1
|
Pelayo R, Gutiérrez-Gil B, Marina H, Fonseca PAS, Alonso-García M, Arranz JJ, Suárez-Vega A. Unraveling Dynamic Transcriptomic Changes in Sheep's Lactating Mammary Gland Following Escherichia coli Lipopolysaccharide Exposure. J Dairy Sci 2024:S0022-0302(24)01149-4. [PMID: 39343208 DOI: 10.3168/jds.2024-25009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Mammary gland infections constitute a significant challenge in dairy sheep, impacting productivity and welfare. Temporal RNA-Seq provide a valuable approach to evaluate the evolution of the host defensive molecular mechanisms triggered by mastitis caused by external agents or events. This study aimed to characterize the transcriptomic response of sheep mammary glands to an intramammary inflammation induced with an Escherichia coli lipopolysaccharide (LPS) inoculation based on RNA-Seq samples generated from milk somatic cells collected at 3 time points: pre-inoculation (0 h), and 6 h and 24 h post-LPS inoculation. The differential expression analyses between the analyzed time points were performed using 2 statistical approaches: one parametric (DESeq2) and one non-parametric (Wilcoxon rank sum test). The differentially expressed genes (DEGs) commonly identified by both approaches encompass 5,872 for the 0 h versus 6 h comparison, 4,063 for the 0 h versus 24 h comparison, and 1,034 for the 6 h versus 24 h comparison. At both 6 h and 24 h, transcriptomic data highlighted a significant decrease in the expression of genes linked to metabolic processes crucial for milk protein and lipid synthesis within the mammary gland. Concurrently, increased expression of genes related to the neutrophil attraction was observed for 6 and 24 h, with differences in gene expression between DEGs with the highest expression at 6 h, related to T cell activation, type I interferon-mediated signaling pathway, and 24 h, related to cell-cell neutrophil adhesion extravasation or epithelial cell proliferation. In summary, this study reveals how the sheep mammary gland transcriptome responds dynamically to an LPS inoculation, providing a comprehensive understanding of how gene expression patterns evolve over time and shedding light on the molecular mechanisms driving the initial defensive response of the mammary gland against potential inflammatory challenges.
Collapse
Affiliation(s)
- R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - P A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - M Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain..
| |
Collapse
|
2
|
Shaukat A, Hanif S, Shaukat I, Rajput SA, Shukat R, Huang SC, H Almutairi M, Shaukat S, Ali M, Hassan M, Kiani FA, Su RW. Up-regulation of inflammatory, oxidative stress, and apoptotic mediators via inflammatory, oxidative stress, and apoptosis-associated pathways in bovine endometritis. Microb Pathog 2024; 191:106660. [PMID: 38657710 DOI: 10.1016/j.micpath.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sana Hanif
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, China
| | - Irfan Shaukat
- Department of Biochemistry, University of Narowal, Narowal, Pakistan
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Shadab Shaukat
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Mehboob Ali
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mubashar Hassan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Baker PH, Enger KM, Jacobi SK, Akers RM, Enger BD. Cellular proliferation and apoptosis in Staphylococcus aureus-infected heifer mammary glands experiencing rapid mammary gland growth. J Dairy Sci 2023; 106:2642-2650. [PMID: 36823008 DOI: 10.3168/jds.2022-22716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2023]
Abstract
Intramammary infections in nonlactating mammary glands are common and can occur during periods of rapid mammary epithelial cell (MEC) accumulation, which may ultimately reduce total MEC numbers. Reduced MEC numbers, resulting from impaired MEC proliferation and increased cellular apoptosis, are expected to reduce future milk yields. The objective of this study was to measure the degree of cellular proliferation and apoptosis in the epithelial and stromal compartment of uninfected and Staphylococcus aureus-infected mammary glands hormonally induced to grow rapidly. Nonpregnant heifers (n = 8) between 11 and 14 mo of age were administered supraphysiological injections of estradiol and progesterone for 14 d. One mammary gland of each heifer was randomly selected and infused with Staph. aureus (CHALL) while another mammary gland was designated as an uninfected control on d 8 of injections. Mammary tissues were collected on the last day of hormonal injections from center and edge parenchymal regions and subject to proliferation assessment via Ki-67 staining and apoptotic assessment via terminal deoxynucleotidyl transferase dUTP nick-end labeling. Differences in cellular proliferation between CHALL and uninfected control quarters were not apparent, but proliferation of MEC was marginally greater in edge parenchyma than in center parenchyma. Coincidently, CHALL quarters experienced a greater percentage of apoptotic MEC and lower percentage of stromal cells undergoing apoptosis than uninfected control quarters. This study also provides the first insight into the mechanisms that allow the mammary fat pad to be replaced by expanding mammary epithelium as edge parenchyma contained a greater percentage of apoptotic stromal cells than center parenchyma. When taken together, these data suggest that Staph. aureus intramammary infection impairs mammary epithelial growth through reductions in MEC number and by preventing its expansion into the mammary fat pad. These factors during periods of rapid mammary growth are expected to impair first lactation milk yield.
