a previously uncharacterized target for miR-23a. miR-23a levels differed in male and female ischemic brains, providing evidence for sex-specific miRNA expression in stroke. Embelin, a small-molecule inhibitor of XIAP, decreased the interaction between XIAP and caspase-3 and led to enhanced caspase activity. Embelin treatment significantly exacerbated stroke-induced injury in females but had no effect in males, demonstrating that XIAP is an important mediator of sex-specific responses after stroke.
Collapse
|
15
|
Tirapelli DPDC, Carlotti CG, Leite JP, Tirapelli LF, Colli BO. Expression of HSP70 in cerebral ischemia and neuroprotetive action of hypothermia and ketoprofen. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 68:592-6. [PMID: 20730315 DOI: 10.1590/s0004-282x2010000400021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that bind to other proteins to shepherd them across membranes and direct them to specific locations within a cell. Several injurious stimuli can induce Hsp70 expression, including ischemia. This study aimed to investigate the pattern of expression of protein (immunohistochemistry) and gene (real-time PCR) Hsp70 in experimental focal cerebral ischemia in rats by occlusion of the middle cerebral artery for 1 hour and the role of neuroprotection with hypothermia (H) and ketoprofen (K). The infarct volume was measured using morphometric analysis defined by triphenyl tetrazolium chloride. It was observed increases in the protein (p=0.0001) and gene (p=0.0001) Hsp70 receptor in the ischemic areas that were reduced by H (protein and gene: p<0.05), K (protein: p<0.001), and H+K (protein: p<0.01 and gene: p<0.05). The Hsp70 increases in the ischemic area suggests that the Hsp70-mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, H and K are directly involved with the Hsp70.
Collapse
|
16
|
Leyva MJ, Degiacomo F, Kaltenbach LS, Holcomb J, Zhang N, Gafni J, Park H, Lo DC, Salvesen GS, Ellerby LM, Ellman JA. Identification and evaluation of small molecule pan-caspase inhibitors in Huntington's disease models. ACTA ACUST UNITED AC 2011; 17:1189-200. [PMID: 21095569 DOI: 10.1016/j.chembiol.2010.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
Abstract
Huntington's Disease (HD) is characterized by a mutation in the huntingtin (Htt) gene encoding an expansion of glutamine repeats on the N terminus of the Htt protein. Numerous studies have identified Htt proteolysis as a critical pathological event in HD postmortem human tissue and mouse HD models, and proteases known as caspases have emerged as attractive HD therapeutic targets. We report the use of the substrate activity screening method against caspase-3 and -6 to identify three novel, pan-caspase inhibitors that block proteolysis of Htt at caspase-3 and -6 cleavage sites. In HD models these irreversible inhibitors suppressed Hdh(111Q/111Q)-mediated toxicity and rescued rat striatal and cortical neurons from cell death. In this study, the identified nonpeptidic caspase inhibitors were used to confirm the role of caspase-mediated Htt proteolysis in HD. These results further implicate caspases as promising targets for HD therapeutic development.
Collapse
Affiliation(s)
- Melissa J Leyva
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B. Caspase signalling controls microglia activation and neurotoxicity. Nature 2011; 472:319-24. [PMID: 21389984 DOI: 10.1038/nature09788] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/23/2010] [Indexed: 01/05/2023]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are suggested to play a decisive role in the pathogenesis of several neurodegenerative disorders. Activated microglia release pro-inflammatory factors that may be neurotoxic. Here we show that the orderly activation of caspase-8 and caspase-3/7, known executioners of apoptotic cell death, regulate microglia activation through a protein kinase C (PKC)-δ-dependent pathway. We find that stimulation of microglia with various inflammogens activates caspase-8 and caspase-3/7 in microglia without triggering cell death in vitro and in vivo. Knockdown or chemical inhibition of each of these caspases hindered microglia activation and consequently reduced neurotoxicity. We observe that these caspases are activated in microglia in the ventral mesencephalon of Parkinson's disease (PD) and the frontal cortex of individuals with Alzheimer's disease (AD). Taken together, we show that caspase-8 and caspase-3/7 are involved in regulating microglia activation. We conclude that inhibition of these caspases could be neuroprotective by targeting the microglia rather than the neurons themselves.
Collapse
Affiliation(s)
- Miguel A Burguillos
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Iaci JF, Ganguly A, Finklestein SP, Parry TJ, Ren J, Saha S, Sietsma DK, Srinivas M, Vecchione AM, Caggiano AO. Glial growth factor 2 promotes functional recovery with treatment initiated up to 7 days after permanent focal ischemic stroke. Neuropharmacology 2010; 59:640-9. [PMID: 20691195 DOI: 10.1016/j.neuropharm.2010.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/07/2010] [Accepted: 07/22/2010] [Indexed: 12/15/2022]
Abstract
Neuregulins are a family of growth factors essential for normal cardiac and nervous system development. The EGF-like domain of neuregulins contains the active site which binds and activates signaling cascades through ErbB receptors. A neuregulin-1 gene EGF-like fragment demonstrated neuroprotection in the transient middle cerebral artery occlusion (MCAO) stroke model and drastically reduced infarct volume (Xu et al., 2004). Here we use a permanent MCAO rat model to initially compare two products of the neuregulin-1 gene and also assess levels of recovery with acute versus delayed time to treatment. In the initial study full-length glial growth factor 2 (GGF2) and an EGF-like domain fragment were compared with acute intravenous delivery. In a second study GGF2 only was delivered starting at 24h, 3 days or 7 days after permanent ischemia was induced. In both studies daily intravenous administration continued for 10 days. Recovery of neurological function was assessed using limb placing and body swing tests. GGF2 had similar functional improvements compared to the EGF-like domain fragment at equimolar doses, and a higher dose of GGF2 demonstrated more robust functional improvements compared to a lower dose. GGF2 improved sensorimotor recovery with all treatment paradigms, even enhancing recovery of function with a delay of 7 days to treatment. Histological assessments did not show any associated reduction in infarct volume at either 48 h or 21 days post-ischemic event. Neurorestorative effects of this kind are of great potential clinical importance, given the difficulty of delivering neuroprotective therapies within a short time after an ischemic event in human patients. If confirmed by additional work including additional data on mechanism(s) of improved outcome with verification in other stroke models, one can make a compelling case to bring GGF2 to clinical trials as a neurorestorative approach to improving outcome following stroke injury.