Collapse
Affiliation(s)
- Pari H Baker
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Kellie M Enger
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - R Michael Akers
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - Benjamin D Enger
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
4
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
5
|
Sanguinarine Enhances the Integrity of the Blood-Milk Barrier and Inhibits Oxidative Stress in Lipopolysaccharide-Stimulated Mastitis. Cells 2022; 11:cells11223658. [PMID: 36429086 PMCID: PMC9688596 DOI: 10.3390/cells11223658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Mastitis is a common clinical disease which threatens the welfare and health of dairy cows and causes huge economic losses. Sanguinarine (SG) is a plant-derived alkaloid which has many biological functions, including antibacterial and antioxidant properties. The present study attempted to evaluate the effect of SG on lipopolysaccharide (LPS)-induced oxidative stress reactions and explore its potential mechanisms. The expression profile of SG was analyzed by network pharmacology, and it was found that differentially expressed genes were mainly involved in the Wnt signaling pathway and oxidative stress through GO and KEGG enrichment. In in vitro experiments, the dosage of SG was non-toxic to mouse mammary epithelial cells (mMECs) (p > 0.05). SG not only inhibited the increase in ROS induced by LPS, but also enhanced the activity of antioxidant enzymes (p < 0.05). Moreover, the results of the in vivo experiments showed that SG alleviated LPS-induced inflammatory damage of mouse mammary glands and enhanced the integrity of the blood-milk barrier (p < 0.05). Further studies suggested that SG promoted Nrf2 expression and suppressed the activation of the Wnt signaling pathway (p < 0.05). Conclusively, this study clarified the protective effect of SG on mastitis and provided evidence for new potential mechanisms. SG exerted its antioxidant function through activating Nrf2 and inhibiting the Wnt/β-catenin pathway, repairing the blood-milk barrier.
Collapse
|
6
|
Li K, Yang M, Tian M, Jia L, Du J, Wu Y, Li L, Yuan L, Ma Y. Lactobacillus plantarum 17-5 attenuates Escherichia coli-induced inflammatory responses via inhibiting the activation of the NF-κB and MAPK signalling pathways in bovine mammary epithelial cells. BMC Vet Res 2022; 18:250. [PMID: 35764986 PMCID: PMC9238091 DOI: 10.1186/s12917-022-03355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is one of the most prevalent diseases and causes considerable economic losses in the dairy farming sector and dairy industry. Presently, antibiotic treatment is still the main method to control this disease, but it also brings bacterial resistance and drug residue problems. Lactobacillus plantarum (L. plantarum) is a multifunctional probiotic that exists widely in nature. Due to its anti-inflammatory potential, L. plantarum has recently been widely researched in complementary therapies for various inflammatory diseases. In this study, the apoptotic ratio, the expression levels of various inflammatory mediators and key signalling pathway proteins in Escherichia coli-induced bovine mammary epithelial cells (BMECs) under different doses of L. plantarum 17–5 intervention were evaluated. Results The data showed that L. plantarum 17–5 reduced the apoptotic ratio, downregulated the mRNA expression levels of TLR2, TLR4, MyD88, IL1β, IL6, IL8, TNFα, COX2, iNOS, CXCL2 and CXCL10, and inhibited the activation of the NF-κB and MAPK signalling pathways by suppressing the phosphorylation levels of p65, IκBα, p38, ERK and JNK. Conclusions The results proved that L. plantarum 17–5 exerted alleviative effects in Escherichia coli-induced inflammatory responses of BMECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03355-9.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
7
|
An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiol Res 2021; 256:126960. [PMID: 35021119 DOI: 10.1016/j.micres.2021.126960] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Escherichia coli is one of the leading causes of bovine mastitis; it can cause sub-clinical, and clinical mastitis characterized by systemic changes, abnormal appearance of milk, and udder inflammation. E. coli pathogenicity in the bovine udder is due to the interaction between its virulence factors and the host factors; it was also linked to the presence of a new pathotype termed mammary pathogenic E. coli (MPEC). However, the presence of this pathotype is commonly debated. Its main virulence factor is the lipopolysaccharide (LPS) that is responsible for causing an endotoxic shock, and inducing a strong immune response by binding to the toll-like receptor 4 (TLR4), and stimulating the expression of chemokines (such as IL-8, and RANTES) and pro-inflammatory cytokines (such as IL-6, and IL-1β). This strong immune response could be used to develop alternative and safe approaches to control E. coli causing bovine mastitis by targeting pro-inflammatory cytokines that can damage the host tissue. The need for alternative treatments against E. coli is due to its ability to resist many conventional antibiotics, which is a huge challenge for curing ill animals. Therefore, the aim of this review was to highlight the pathogenicity of E. coli in the mammary gland, discuss the presence of the new putative pathotype, the mammary pathogenic E. coli (MPEC) pathotype, study the host's immune response, and the alternative treatments that are used against mastitis-associated E. coli.
Collapse
|
8
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Li T, Lin C, Zhu Y, Xu H, Yin Y, Wang C, Tang X, Song T, Guo A, Chen Y, Hu C. Transcriptome Profiling of m 6A mRNA Modification in Bovine Mammary Epithelial Cells Treated with Escherichia coli. Int J Mol Sci 2021; 22:ijms22126254. [PMID: 34200743 PMCID: PMC8230414 DOI: 10.3390/ijms22126254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/19/2023] Open
Abstract
Mastitis is a common disease in dairy cows that is mostly caused by E. coli, and it brings massive losses to the dairy industry. N6-Methyladenosine (m6A), a methylation at the N6 position of RNA adenine, is a type of modification strongly associated with many diseases. However, the role of m6A in mastitis has not been investigated. In this study, we used MeRIP-seq to sequence the RNA of bovine mammary epithelial cells treated with inactivated E. coli for 24 h. In this in vitro infection model, there were 16,691 m6A peaks within 7066 mRNA transcripts in the Con group and 10,029 peaks within 4891 transcripts in the E. coli group. Compared with the Con group, 474 mRNAs were hypermethylated and 2101 mRNAs were hypomethylated in the E. coli group. Biological function analyses revealed differential m6A-modified genes mainly enriched in the MAPK, NF-κB, and TGF-β signaling pathways. In order to explore the relationship between m6A and mRNA expression, combined MeRIP-seq and mRNA-seq analyses revealed 212 genes with concomitant changes in the mRNA expression and m6A modification. This study is the first to present a map of RNA m6A modification in mastitis treated with E. coli, providing a basis for future research.
Collapse
Affiliation(s)
- Ting Li
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haojun Xu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Yiya Yin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
| | - Chaohao Wang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
| | - Xin Tang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- Correspondence: ; Tel.: +86-153-2719-7602
| |
Collapse
|
10
|
Shangraw EM, Rodrigues RO, Choudhary RK, Zhao FQ, McFadden TB. Hypogalactia in mammary quarters adjacent to lipopolysaccharide-infused quarters is associated with transcriptional changes in immune genes. J Dairy Sci 2021; 104:9276-9286. [PMID: 34053759 DOI: 10.3168/jds.2020-20048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Infusion of lipopolysaccharides (LPS) into a mammary gland can provoke inflammatory responses and impair lactation in both the infused gland and neighboring glands. To gain insight into the mechanisms controlling the spatiotemporal response to localized mastitis in lactating dairy cows, we performed RNA sequencing on mammary tissue from quarters infused with LPS, neighboring quarters in the same animals, and control quarters from untreated animals at 3 and 12 h postinfusion. Differences in gene expression were annotated to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing mammary transcriptomes from all 3 treatments revealed 3,088 and 1,644 differentially expressed (DE) genes at 3 and 12 h, respectively. Of these genes, >95% were DE only in LPS-infused quarters and represented classical responses to LPS: inflammation, apoptosis, tissue remodeling, and altered cell signaling and metabolism. Although relatively few genes were DE in neighboring quarters (56 at 3 h; 74 at 12 h), these represented several common pathways. At 3 h, tumor necrosis factor (TNF), nuclear factor-κB, and nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathways were identified by the upregulation of anti-inflammatory (NFKBIA, TNFAIP3) and cell adhesion molecule (VCAM1, ICAM1) genes in neighboring glands. Additionally, at 12 h, several genes linked to 1-carbon and serine metabolism were upregulated. Some responses were also regulated over time. The proinflammatory response in LPS-infused glands diminished between 3 and 12 h, indicating tight control over transcription to re-establish homeostasis. In contrast, 2 glucocorticoid-responsive genes, FKBP5 and ZBTB16, were among the top DE genes upregulated in neighboring quarters at both time points, indicating potential regulation by glucocorticoids. We conclude that a transient, systemic immune response was sufficient to disrupt lactation in neighboring glands. This response may be mediated directly by proinflammatory factors from the LPS-infused gland or indirectly by secondary factors released in response to systemic inflammatory signals.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R O Rodrigues
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R K Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - F-Q Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| |
Collapse
|
11
|
Involvement of matrix metalloproteinases and their inhibitors in Staphylococcus aureus chronically infected bovine mammary glands during active involution. Res Vet Sci 2021; 137:30-39. [PMID: 33932820 DOI: 10.1016/j.rvsc.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to characterize the protein expression of matrix metalloproteinase-2 (MMP-2) and -- 9 and their inhibitors (TIMP-1 and -2) in mammary tissue of dairy cows with naturally occurring chronic S. aureus intramammary infections (IMI) during active involution. Moreover, the gelatinolytic activity of MMP-2 and -9 in mammary secretions was evaluated. Cows in late lactation that were either uninfected or with chronic naturally acquired S. aureus IMI were included in this study. Protein expression of MMP-2 and -9 in mammary tissues was significantly higher in S. aureus-infected than uninfected quarters at day 14 and 21 of involution. Protein expression of TIMP-1 and -2 was significantly higher in S. aureus-infected than uninfected quarters at day 7, 14 and 21 of involution. The MMP-2/TIMP-1, MMP-2/TIMP-2, MMP-9/TIMP-1 and MMP-9/TIMP-2 ratios were significantly higher in S. aureus-infected compared with uninfected quarters at day 14 of involution. The MMP-2 activity was significantly higher in mammary secretions from S. aureus-infected compared with uninfected quarters at day 1, 2, 7 and 14 of involution. The MMP-9 activity was significantly higher in mammary secretions from infected quarters compared with uninfected quarters at day 7, 14 and 21 of involution. The increased expression of MMP-2 and -9 in mammary tissue as well as the high levels of activity observed in mammary secretion from infected quarters compared with uninfected quarters during active involution, strongly suggests that these gelatinases could contribute to degradation of mammary tissue components during chronic S. aureus IMI. The MMPs/TIMPs imbalance could lead to greater proteolysis and potentially more damage to mammary tissue in S. aureus-infected quarters.