Collapse
Affiliation(s)
- Jennifer F Iaci
- Acorda Therapeutics Inc., 15 Skyline Drive, Hawthorne, NY 10532, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Soustiel JF, Larisch S. Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 2010; 7:13-21. [PMID: 20129493 PMCID: PMC5084108 DOI: 10.1016/j.nurt.2009.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) represents a leading cause of death and morbidity, as well as a considerable social and economical burden in western countries, and has thus emerged as a formidable therapeutic challenge. Yet despite tremendous efforts enlightening the mechanisms of neuronal death, hopes for the "magic bullet" have been repeatedly deceived, and TBI management has remained focused on the control of increased intracranial pressure. Indeed, impairment of cerebral metabolism is traditionally attributed to impaired oxygen delivery mediated by reduced cerebral perfusion in the swollen cerebral parenchyma. Although intuitively appealing, this hypothesis is not entirely supported by physiological facts and does not take into consideration mitochondrial dysfunction that has been repeatedly reported in both human and animal TBI. Although the nature and origin of the events leading to mitochondrial damage may be different, most share a permeabilization of mitochondrial membrane, which therefore may represent a logical target for new therapeutic strategies. Therefore, the proteins mediating these events may represent promising targets for new TBI therapies. Furthermore, mimicking anti-apoptotic proteins, such as Bcl-2 or XIAP, or inhibiting mitochondrial pro-apoptotic proteins, such as Smac/DIABLO, Omi/HTRA2, and ARTS (septin 4 isoform 2) may represent useful novel therapeutic strategies. This review focuses on mechanisms of the mitochondrial membrane permeabilization and its consequences and discusses the current and possible future therapeutic implications of this key event of neuronal death.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | | |
Collapse
|
20
|
Desfeux A, El Ghazi F, Jégou S, Legros H, Marret S, Laudenbach V, Gonzalez BJ. Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Cereb Cortex 2009; 20:1092-108. [PMID: 19759125 DOI: 10.1093/cercor/bhp181] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In term and preterm neonates, massive glutamate release can lead to excitotoxic white-matter and cortical lesions. Because of its high permeability toward calcium, the N-methyl-D-aspartic acid (NMDA) receptor is thought to play an important role in excitotoxic lesions and NMDA antagonists therefore hold promise for neuroprotection. We found that, in neonatal mouse cortex, a given NMDA concentration exerted either excitotoxic or antiapoptotic effects depending on the cortical layers. In layer VI, NMDA led to excitotoxicity, sustained calcium mobilization, and necrosis of Gad67GFP neurons. In the immature layers II-IV, NMDA decreased apoptosis and induced transient calcium mobilization. The NMDA antagonist MK801 acted as a potent caspase-3 activator in immature layers II-IV and affected gamma aminobutyric acid (GABA)ergic interneurons. The apoptotic effect of MK801-induced BAX expression, mitochondrial potential collapse and caspase-9 activation. In vivo Bax small interfering ribonucleic acid and a caspase-9 inhibitor abrogated MK801-induced apoptosis and pyknotic nucleus formation. Ketamine, an anesthetic with NMDA antagonist properties, mimicked the apoptotic effects of MK801. These data indicate a dual effect of glutamate on survival of immature and mature GABAergic neurons and suggest that ketamine may induce apoptosis of immature GABAergic neurons.
Collapse
Affiliation(s)
- Arnaud Desfeux
- EA NeoVasc 4309, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Rouen Institute for Biomedical Research, European Institute for Peptide Research (IFR 23) University of Rouen, 76183 Rouen, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Targeting post-mitochondrial effectors of apoptosis for neuroprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:402-13. [DOI: 10.1016/j.bbabio.2008.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 01/10/2023]
|
22
|
Gomez-Lazaro M, Galindo MF, Melero-Fernandez de Mera RM, Fernandez-Gómez FJ, Concannon CG, Segura MF, Comella JX, Prehn JHM, Jordan J. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol Pharmacol 2006; 71:736-43. [PMID: 17172466 DOI: 10.1124/mol.106.030718] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax fusion protein in SH-SY5Y neuroblastoma cells demonstrated a Bax redistribution from the cytosol to mitochondria after 12 to 24 h of malonate treatment that coincided with mitochondrial potential collapse and chromatin condensation. Inhibition of Bax translocation using furosemide, as well as Bax gene deletion, afforded significant protection against malonate-induced apoptosis. Further experiments revealed that malonate induced a prominent increase in the level of activated p38 mitogen-activated protein (MAP) kinase and that treatment with the p38 MAP kinase inhibitor SKF86002 potently blocked malonate-induced Bax translocation and apoptosis. Treatment with vitamin E diminished ROS production, reduced the activation status of p38 MAP kinase, inhibited Bax translocation, and protected against malonate-induced apoptosis. Our data suggest that malonate-induced ROS production and subsequent p38 MAP kinase activation mediates the activation of the pro-apoptotic Bax protein to induce mitochondrial membrane permeabilization and neuronal apoptosis.
Collapse
Affiliation(s)
- M Gomez-Lazaro
- Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, 02006, Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wise-Faberowski L, Pearlstein RD, Warner DS. NMDA-induced Apoptosis in Mixed Neuronal/Glial Cortical Cell Cultures. J Neurosurg Anesthesiol 2006; 18:240-6. [PMID: 17006121 DOI: 10.1097/00008506-200610000-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In animal models of severe ischemia, it has not been uniformly observed that anesthetics are protective. However, anesthetics have not been evaluated in the presence of a mild excitotoxic insult. We hypothesized that in the presence of a mild excitotoxic insult, 3 microm N-methyl-D-aspartate (NMDA), isoflurane may prevent apoptotic cell death. Primary mixed neuronal/glial cultures were prepared from fetal rat brains. Mature cultures were exposed to dissolved isoflurane [0 mM, 0.4 mM (1.8 minimum alveolar concentration) or 1.6 mM (7 minimum alveolar concentration)] or dizocilpine (10 microM), and NMDA (0 or 3 microM) at 37 degrees C for 30 minutes. Apoptosis was assessed using terminal-deoxy-nucleotidyl end-nick labeling oligonucleosomal DNA fragmentation enzyme-linked immunosorbent assay, and caspases-3 and -9 activation assays. NMDA (3 muM) induced apoptosis in mixed neuronal/glial cell cultures. Apoptosis induced by 3 microm NMDA was caspase-3 but not caspase-9 mediated. In the presence of a mild excitotoxic insult, this investigation showed an attenuation of apoptotic cell death by dizocilpine, but not isoflurane.
Collapse
Affiliation(s)
- Lisa Wise-Faberowski
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
24
|
Niquet J, Seo DW, Allen SG, Wasterlain CG. Hypoxia in presence of blockers of excitotoxicity induces a caspase-dependent neuronal necrosis. Neuroscience 2006; 141:77-86. [PMID: 16697116 DOI: 10.1016/j.neuroscience.2006.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 11/26/2022]
Abstract
When excitotoxic mechanisms are blocked, severe or prolonged hypoxia and hypoxia-ischemia can still kill neurons, by a mechanism which is poorly understood. We studied this "non-excitotoxic hypoxic death" in primary cultures of rat dentate gyrus neurons. Many neurons subjected to hypoxia in the presence of blockers of ionotropic glutamate receptors developed the electron microscopic features of necrosis. They showed early mitochondrial swelling, loss of mitochondrial membrane potential and cytoplasmic release of cytochrome c, followed by activation of caspase-9, and by caspase-9-dependent activation of caspase-3. Caspase inhibitors were neuroprotective. These results suggest that "non-excitotoxic hypoxic neuronal death" requires the activation in many neurons of a cell death program originating in mitochondria and leading to necrosis.
Collapse
Affiliation(s)
- J Niquet
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, West Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Accumulating evidence strongly suggests that apoptosis contributes to neuronal cell death in a variety of neurodegenerative contexts. Activation of the cysteine protease caspase-3 appears to be a key event in the execution of apoptosis in the central nervous system (CNS). As a result, mice null for caspase-3 display considerable neuronal expansion usually resulting in death by the second week of life. At present, 14 caspase family members have been identified and subdivided into three subgroups on the basis of preference for specific tetrapeptide motifs using a positional scanning combinatorial substrate library. Caspase-3 is a group II member (2, 3, 7) categorized by an absolute substrate requirement for aspartic acid in the P4 position of the scissile bond. The preferred cleavage motif (DExD) for group II caspases is found in many structural, metabolic and repair proteins essential for cellular homeostasis. Consistent with the proposal that apoptosis plays a central in role human neurodegenerative disease, caspase-3 activation has recently been observed in stroke, spinal cord trauma, head injury and Alzheimer's disease. Indeed, peptide-based caspase inhibitors prevent neuronal loss in animal models of head injury and stroke suggesting that these compounds may be the forerunners of non-peptide small molecules that halt apoptosis processes implicated in these neurodegenerative disorders. A clear link between an hereditary neurodegenerative disorder and failed caspase inhibition has recently been proposed for spinal muscular atrophy (SMA). In severe SMA, the neuronal specific inhibitor of apoptosis (IAP) family member known as NAIP is often dysfunctional due to missense and truncation mutations. IAPs such as NAIP potently block the enzymatic activity of group II caspases (3 and 7) suggesting that NAIP mutations may permit unopposed developmental apoptosis to occur in sensory and motor systems resulting in lethal muscular atrophy. Conversely, adenovirally-mediated overexpression of NAIP or the X-linked IAP called XIAP reduces the loss of CA1 hippocampal neurons following transient forebrain ischemia. Taken together, these findings suggest that anti-apoptotic strategies may some day have utility in the treatment of neurodegenerative disease. The present review will summarize some of the recent evidence suggesting that apoptosis inhibitors may become a practical therapeutic approach for both acute and chronic neurodegenerative conditions.
Collapse
Affiliation(s)
- G S Robertson
- Merck-Frosst Institute for Therapeutic Research, Department of Pharmacology, Kirkland, Quebec, Canada.
| | | | | | | |
Collapse
|
26
|
Abstract
Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of Ca2+ and Na+ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.
Collapse
Affiliation(s)
- Seok Joon Won
- Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine, San 5, Wonchondong, Paldalgu, Suwon, Kyungkido 442-749, South Korea
| | | | | |
Collapse
|
27
|
Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Neuroprotective effect of N-acetyl-aspartyl-glutamate in combination with mild hypothermia in the endothelin-1 rat model of focal cerebral ischaemia. J Neurochem 2005; 95:1287-97. [PMID: 16135071 DOI: 10.1111/j.1471-4159.2005.03450.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previously we showed that treatment with mild hypothermia (34 degrees C for 2 h) after a focal cerebral infarct was neuroprotective by reducing apoptosis in the penumbra (cortex), but not in the core (striatum) of the infarct. In this study we examined whether administration of N-acetyl-aspartyl-glutamate (NAAG) in combination with mild hypothermia could improve striatal neuroprotection in the endothelin-1 rat model. NAAG (10 mg/kg i.p.) was injected under normothermic (37 degrees C) or mild hypothermic conditions, either 40 min before or 20 min after the insult. NAAG reduced caspase 3 immunoreactivity in the striatum, irrespective of the time of administration and brain temperature. This neuroprotective effect could be explained, at least partially, by decreased nitric oxide synthase activity in the striatum and was blocked by the group II metabotropic glutamate receptor antagonist, LY341495. Hypothermia applied together with NAAG reduced both cortical and striatal caspase 3 immunoreactivity, as well as the overall ischaemic damage in these areas. However, no pronounced improvement was seen in total damaged brain volume. Extracellular glutamate levels did not correlate with the observed protection, whatever treatment protocol was applied. We conclude that treatment with NAAG causes the same degree of neuroprotection as treatment with hypothermia. Combination of the two treatments, although reducing apoptosis, does not considerably improve ischaemic damage.
Collapse
Affiliation(s)
- An Van Hemelrijck
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, and Cerebral Resuscitation Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
28
|
Scheer JM, Wells JA, Romanowski MJ. Malonate-assisted purification of human caspases. Protein Expr Purif 2005; 41:148-53. [PMID: 15802232 DOI: 10.1016/j.pep.2005.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/07/2005] [Indexed: 11/28/2022]
Abstract
Caspases have in the past decade become some of the most intensely pursued targets for the design of small-molecule inhibitors. Two significant technological roadblocks to developing caspase-binding molecules are the poor solubility of a subset of the bacterially expressed proteins and the instability of the renatured proteins that results from rapid inactivating autolysis at high protein concentrations. In this report, we present a generalized method of renaturing human caspases and inhibiting the self-proteolytic activity of the enzymes without a need for covalent active-site inhibitors. Our method, which involves blocking the S1 region of the active site with malonate, enables one to inhibit fully the inactivating autolysis in human caspases and increases the yields of renatured active enzyme. It furthermore does not necessitate removal of malonate prior to setting up enzymatic assays since as high as 100-mM concentrations of malonate do not compete efficiently with caspase substrates or larger caspase inhibitors for binding to the active site. The method described in this report simplifies greatly caspase purification and makes it possible to stabilize the enzymes against autolysis without a need for costly, and frequently synthetically challenging, small-molecule inhibitors.