Collapse
|
12
|
Zhuang C, Huo W, Liu G, Shahid M, Gao J, Barkema HW, Rahman SU, Kastelic JP, Han B. In vitro immune responses of bovine mammary epithelial cells induced by Escherichia coli, with multidrug resistant extended-spectrum β-lactamase, isolated from mastitic milk. Microb Pathog 2020; 149:104494. [PMID: 32926997 DOI: 10.1016/j.micpath.2020.104494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
Bovine mastitis is an inflammatory condition of mammary glands causing huge economic losses for dairy industries. Infection with extended-spectrum β-lactamase (ESBL)-producing sequence types (ST) 410-Escherichia coli (ESBL-ST410 E. coli) is considered a leading cause of bovine mastitis in China. However, pathogenic effects of these strains in an in vitro model, e.g. bovine mammary epithelial cells (bMECs), are unknown. Therefore, our objectives were to explore pathogenesis (adhesion and invasion, inflammation, oxidative stress and apoptosis) of ESBL-E. coli (highly prevalent in bovine mastitis) in bMECs. Non-pathogenic E. coli DH5α and a prototypical E. coli P4 were included as negative and positive controls, respectively. The bMECs were infected with our isolated ST410 strains, plus DH5α and P4, with assessment of the following end points: adhesive and invasive capabilities; lactate dehydrogenase (LDH) activities; inflammatory responses, including concentrations of interleukin-1β (IL-1β), IL-6, IL-10 and tumor necrosis factor-α; oxidative stress including intracellular reactive oxygen species production, malondialdehyde concentrations, activities of glutathione peroxidase and superoxide dismutase; and apoptosis. All ST410 strains had greater adhesive and invasive capabilities and increased LDH release, with varying degrees of inflammatory responses, oxidative stress and apoptosis compared to blank and DH5α groups, similar to P4-infected bMECs. In particular, ST410(4) was more likely than the other 3 isolates to adhere to and invade bMECs and increase LDH activities, cytokine release, oxidative stress and apoptosis. Thus, ST410 isolates had pathogenic manifestations of adhesive and invasive capabilities; furthermore, they induced inflammation, oxidative stress and apoptosis in bMECs. Finally, ST410(4) was the most pathogenic strain.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Wenlin Huo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Tang X, Liu C, Li T, Lin C, Hao Z, Zhang H, Zhao G, Chen Y, Guo A, Hu C. Gambogic acid alleviates inflammation and apoptosis and protects the blood-milk barrier in mastitis induced by LPS. Int Immunopharmacol 2020; 86:106697. [PMID: 32585608 DOI: 10.1016/j.intimp.2020.106697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Mastitis is one of the most common diseases among dairy cows. There is still much debate worldwide as to whether antibiotic therapy should be given to dairy cows, or if natural products should be taken as a substitute for antibacterial therapy. As the antibiotic treatment leads to the bacterial resistance and drug residue in milk, introducing natural products for mastitis is becoming a trend. This study investigates the mechanisms of the protective effects of the natural product gambogic acid (GA) in lipopolysaccharide (LPS)-induced mastitis. For in vitro treatments, it was found that GA reduced IL-6, TNF-α, and IL-1β levels by inhibiting the phosphorylation of proteins in the nuclear factor κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway. GA also maintained a stable membrane mitochondrial potential and inhibited the overproduction of reactive oxygen species, which protected the cells from apoptosis. On the other hand, in vivo treatments with GA were found to reduce pathological symptoms markedly, and protected the blood-milk barrier from damage induced by LPS. The results demonstrate that GA plays a vital role in suppressing inflammation, alleviating the apoptosis effect, and protecting the blood-milk barrier in mastitis induced by LPS. Thus, these results suggest that the natural product GA plays a potential role in mastitis treatment.
Collapse
Affiliation(s)
- Xin Tang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chang Liu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ting Li
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiyu Hao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Hui Zhang
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Gang Zhao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Aizhen Guo
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
14
|
Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894309. [PMID: 32273941 PMCID: PMC7128054 DOI: 10.1155/2020/3894309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.
Collapse
|
15
|
Isolated perfused udder model for transcriptome analysis in response to Streptococcus agalactiae. J DAIRY RES 2020; 86:307-314. [PMID: 31451129 DOI: 10.1017/s0022029919000451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the transcriptional changes occurring in isolated perfused mammary alveolar tissue in response to inoculation with S. agalactiae and to identify the most affected biological functions and pathways after 3 h. Four udders taken at slaughter from cows with healthy mammary gland were perfused ex situ with warmed and gassed Tyrode's solution. Mammary alveolar tissue samples were taken from the left fore and rear quarters (IQ-inoculated quarters) before inoculation (hour 0) and at 3 h post inoculation (hpi) and at the same times from control right fore and rear quarters (not inoculated: NIQ). A total of 1756 differentially expressed genes (DEGs) were identified between IQ and NIQ at 3 hpi using edgeR package. Within this set of DEGs, 952 were up regulated and mainly involved with innate immune response and inflammatory response, e.g., CD14, CCL5, TLR2, IL-8, SAA3, as well as in transcriptional regulation such as FOS, STAT3 and NFKBIA. Genes down-regulated (804) included those involved with lipid synthesis e.g., APOC2, SCD, FABP3 and FABP4. The most affected pathways were chemokine signaling, Wnt signaling and complement and coagulation cascades, which likely reflects the early stage response of mammary tissue to S. agalactiae infection. No significant gene expression changes were detected by RNA-Seq in the others contrasts. Real time-PCR confirmed the increase in mRNA abundance of immune-related genes: TLR2, TLR4, IL-1β, and IL-10 at 3 hpi between IQ and NIQ. The expression profiles of Casp1 and Bax for any contrasts were unaffected whereas Bcl2 was increased in IQ, which suggests no induction of apoptosis during the first hours after infection. Results provided novel information regarding the early functional pathways and gene network that orchestrate innate immune responses to S. agalactiae infection. This knowledge could contribute to new strategies to enhance resistance to this disease, such as genomic selection.