Collapse
Affiliation(s)
- Justin M Scheer
- Department of Biology, Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
29
|
Fernandez-Gomez FJ, Galindo MF, Gómez-Lázaro M, Yuste VJ, Comella JX, Aguirre N, Jordán J. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br J Pharmacol 2005; 144:528-37. [PMID: 15655518 PMCID: PMC1576031 DOI: 10.1038/sj.bjp.0706069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Herein we study the effects of the mitochondrial complex II inhibitor malonate on its primary target, the mitochondrion. 2. Malonate induces mitochondrial potential collapse, mitochondrial swelling, cytochrome c (Cyt c) release and depletes glutathione (GSH) and nicotinamide adenine dinucleotide coenzyme (NAD(P)H) stores in brain-isolated mitochondria. 3. Although, mitochondrial potential collapse was almost immediate after malonate addition, mitochondrial swelling was not evident before 15 min of drug presence. This latter effect was blocked by cyclosporin A (CSA), Ruthenium Red (RR), magnesium, catalase, GSH and vitamin E. 4. Malonate added to SH-SY5Y cell cultures produced a marked loss of cell viability together with the release of Cyt c and depletion of GSH and NAD(P)H concentrations. All these effects were not apparent in SH-SY5Y cells overexpressing Bcl-xL. 5. When GSH concentrations were lowered with buthionine sulphoximine, cytoprotection afforded by Bcl-xL overexpression was not evident anymore. 6. Taken together, all these data suggest that malonate causes a rapid mitochondrial potential collapse and reactive oxygen species production that overwhelms mitochondrial antioxidant capacity and leads to mitochondrial swelling. Further permeability transition pore opening and the subsequent release of proapoptotic factors such as Cyt c could therefore be, at least in part, responsible for malonate-induced toxicity.
Collapse
Affiliation(s)
| | - Maria F Galindo
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Maria Gómez-Lázaro
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Victor J Yuste
- Grup de Neurobiologia Molecular, Departmento de Ciencies Mediques Basiques, Universitat de Lleida, Spain
| | - Joan X Comella
- Grup de Neurobiologia Molecular, Departmento de Ciencies Mediques Basiques, Universitat de Lleida, Spain
| | - Norberto Aguirre
- Departamento de Farmacología, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Joaquín Jordán
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Albacete, Spain
- Author for correspondence:
| |
Collapse
|
30
|
Apoptosis in neurodegenerative diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
McBride CB, McPhail LT, Steeves JD. Emerging therapeutic targets in caspase-dependent disease. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.3.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Paucard A, Besson VC, Plotkine M, Margaill I. Time course of oxidative stress, lesion and edema after intrastriatal injection of malonate in rat: effect of alpha-phenyl-N-tert-butylnitrone. Fundam Clin Pharmacol 2005; 19:57-64. [PMID: 15660960 DOI: 10.1111/j.1472-8206.2004.00297.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to characterize the model of oxidative stress consisting in the infection of malonate (3 mumol), an inhibitor of mitochondrial complex II, in the rat striatum. The striatal concentrations of both the reduced and oxidized forms of glutathione (the major endogenous antioxidant) were determined at various times after malonate injection (1-4 h) in order to evaluate the evolution of oxidative stress. The progression of lesion size and edema was also determined up to 24 h after malonate administration. Finally, the effect of alpha-phenyl-N-tert-butylnitrone (PBN), an antioxidant nitrone, was studied. The levels of reduced glutathione (GSH) progressively decreased after malonate injection up to 40% of those of sham animals at 4 h. An increase in the concentrations of oxidized glutathione (GSSG) was also observed as early as 1 h after malonate administration which was maintained up to 4 h. The size of the lesion was maximal within 2 h of malonate injection, whereas edema continued to increase between 2 and 24 h. Injection of PBN at 100 mg/kg i.p. 30 min before and 2 h after malonate administration abolished the GSSG increase caused by malonate but did not modify the drop in GSH. This moderate antioxidant effect of PBN was associated with a slight decrease of the lesion area at two levels (10.7 and 10.2 mm anterior to the interaural line), but the lesion volume remained unchanged. By contrast, PBN reduced edema by 30%. Taken together, these results show that malonate induced a severe oxidative stress leading to the rapid development of the lesion. PBN demonstrates anti-edematous properties that are not sufficient to reduce the lesion.
Collapse
Affiliation(s)
- Alexia Paucard
- Laboratoire de Pharmacologie, UPRES EA2510, Université René Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | |
Collapse
|
33
|
McLaughlin B. The kinder side of killer proteases: caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis 2005; 9:111-21. [PMID: 15004508 PMCID: PMC2879070 DOI: 10.1023/b:appt.0000018793.10779.dc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caspases are a family of cysteine proteases that are expressed as inactive zymogens and undergo proteolytic maturation in a sequential manner in which initiator caspases cleave and activate the effector caspases 3, 6 and 7. Effector caspases cleave structural proteins, signaling molecules, DNA repair enzymes and proteins which inhibit apoptosis. Activation of effector, or executioner, caspases has historically been viewed as a terminal event in the process of programmed cell death. Emerging evidence now suggests a broader role for activated caspases in cellular maturation, differentiation and other non-lethal events. The importance of activated caspases in normal cell development and signaling has recently been extended to the CNS where these proteases have been shown to contribute to axon guidance, synaptic plasticity and neuroprotection. This review will focus on the adaptive roles activated caspases in maintaining viability, the mechanisms by which caspases are held in check so as not produce apoptotic cell death and the ramifications of these observations in the treatment of neurological disorders.
Collapse
Affiliation(s)
- B McLaughlin
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232-8548, USA.
| |
Collapse
|
34
|
Damian MS, Ellenberg D, Gildemeister R, Lauermann J, Simonis G, Sauter W, Georgi C. Coenzyme Q10 Combined With Mild Hypothermia After Cardiac Arrest. Circulation 2004; 110:3011-6. [PMID: 15520321 DOI: 10.1161/01.cir.0000146894.45533.c2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Therapeutic hypothermia can improve survival after cardiopulmonary resuscitation (CPR). Coenzyme Q10 (CoQ10) has shown a protective effect in neurodegenerative disorders. We investigated whether combining mild hypothermia with CoQ10 after out-of-hospital cardiac arrest provides additional benefit.