Collapse
|
16
|
Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep 2019; 9:13536. [PMID: 31537825 PMCID: PMC6753130 DOI: 10.1038/s41598-019-49468-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
Milk microbiomes significantly influence the pathophysiology of bovine mastitis. To assess the association between microbiome diversity and bovine mastitis, we compared the microbiome of clinical mastitis (CM, n = 14) and healthy (H, n = 7) milk samples through deep whole metagenome sequencing (WMS). A total of 483.38 million reads generated from both metagenomes were analyzed through PathoScope (PS) and MG-RAST (MR), and mapped to 380 bacterial, 56 archaeal, and 39 viral genomes. We observed distinct shifts and differences in abundance between the microbiome of CM and H milk in phyla Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria with an inclusion of 68.04% previously unreported and/or opportunistic strains in CM milk. PS identified 363 and 146 bacterial strains in CM and H milk samples respectively, and MR detected 356 and 251 bacterial genera respectively. Of the identified taxa, 29.51% of strains and 63.80% of genera were shared between both metagenomes. Additionally, 14 archaeal and 14 viral genera were found to be solely associated with CM. Functional annotation of metagenomic sequences identified several metabolic pathways related to bacterial colonization, proliferation, chemotaxis and invasion, immune-diseases, oxidative stress, regulation and cell signaling, phage and prophases, antibiotic and heavy metal resistance that might be associated with CM. Our WMS study provides conclusive data on milk microbiome diversity associated with bovine CM and its role in udder health.
Collapse
|
17
|
Marins TN, Monteiro APA, Weng X, Guo J, Orellana Rivas RM, Bernard JK, Tomlinson DJ, DeFrain JM, Tao S. Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: intake, milk yield and composition, and hematologic profile1. J Anim Sci 2019; 97:2053-2065. [PMID: 30844051 DOI: 10.1093/jas/skz082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to determine the effect of dietary supplemental Zn source and evaporative cooling on intake, milk yield and composition, and the rate of leukocyte migration into the mammary gland following intramammary lipopolysaccharide (LPS) infusion. Multiparous Holstein cows (n = 72) were assigned to one of four treatments with a 2×2 factorial arrangement including two sources of supplemental Zn: 75 mg/kg Zn hydroxychloride or 35 mg/kg Zn hydroxychloride + 40 mg/kg Zn-Met complex (ZMC) each with or without evaporative cooling. The cooling system was implemented by the use of fans and misters over the freestall and feeding areas. On day 34 of the experiment, cows (n = 16; days in milk = 263 ± 63 d) received an infusion of 10 μg of LPS, or a saline control, in the left or right rear quarters. Individual milk samples from both quarters were collected at -12, -4, 0, 6, 12, 24, 48, 72, 96, 120, 144, and 168 h relative to infusion and analyzed for composition and bovine serum albumin. Rectal temperature and respiration rate were assessed and blood samples were collected at the same time points (with an additional sample at 3 h) for analyses of lactose and cortisol. Complete blood counts were performed on samples collected within the first 24 h post infusion. Intramammary LPS infusion reduced (P < 0.01) milk yield, DMI and feed efficiency regardless of dietary or cooling treatments. Non-cooled cows tended (P = 0.09) to have greater feed efficiency (=milk yield/DMI) at 1 d after infusion than those subjected to cooling. Intramammary LPS infusion dramatically increased (P < 0.01) milk somatic cell count (SCC) but treatments had no apparent impact on milk SCC. Compared with cooled cows, non-cooled cows had greater (P < 0.05) plasma lactose concentrations, but lower (P < 0.03) blood concentrations of neutrophils and lymphocytes at 3 h post infusion. This suggests a greater leukocyte migration into the mammary gland of heat-stressed cows. In conclusion, noncooled cows tended to maintain greater feed efficiency and appeared to have greater leukocyte migration into the mammary gland immediately after intramammary LPS infusion compared with cooled cows. Dietary supplemental Zn source had no impact on measures assessed after intramammary LPS infusion.
Collapse
Affiliation(s)
- Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Ana P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Xisha Weng
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Jinru Guo
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | | | - Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton
| |
Collapse
|
18
|
Martinez Cuesta L, Nieto Farias MV, Lendez PA, Rowland RRR, Sheahan MA, Cheuquepán Valenzuela FA, Marin MS, Dolcini G, Ceriani MC. Effect of bovine leukemia virus on bovine mammary epithelial cells. Virus Res 2019; 271:197678. [PMID: 31381943 DOI: 10.1016/j.virusres.2019.197678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that infects cattle and is associated with an increase in secondary infections. The objective of this study was to analyze the effect of BLV infection on cell viability, apoptosis and morphology of a bovine mammary epithelial cell line (MAC-T), as well as Toll like receptors (TLR) and cytokine mRNA expression. Our findings show that BLV infection causes late syncytium formation, a decrease in cell viability, downregulation of the anti-apoptotic gene Bcl-2, and an increase in TLR9 mRNA expression. Moreover, we analyzed how this stably infected cell line respond to the exposure to Staphylococcus aureus (S. aureus), a pathogen known to cause chronic mastitis. In the presence of S. aureus, MAC-T BLV cells had decreased viability and decreased Bcl-2 and TLR2 mRNA expression. The results suggest that mammary epithelial cells infected with BLV have altered the apoptotic and immune pathways, probably affecting their response to bacteria and favoring the development of mastitis.
Collapse
Affiliation(s)
- Lucia Martinez Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | - Maria Victoria Nieto Farias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina
| | - Pamela A Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Maureen A Sheahan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Felipe A Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Área de Producción Animal, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Maia S Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Área de Producción Animal, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Guillermina Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina
| | - Maria Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina.
| |
Collapse
|
19
|
Wang Y, Zhang Y, Chi X, Ma X, Xu W, Shi F, Hu S. Anti-inflammatory mechanism of ginsenoside Rg1: Proteomic analysis of milk from goats with mastitis induced with lipopolysaccharide. Int Immunopharmacol 2019; 71:382-391. [PMID: 30952102 DOI: 10.1016/j.intimp.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Previous investigation showed that intravenous injection of ginsenoside Rg1 had a therapeutic effect on Escherichia coli lipopolysaccharide-induced mastitis in lactating goats and it protected animals from lipopolysaccharide challenge via toll-like receptor 4 signaling pathway. The present study was to use proteomic approach to explore the anti-inflammatory mechanisms of Rg1. Nine dairy goats were randomly divided into three groups with 3 animals in each: groups 1 and 2 received intra-mammary infusion of lipopolysaccharide and then intravenously injected with saline or Rg1 solution; animals in group 3 were first intramammarily and then intravenously administered saline solution, and served as a control group. Milk whey at 6 h post lipopolysaccharide challenge was prepared for tandem mass tags based quantitative proteomic analysis. The results showed that 791 proteins were totally identified from the whey. Of them, 98 proteins between groups 1 (lipopolysaccharide + Saline) and 3 (Saline + Saline), and 34 proteins between groups 2 (lipopolysaccharide + Rg1) and 1 were significantly different. Group 1 than group 3 had significantly more inflammatory factors such as interleukin 6, acute phase proteins, blood coagulation factors, complement proteins, and oxidative stress markers while these factors were reduced in group 2 treated with Rg1. In addition, proteins in group 2 associated with peroxisome-proliferator-activated receptor γ activation and recovery of milk fat and production were upregulated compared to group 1. Therefore, Rg1 may exert its anti-inflammatory effect on lipopolysaccharide-induced mastitis in goats via modulating expression of proteins relating to peroxisome-proliferator-activated receptor γ and toll-like receptor 4 signaling pathway.
Collapse
Affiliation(s)
- Yuemin Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China.
| | - Yong Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Xiaoqing Chi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Xiaodan Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China.
| |
Collapse
|
20
|
Caggiano N, Lorenzo Smirnoff A, Bottini J, De Simone E. Protease activity and protein profile in milk from healthy dairy cows and cows with different types of mastitis. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Enger BD, Tucker HLM, Nickerson SC, Parsons CLM, Akers RM. Effects of Staphylococcus aureus intramammary infection on the expression of estrogen receptor α and progesterone receptor in mammary glands of nonlactating cows administered estradiol and progesterone to stimulate mammary growth. J Dairy Sci 2019; 102:2607-2617. [PMID: 30639023 DOI: 10.3168/jds.2018-15499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022]
Abstract
Intramammary infections (IMI) are prevalent in nonlactating dairy cattle and are known to alter mammary structure and negatively affect the amount of mammary epithelium in the gland. Mechanisms responsible for the observed changes in mammary growth during an IMI are poorly understood, yet the importance of the key mammogenic hormones driving mammary growth is well recognized. This study's objective was to characterize the expression of estrogen receptor α (ESR1) and progesterone receptor (PGR) in mammary glands stimulated to grow and develop in the presence or absence of an IMI as well as preliminarily characterize myoepithelial cell response to IMI. Mammary growth was stimulated in 18 nonpregnant, nonlactating dairy cows using subcutaneous estradiol and progesterone injections, and 2 culture-negative quarters of each cow were subsequently infused with either saline (n = 18) or Staphylococcus aureus (n = 18). Mammary parenchyma tissues were collected 5 d (n = 9) or 10 d (n = 9) postchallenge and examined using immunofluorescence microscopy to quantify positive nuclei and characterize staining features. There tended to be a greater number of ESR1-positive nuclei observed across 8 random mammary parenchyma fields of view in saline quarters than in Staph. aureus quarters (201 vs. 163 ± 44 nuclei). Saline quarters also contained a greater number of PGR-positive nuclei (520 vs. 440 ± 45 nuclei) and myoepithelial cells (971 vs. 863 ± 48 nuclei) than Staph. aureus-challenged quarters. However, when ESR1, PGR, and myoepithelial nuclei counts were adjusted for Staph. aureus quarters containing less epithelium, differences between quarter treatments abated. The examined ESR1 and PGR staining characteristics were similar between saline and Staph. aureus quarters but were differentially affected by day of tissue collection. Additionally, nuclear staining area of myoepithelial cells was greater in Staph. aureus quarters than in saline quarters. These results indicate that IMI had little effect on the number or staining characteristics of ESR1- or PGR-positive nuclei relative to epithelial area, but myoepithelial cells appear to be affected by IMI and the associated inflammation in nonlactating mammary glands that were stimulated to grow rapidly using mammogenic hormones. Accordingly, reductions in mammary epithelium in affected glands are not suspected to be resultant of alterations in the number or staining characteristics of ESR1- or PGR-positive mammary epithelial cells.