Methods and Results—
Forty-nine patients were randomly assigned to either hypothermia plus CoQ10 or hypothermia plus placebo after CPR. Hypothermia with a core temperature of 35°C was instituted for 24 hours. Liquid CoQ10 250 mg followed by 150 mg TID for 5 days or placebo was administered through nasogastric tube. Age, sex, premorbidity, cause of arrest, conditions of CPR, and degree of hypoxia were similar in both groups; no side effects of CoQ10 were identified. Three-month survival in the CoQ10 group was 68% (17 of 25) and 29% (7 of 24) in the placebo group (
P
=0.0413). Nine CoQ10 patients versus 5 placebo patients survived with a Glasgow Outcome Scale of 4 or 5. Mean serum S100 protein 24 hours after CPR was significantly lower in the CoQ10 group (0.47 versus 3.5 ng/mL).
Conclusions—
Combining CoQ10 with mild hypothermia immediately after CPR appears to improve survival and may improve neurological outcome in survivors.
Collapse
Affiliation(s)
- Maxwell Simon Damian
- Department of Neurology, University Hospitals of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
35
|
Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF. A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 2004; 17:250-9. [PMID: 15474362 DOI: 10.1016/j.nbd.2004.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 07/26/2004] [Accepted: 07/28/2004] [Indexed: 11/19/2022] Open
Abstract
Molecular machinery involved in apoptosis plays a role in neuronal death in neurodegenerative disorders such as Parkinson's disease (PD) and Huntington's disease (HD). Several caspase inhibitors, such as the well-known peptidyl inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone (zVADfmk), can protect neurons from apoptotic death caused by mitochondrial toxins. However, the poor penetrability of zVADfmk into brain and toxicity limits its use therapeutically. In the present study, a novel peptidyl broad-spectrum caspase inhibitor, Q-VD-OPH, which offers improvements in potency, stability, and toxicity over zVADfmk, showed significant protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 3-nitropropionic acid (3NP), and malonate toxicities. Q-VD-OPH significantly reduced dopamine depletion in striatum produced by MPTP administration and prevented MPTP-induced loss of dopaminergic neurons in the substantia nigra. It significantly reduced the size of striatal lesions produced by intrastriatal malonate injections and systemic administration of 3NP. Western blots performed on tissues from the midbrain following administration of MPTP or the striatum in 3NP-treated animals showed increases of the active forms of caspase-9 and caspase-8, as well as the caspase-8-mediated proapoptotic protein Bid, which were inhibited Q-VD-OPH treatment. These findings suggest that systematically active broad-spectrum caspase inhibitors maybe useful in the treatment of neurodegenerative diseases such as PD and HD.
Collapse
Affiliation(s)
- Lichuan Yang
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, Missiaen L, Callewaert G, Parys JB, De Smedt H. Caspase-3-induced Truncation of Type 1 Inositol Trisphosphate Receptor Accelerates Apoptotic Cell Death and Induces Inositol Trisphosphate-independent Calcium Release during Apoptosis. J Biol Chem 2004; 279:43227-36. [PMID: 15284241 DOI: 10.1074/jbc.m403872200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor-deficient (IP3RKO) B-lymphocytes were used to investigate the functional relevance of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) and its cleavage by caspase-3 in apoptosis. We showed that inositol 1,4,5-trisphosphate receptor-deficient cells were largely resistant to apoptosis induced by both staurosporine (STS) and B-cell receptor (BCR) stimulation. Expression of either the wild-type IP3R1 or an N-terminal deletion mutant (Delta1-225) that lacks inositol 1,4,5-trisphosphate-induced Ca2+ release activity restored sensitivity to apoptosis and the consequent rise in free cytosolic Ca2+ concentration ([Ca2+]i). Expression of caspase-3-non-cleavable mutant receptor, however, dramatically slowed down the rate of apoptosis and prevented both Ca2+ overload and secondary necrosis. Conversely, expression of the "channel-only" domain of IP3R1, a fragment of the receptor generated by caspase-3 cleavage, strongly increased the propensity of the cells to undergo apoptosis. In agreement with these observations, caspase inhibitors impeded apoptosis and the associated rise in [Ca2+]i. Both the staurosporine- and B-cell receptor-induced apoptosis and increase in [Ca2+]i could be induced in nominally Ca2+-free and serum-free culture media, suggesting that the apoptosis-related rise in [Ca2+]i was primarily because of the release from internal stores rather than of influx through the plasma membrane. Altogether, our results suggest that IP3R1 plays a pivotal role in apoptosis and that the increase in [Ca2+]i during apoptosis is mainly the consequence of IP3R1 cleavage by caspase-3. These observations also indicate that expression of a functional IP3R1 per se is not enough to generate the significant levels of cytosolic Ca2+ needed for the rapid execution of apoptosis, but a prior activation of caspase-3 and the resulting truncation of the IP3R1 are required.
Collapse
Affiliation(s)
- Zerihun Assefa
- Afdeling Fysiologie , Katholieke Universiteit Leuven, Campus Gasthuisberg O/N, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baptiste DC, Hartwick ATE, Jollimore CAB, Baldridge WH, Seigel GM, Kelly MEM. An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004; 66:1113-22. [PMID: 15304547 DOI: 10.1124/mol.104.001081] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to determine the efficacy and putative mechanisms of action of tetracycline and minocycline in inhibiting retinal cell apoptosis after glutamate-induced excitotoxicity and trophic factor deprivation in a retinal cell line (E1A-NR.3) and in primary mixed retinal cell cultures. In addition, a differentiated PC-12 cell line was used to determine whether minocycline was neuroprotective after trophic withdrawal in a pure neuronal cell line devoid of glia. Results from this study demonstrated that minocycline, but not tetracycline, is protective in in vitro models of excitotoxicity-induced retinal cell apoptosis. Moreover, the protective effects provided by minocycline in retinal cells seemed independent of actions on N-methyl-D-aspartate receptors (NMDARs) and glutamate receptor-mediated Ca(2+) influx. Doses of the NMDAR antagonist MK-801 (dizocilpine) and minocycline that alone provided no significant neuroprotection resulted in enhanced retinal cell survival when applied concurrently, suggestive of distinct signaling pathways, and minocycline was without effect on glutamate-induced Ca(2+) influx, as assessed by calcium imaging. Minocycline was also neuroprotective after trophic factor withdrawal, producing a decrease in apoptosis and caspase-3 activation in both retinal cells and the PC-12 neuronal-like cell line. These results support a role for minocycline as a retinal neuroprotectant and demonstrate that the antiapoptotic actions of minocycline in retinal cells do not arise from the blockage of NMDARs or glutamate receptor-mediated Ca(2+) influx but do involve inhibition of caspase-3 activation. In addition, the survival-promoting actions of minocycline may arise via actions on both neuronal and non-neuronal cell targets.