Collapse
Affiliation(s)
- B D Enger
- Dairy Science Department, Virginia Polytechnic Institute and State University, Blacksburg 24060
| | - H L M Tucker
- Dairy Science Department, Virginia Polytechnic Institute and State University, Blacksburg 24060
| | - S C Nickerson
- Animal and Dairy Science Department, University of Georgia, Athens 30602
| | - C L M Parsons
- Dairy Science Department, Virginia Polytechnic Institute and State University, Blacksburg 24060
| | - R M Akers
- Dairy Science Department, Virginia Polytechnic Institute and State University, Blacksburg 24060.
| |
Collapse
|
22
|
Enger B, Nickerson S, Tucker H, Parsons C, Akers R. Apoptosis and proliferation in Staphylococcus aureus-challenged, nonlactating mammary glands stimulated to grow rapidly and develop with estradiol and progesterone. J Dairy Sci 2019; 102:857-865. [DOI: 10.3168/jds.2018-15498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
|
23
|
Cell free mitochondrial DNA in serum and milk associated with bovine mastitis: a pilot study. Vet Res Commun 2018; 42:275-282. [DOI: 10.1007/s11259-018-9735-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 01/23/2023]
|
24
|
Tong J, Thompson I, Zhao X, Lacasse P. Effect of 17β-estradiol on milk production, hormone secretion, and mammary gland gene expression in dairy cows. J Dairy Sci 2018; 101:2588-2601. [DOI: 10.3168/jds.2017-13353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022]
|
25
|
Varzandian B, Ghaderi-Zefrehei M, Hosseinzadeh S, Sayyadi M, Taghadosi V, Varzandian S. An Investigation on the Expression Level of Interleukin 10 (IL-10) in the Healthy and Mastitic Holstein Cows and the Bioinformatics Analysis of Nucleosome Profile. Anim Biotechnol 2017; 28:294-300. [PMID: 28267404 DOI: 10.1080/10495398.2017.1283322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cytokines are immune regulators that play an essential role in regulating immune response against various infections. The present study focused on the possible association between the expression level of Interleukin 10 (IL-10) in blood and milk samples of 25 healthy and 25 mastitic cows in Fars province, Iran, using a quantitative real-time PCR assay. The experimental groups were categorized according to the number of calvings. The expression level of IL-10 was significantly higher in the blood and milk samples of mastitic cows compared to the healthy ones. Concomitant to increasing the number of calving, a numerical elevation in the expression of IL-10 in blood was observed (P < 0.05). The bioinformatics analysis of IL-10 gene revealed the promoter, exon-intron regions, and nucleosome profile. The nucleosome occupancy site was finally predicted using NUPOP software. Our result indicated that the promoter was not exactly placed in the nucleosome region, which was finally aimed to predict the position and expression of IL-10 gene in the mastitic cows.
Collapse
Affiliation(s)
- Bahareh Varzandian
- a Department of Animal Breeding, School of Agriculture , Yasouj University , Yasouj , Iran
| | | | - Saeid Hosseinzadeh
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Mostafa Sayyadi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Vahideh Taghadosi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Sara Varzandian
- c Department of Clinical Sciences, School of Veterinary Medicine, Kazerun Branch , Islamic Azad University , Kazerun , Iran
| |
Collapse
|
26
|
Nagasawa Y, Kiku Y, Sugawara K, Tanabe F, Hayashi T. Exfoliation rate of mammary epithelial cells in milk on bovine mastitis caused by Staphylococcus aureus is associated with bacterial load. Anim Sci J 2017; 89:259-266. [PMID: 28891152 DOI: 10.1111/asj.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
The exfoliation rate of mammary epithelial cells (MECs) in milk is affected by physiological, breeding and environmental factors. Little is known about the relationship between the MEC exfoliation into milk and mammary-infected Staphylococcus aureus (S. aureus) load on bovine mastitis caused by S. aureus. The aim of this study was to investigate the relationship between S. aureus load and the proportion of MEC exfoliation in milk using five substantial bovine mastitis models. In 64 randomly extracted milk samples from udders at 3-21 days after S. aureus infusion, there were various samples with different numbers of S. aureus counts and somatic cell counts. No significant correlations were found between the S. aureus counts and somatic cell count (r = 0.338). In contrast, a significant correlation was noted between S. aureus counts and the proportion of cytokeratin-positive cells in the milk from the infused udders (r = 0.734, P < 0.01). In conclusion, the increasing MEC exfoliation rate in milk from mastitis udders caused by S. aureus may contribute to reduced milk yield.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Fuyuko Tanabe
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| |
Collapse
|
27
|
Liu M, Wu Q, Wang M, Fu Y, Wang J. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells. Inflammation 2017; 39:1483-94. [PMID: 27236308 DOI: 10.1007/s10753-016-0382-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.