Collapse
Affiliation(s)
- Darryl C Baptiste
- Retina and Optic Nerve Research Laboratory, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Targeting apoptotic cell death pathways provides wide-ranging opportunities for the discovery and development of novel drugs. Some targeted therapies that selectively induce apoptosis in cancer cells are already marketed, and numerous pro-apoptotic drugs for treating cancer are currently being developed. The anti-apoptotic drugs that are most advanced in development are targeting acute disease indications such as stroke, myocardial infarction and sepsis, in which the role of apoptosis has been best defined and inhibitors of the apoptotic pathway have shown activity in various animal models. In the future, novel drugs might also result from an understanding of apoptotic pathways in chronic disorders.
Collapse
Affiliation(s)
- John J Alam
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Asanuma T, Inanami O, Tabu K, Waki K, Kon Y, Kuwabara M. Protection against malonate-induced ischemic brain injury in rat by a cell-permeable peptidic c-Jun N-terminal kinase inhibitor, (L)-HIV-TAT48-57-PP-JBD20, observed by the apparent diffusion coefficient mapping magnetic resonance imaging method. Neurosci Lett 2004; 359:57-60. [PMID: 15050711 DOI: 10.1016/j.neulet.2004.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/16/2022]
Abstract
The present experiments were carried out to provide direct in vivo evidence for the involvement of c-Jun N-terminal kinase (JNK) in the induction of ischemic brain injury. Malonate, which produces lesions similar to those of focal ischemia-reperfusion by a reversible inhibition of succinate dehydrogenase in mitochondria, was injected into the left striatum in the rat brain without or with the simultaneous injection of a cell permeable peptidic JNK inhibitor, (L)-HIV-TAT48-57-PP-JBD20. Two regions of malonate-induced brain injury were visualized as a hyperintense region with surrounding hypointense regions by apparent diffusion coefficient mapping magnetic resonance imaging. The JNK inhibitor significantly counteracted both hyper- and hypointense regions at the early stage of brain injury. Histological examination clarified that the inhibitor suppressed the induction of coagulation necrosis and spongy degeneration at early and late stages.
Collapse
Affiliation(s)
- Taketoshi Asanuma
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Accumulating evidence strongly suggests that apoptosis contributes to neuronal death in a variety of neurodegenerative contexts. Activation of the cysteine protease caspase 3 appears to be a key event in the execution of apoptosis in the central nervous system. As a result, mice null for caspase 3 display considerable neuronal expansion, usually resulting in death by the second week of life. Consistent with the proposal that apoptosis plays a central role in human neurodegenerative disease, caspase-3 activation has recently been observed in stroke, spinal cord trauma, head injury and Alzheimer's disease. Indeed, peptide-based caspase inhibitors prevent neuronal loss in animal models of head injury and stroke, suggesting that these compounds may be the forerunners of non-peptide small molecules that halt the apoptotic process implicated in these neurodegenerative disorders. The present review will summarise some of the recent data suggesting that apoptosis inhibitors may become a practical therapeutic approach for both acute and chronic neurodegenerative conditions.
Collapse
|
41
|
Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O'Donnell R, Tam J, Han Y, Colucci J, Giroux A, Zhu Y, Boucher M, Pikounis B, Xanthoudakis S, Roy S, Rigby M, Zamboni R, Robertson GS, Ng GYK, Nicholson DW, Flückiger JP. Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington's disease. Br J Pharmacol 2004; 141:689-97. [PMID: 14744804 PMCID: PMC1574244 DOI: 10.1038/sj.bjp.0705662] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Caspases, key enzymes in the apoptosis pathway, have been detected in the brain of HD patients and in animal models of the disease. In the present study, we investigated the neuroprotective properties of a new, reversible, caspase-3-specific inhibitor, M826 (3-([(2S)-2-[5-tert-butyl-3-[[(4-methyl-1,2,5-oxadiazol-3-yl)methyl]amino]-2-oxopyrazin-1(2H)-yl]butanoyl]amino)-5-[hexyl(methyl)amino]-4-oxopentanoic acid), in a rat malonate model of HD. 2. Pharmacokinetic and autoradiography studies after intrastriatal (i.str.) injection of 1.5 nmol of M826 or its tritiated analogue [(3)H]M826 indicated that the compound diffused within the entire striatum. The elimination half-life (T(1/2)) of M826 in the rat striatum was 3 h. 3. I.str. injection of 1.5 nmol of M826 10 min after malonate infusion induced a significant reduction (66%) in the number of neurones expressing active caspase-3 in the ipsilateral striatum. 4. Inhibition of active caspase-3 translated into a significant but moderate reduction (39%) of the lesion volume, and of cell death (24%), 24 h after injury. The efficacy of M826 at inhibiting cell death was comparable to that of the noncompetitive NMDA receptor antagonist MK801. 5. These data provide in vivo proof-of-concept of the neuroprotective effects of reversible caspase-3 inhibitors in a model of malonate-induced striatal injury in the adult rat.
Collapse
Affiliation(s)
- Sylvie Toulmond
- Department of Pharmacology, Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec, H9H 3L1, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ozden S, Isenmann S. Neuroprotective Properties of Different Anesthetics on Axotomized Rat Retinal Ganglion CellsIn Vivo. J Neurotrauma 2004; 21:73-82. [PMID: 14987467 DOI: 10.1089/089771504772695968] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following transection of the optic nerve (ON) in the adult rat, 85% of axotomized retinal ganglion cells (RGCs) undergo degeneration within 14 days. Here, we examined the effects of various anesthetic and analgesic compounds on the number of RGCs surviving ON lesion. Five different protocols for rodent anesthesia were used (A, chloral hydrate; B, chloral hydrate/carprofen; C, chloral hydrate/buprenorphine; D, ketamine/xylazine; E, fentanyl/medetomidin/midazolam), and the numbers of RGCs surviving 14 days after ON axotomy were compared to evaluate if the agents used may affect numbers of surviving RGCs. In many laboratories, rodent ON surgery is performed with chloral hydrate anesthesia, and this condition was used as baseline, with 343.7 +/- 29.1 RGCs/mm(2) surviving after 14 days. The addition of carprofen to chloral hydrate did not affect RGC numbers (382.7 +/- 15.2 RGCs/mm(2); n.s.), while chloral hydrate with buprenorphine (421.1 +/- 25.1 RGCs/mm(2); p < 0.05), ketamine and xylazine (403.6 +/- 36.1 RGCs/mm(2); p < 0.05), or fentanyl with medetomidine and midazolam (481.3 +/- 10.4 RGCs/mm(2); p < 0.05) all increased RGC survival. In a second series of experiments, ON axotomized rats were treated with an adenoviral vector expressing GDNF (Ad.GDNF) that rescues injured RGCs, to study if the anesthetics (A, B, E; see above) would influence the degree of RGC neuroprotection afforded by GDNF. Intravitreal injection of Ad.GDNF at a low titre rescued approximately 10% of RGCs that would have degenerated without treatment using either of the three different anesthesia protocols, yet GDNF did not exert synergistic neuroprotection with any of the anesthetics tested. Our results indicate that in combination carprofen and chloral hydrate, while affording safe and reliable anesthesia and analgesia for rat ON surgery, does not affect the numbers of surviving RGCs. Therefore, data obtained with this combination may be related to experimental data obtained previously with only chloral hydrate anesthesia. All other protocols afforded some degree of RGC neuroprotection that may be utilized for experimental therapies of neurodegeneration, yet needs to be taken into careful consideration when mechanisms of neurodegeneration or approaches towards neuroprotection of RGCs are examined.
Collapse
Affiliation(s)
- Sidar Ozden
- Neuroregeneration Laboratory, Department of Neurology, University of Jena, Jena, Germany
| | | |
Collapse
|
43
|
Paucard A, Palmier B, Croci N, Taillieu F, Plotkine M, Margaill I. Biphasic modulation by nitric oxide of caspase activation due to malonate injection in rat striatum. Eur J Pharmacol 2004; 483:259-65. [PMID: 14729115 DOI: 10.1016/j.ejphar.2003.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study examined caspase activation and its modulation by nitric oxide (NO) in a model of oxidative stress induced by injection of malonate (3 micromol), a mitochondrial toxin, into rat striatum. Caspase-3-like enzymatic activity was maximal 6 h after malonate while NO production evaluated by its metabolites nitrites and nitrates was increased at 3 h. The neuronal NO-synthase inhibitor 7-nitroindazole reduced malonate induced-NO production by 50% at 25 mg/kg and enhanced by 32% caspase activation. This result suggests that a moderate production of NO potentiates caspase activation, an effect counterbalanced by NO itself at higher concentrations. Accordingly, complete inhibition of NO production by 7-nitroindazole at 50 mg/kg did not modify malonate-induced caspase activity. Thus NO production by the neuronal isoform of NO-synthase is not the major event leading to caspase activation due to malonate. However, NO seems to have pro- and anti-caspase effects that neutralize each other.
Collapse
Affiliation(s)
- Alexia Paucard
- Laboratoire de Pharmacologie, Université René Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington's disease. J Neurosci 2003. [PMID: 12832525 DOI: 10.1523/jneurosci.23-12-05020.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Striatal cell death in Huntington's Disease (HD) may involve mitochondrial defects, NMDA-mediated excitotoxicity, and activation of death effector proteases such as caspases and calpain. However, the precise contribution of mitochondrial defects in the activation of these proteases in HD is unknown. Here, we addressed this question by studying the mechanism of striatal cell death in rat models of HD using the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP). The neurotoxin was either given by intraperitoneal injections (acute model) or over 5 d by constant systemic infusion using osmotic pumps (chronic model) to produce either transient or sustained mitochondrial deficits. Caspase-9 activation preceded neurodegeneration in both cases. However, caspase-8 and caspase-3 were activated in the acute model, but not in the chronic model, showing that 3-NP does not require activation of these caspases to produce striatal degeneration. In contrast, activation of calpain was specifically detected in the striatum in both models and this was associated with a calpain-dependent cleavage of huntingtin. Finally, in the chronic model, which mimics a steady blockade of complex II activity reminiscent of HD, selective calpain inhibition prevented the abnormal calpain-dependent processing of huntingtin, reduced the size of the striatal lesions, and almost completely abolished the 3-NP-induced DNA fragmentation in striatal cells. The present results demonstrate that calpain is a predominant effector of striatal cell death associated with mitochondrial defects in vivo. This suggests that calpain may play an important role in HD pathogenesis and could be a potential therapeutic target to slow disease progression.
Collapse
|
45
|
McBride CB, McPhail LT, Vanderluit JL, Tetzlaff W, Steeves JD. Caspase inhibition attenuates transection-induced oligodendrocyte apoptosis in the developing chick spinal cord. Mol Cell Neurosci 2003; 23:383-97. [PMID: 12837623 DOI: 10.1016/s1044-7431(03)00063-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A developmental model of spinal cord injury in the embryonic chick was specifically developed to characterize the involvement of caspases in injury-induced oligodendrocyte apoptosis remote from the lesion and the ability of caspase inhibitors to attenuate this process. Developmental apoptosis in the cervical spinal cord increased within the white matter between embryonic days 13 and 18, the period of myelination of this region. Spinal cord transection during this period induced a rapid increase in apoptotic cells in the ventral and lateral white matter over several millimeters caudal to the injury. Immunostaining identified large numbers of these cells as oligodendrocytes. Catalytic activity assays and immunostaining demonstrated caspase-3-like but not caspase-1-like activity to be involved in this apoptotic response. In vivo application of specific caspase inhibitors significantly attenuated transection-induced apoptosis. Thus, we describe a developmental period during which spinal oligodendrocytes exhibited a heightened, caspase-dependent sensitivity to transection-induced apoptosis that is attenuated by caspase inhibition.
Collapse
Affiliation(s)
- Christopher B McBride
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
46
|
Leker RR, Neufeld MY. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:187-203. [PMID: 12791439 DOI: 10.1016/s0165-0173(03)00170-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many similarities exist between cerebral ischemia and epilepsy regarding brain-damaging and auto-protective mechanisms that are activated following the injurious insult. Therefore, drugs that are effective in minimizing seizure-induced brain damage may also be useful in minimizing ischemic injury. Use of such drugs in stroke victims may have important clinical and financial advantages. Therefore, the authors conducted a Medline search of studies involving the use of anti-epileptic drugs (AEDs) as possible neuroprotectants and summarize the data. Most AEDs have been tested in animal models of focal or global ischemia and some were already tested in humans, for a possible neuroprotective effect. The existing data is rather scant and insufficient but it appears that only drugs that have multiple mechanisms of action seem to have some potential in conferring a degree of neuroprotection that could be clinically applicable to stroke patients. In conclusion, some of the newer AEDs show promise as possible neuroprotectants in the setup of acute ischemic stroke but more studies are needed before clinical trials in humans could be undertaken.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology and the Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
47
|
Graczyk PP. Caspase inhibitors as anti-inflammatory and antiapoptotic agents. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:1-72. [PMID: 12536670 DOI: 10.1016/s0079-6468(08)70068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striking efficacy of Z-VAD-fmk in the various animal models presented above may reflect its ability to inhibit multiple enzymes including caspases. In accord with this, more selective, reversible inhibitors usually show low efficacy in multifactorial models such as ischaemia, but may offer some protection against NMDA-induced excitotoxicity and hepatitis. Importantly, caspase inhibitors may exhibit significant activity in vivo even when they are applied post insult. As far as the CNS is concerned, the first systemically active inhibitors have emerged. Functional recovery could be achieved in some ischaemia models, but long-term protection by caspase inhibitors is still being questioned. Recent developments in drug design enabled the first caspase inhibitors to enter the clinic. Although initially directed towards peripheral indications such as rheumatoid arthritis, caspase inhibitors will no doubt eventually be used to target CNS disorders. For this purpose the peptidic character of current inhibitors will have to be further reduced. Small molecule, nonpeptidic caspase inhibitors, which have appeared recently, indicate that this goal can be accomplished. Unfortunately, many fundamental questions still remain to be addressed. In particular, the necessary spectrum of inhibitory activity required to achieve the desired effect needs to be determined. There is also a safety aspect associated with prolonged administration. Therefore, the next therapeutic areas for broader-range caspase inhibitors are likely to involve acute treatment. Recent results with synergistic effects between MK-801 and caspase inhibitors in ischaemia suggest that caspase inhibitors may need to be used in conjunction with other drugs. It can be expected that, in the near future, research on caspases and their inhibitors will remain a rapidly developing area of biology and medicinal chemistry. More time, however, may be needed for the first caspase inhibitors to appear on the market.
Collapse
Affiliation(s)
- Piotr P Graczyk
- Department of Medicinal Chemistry, EISAI London Research Laboratories, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
48
|
Asanuma T, Ishibashi H, Konno A, Kon Y, Inanami O, Kuwabara M. Assessment of neuroprotective ability of a spin trap, alpha-phenyl-N-tert-butylnitrone, against malonate-induced ischemic injury of rat brain by apparent water diffusion coefficient mapping. Neurosci Lett 2002; 329:281-4. [PMID: 12183031 DOI: 10.1016/s0304-3940(02)00663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ischemic brain injury induced by injection of 3-micromol malonate into the left striatum of male Sprague-Dawley rats was examined by apparent water diffusion coefficient (ADC) mapping of magnetic resonance imaging. The region surrounding the injection core was imaged as a hypointense area in ADC mapping and ADC values in the regions were significantly decreased 3 and 6 h after ischemia. Significant reduction of the hypointense area and the recovery of ADC values were observed in rats to which alpha-phenyl-N-tert-butylnitrone (PBN) was intraperitoneally administered 1 h before ischemia. Since ADC mapping has been reported to be a suitable method for evaluating the extent and the degree of cytotoxic edema in the early period after the onset of ischemia, the present results prove that PBN is able to prevent early ischemic insults such as cytotoxic edema.
Collapse
Affiliation(s)
- Taketoshi Asanuma
- Laboratory of Radiation Biology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 2002; 9:818-31. [PMID: 12107825 DOI: 10.1038/sj.cdd.4401042] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Accepted: 01/30/2002] [Indexed: 12/13/2022] Open
Abstract
Neuronal death, which follows ischemic injury or is triggered by excitotoxins, can occur by both apoptosis and necrosis. Caspases, which are not directly required for necrotic cell death, are central mediators of the apoptotic program. Here we demonstrate that caspases cleave and inactivate the plasma membrane Ca(2+) pump (PMCA) in neurons and non-neuronal cells undergoing apoptosis. PMCA cleavage impairs intracellular Ca(2+) handling, which results in Ca(2+) overload. Expression of non-cleavable PMCA mutants prevents the disturbance in Ca(2+) handling, slows down the kinetics of apoptosis, and markedly delays secondary cell lysis (necrosis). These findings suggest that caspase-mediated cleavage and inactivation of PMCAs can lead to necrosis, an event that is reduced by caspase inhibitors in brain ischemia.
Collapse
Affiliation(s)
- B L Schwab
- Molecular Toxicology, Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 2002; 33:2123-36. [PMID: 12154275 DOI: 10.1161/01.str.0000025518.34157.51] [Citation(s) in RCA: 469] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuroprotective drugs for acute stroke have appeared to work in animals, only to fail when tested in humans. With the failure of so many clinical trials, the future of neuroprotective drug development is in jeopardy. Current hypotheses and methodologies must continue to be reevaluated, and new strategies need to be explored. Summary of Review- In part 1, we review key challenges and complexities in translational stroke research by focusing on the "disconnect" in the way that neuroprotective agents have traditionally been assessed in clinical trials compared with animal models. In preclinical studies, determination of neuroprotection has relied heavily on assessment of infarct volume measurements (instead of functional outcomes), short-term (instead of long-term) end points, transient (instead of permanent) ischemia models, short (instead of extended) time windows for drug administration, and protection of cerebral gray matter (instead of both gray and white matter). Clinical trials have often been limited by inappropriately long time windows, insufficient statistical power, insensitive outcome measures, inclusion of protocol violators, failure to target specific stroke subtypes, and failure to target the ischemic penumbra. In part 2, we explore new concepts in ischemic pathophysiology that should encourage us also to think beyond the hyperacute phase of ischemia and consider the design of trials that use multiagent therapy and exploit the capacity of the brain for neuroplasticity and repair. CONCLUSIONS By recognizing the strengths and limitations of animal models of stroke and the shortcomings of previous clinical trials, we hope to move translational research forward for the development of new therapies for the acute and subacute stages after stroke.
Collapse
Affiliation(s)
- David J Gladstone
- Division of Neurology and Regional Stroke Program, Sunnybrook and Women's College Health Sciences Centre, and Institute of Medical Sciences, Toronto, Ontario, Canada.
| | | | | |
Collapse
|