Collapse
Affiliation(s)
- Mingchao Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Qiong Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Mengling Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Jilin, 130062, People's Republic of China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
28
|
Fonseca I, Cardoso F, Higa R, Giachetto P, Brandão H, Brito M, Ferreira M, Guimarães S, Martins M. Gene expression profile in zebu dairy cows (Bos taurus indicus) with mastitis caused by Streptococcus agalactiae. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Jaeger A, Bardehle D, Oster M, Günther J, Muráni E, Ponsuksili S, Wimmers K, Kemper N. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro. Vet Res 2015; 46:50. [PMID: 25948480 PMCID: PMC4421989 DOI: 10.1186/s13567-015-0178-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/01/2015] [Indexed: 12/17/2022] Open
Abstract
Postpartum Dysgalactia Syndrome (PDS) represents a considerable health problem of postpartum sows, primarily indicated by mastitis and lactation failure. The poorly understood etiology of this multifactorial disease necessitates the use of the porcine mammary epithelial cell (PMEC) model to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections at the first cellular barrier of the gland. PMEC were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for 3 h and 24 h, in vitro. We focused on differential gene expression patterns of PMEC after pathogen challenge in comparison with the untreated control by performing microarray analysis. Our results show that a core innate immune response of PMEC is partly shared by E. coli and S. aureus. But E. coli infection induces much faster and stronger inflammatory response than S. aureus infection. An immediate and strong up-regulation of genes encoding cytokines (IL1A and IL8), chemokines (CCL2, CXCL1, CXCL2, CXCL3, and CXCL6) and cell adhesion molecules (VCAM1, ICAM1, and ITGB3) was explicitly obvious post-challenge with E. coli inducing a rapid recruitment and activation of cells of host defense mediated by IL1B and TNF signaling. In contrast, S. aureus infection rather induces the expression of genes encoding monooxygenases (CYP1A1, CYP3A4, and CYP1B1) initiating processes of detoxification and pathogen elimination. The results indicate that the course of PDS depends on the host recognition of different structural and pathogenic profiles first, which critically determines the extent and effectiveness of cellular immune defense after infection.
Collapse
Affiliation(s)
- Alexandra Jaeger
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Danilo Bardehle
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Theodor-Lieser-Straße 11, D-06120, Halle (Saale), Germany.
| | - Michael Oster
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Juliane Günther
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Eduard Muráni
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Livestock Ethology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany.
| |
Collapse
|
30
|
Minuti A, Zhou Z, Graugnard DE, Rodriguez-Zas SL, Palladino AR, Cardoso FC, Trevisi E, Loor JJ. Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows. Physiol Rep 2015; 3:3/4/e12388. [PMID: 25921778 PMCID: PMC4425984 DOI: 10.14814/phy2.12388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The study investigated the effect of an intramammary lipopolysaccharide (LPS) challenge on the bovine mammary and liver transcriptome and its consequences on metabolic biomarkers and liver tissue composition. At 7 days of lactation, 7 cows served as controls (CTR) and 7 cows (LPS) received an intramammary Escherichia coli LPS challenge. The mammary and liver tissues for transcriptomic profiling were biopsied at 2.5 h from challenge. Liver composition was evaluated at 2.5 h and 7 days after challenge, and blood biomarkers were analyzed at 2, 3, 7 and 14 days from challenge. In mammary tissue, the LPS challenge resulted in 189 differentially expressed genes (DEG), with 20 down-regulated and 169 up-regulated. In liver tissue, there were 107 DEG in LPS compared with CTR with 42 down-regulated and 65 up-regulated. In mammary, bioinformatics analysis highlighted that LPS led to activation of NOD-like receptor signaling, Toll-like receptor signaling, RIG-I-like receptor signaling and apoptosis pathways. In liver, LPS resulted in an overall inhibition of fatty acid elongation in mitochondria and activation of the p53 signaling pathway. The LPS challenge induced changes in liver lipid composition, a systemic inflammation (rise of blood ceruloplasmin and bilirubin), and an increase in body fat mobilization. The data suggest that cells within the inflamed mammary gland respond by activating mechanisms of pathogen recognition. However, in the liver the response likely depends on mediators originating from the udder that affect liver functionality and specifically fatty acid metabolism (β-oxidation, ketogenesis, and lipoprotein synthesis).
Collapse
Affiliation(s)
- Andrea Minuti
- Istituto di Zootecnica Facoltà di Scienze Agrarie Alimentari e Ambientali Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Zheng Zhou
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Daniel E Graugnard
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | | | - Felipe C Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Erminio Trevisi
- Istituto di Zootecnica Facoltà di Scienze Agrarie Alimentari e Ambientali Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| |
Collapse
|
31
|
|
32
|
Yart L, Lollivier V, Finot L, Dupont J, Wiart S, Boutinaud M, Marnet PG, Dessauge F. Changes in mammary secretory tissue during lactation in ovariectomized dairy cows. Steroids 2013; 78:973-81. [PMID: 23811017 DOI: 10.1016/j.steroids.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
In dairy animals, the milk yield (MY) changes during a lactation and is influenced by several physiological, livestock management and environmental factors. The MY produced by a mammary gland depends on synthetic activity of mammary epithelial cells (MECs) as well as MEC number and mammary secretory tissue organization. It has been suggested that ovarian steroids (estradiol and progesterone) have a negative effect on MY in lactating cows. In a previous study, we showed that the suppression of ovarian secretions by an ovariectomy improved lactation persistency in dairy cows. Here we were interested in the effects of ovariectomy on plasma estradiol and progesterone concentrations and on changes that occur in mammary secretory tissue during lactation. We demonstrated that the ovariectomy of lactating cows at the time of the lactation peak induced a rapid and dramatic drop in plasma progesterone and a smaller reduction in plasma estradiol. Interestingly, the study of the changes in mammary secretory tissue over time revealed that the improvement of MY measured in the ovariectomized cows was associated with a limited increase in estradiol receptivity in MECs, a reduced mammary tissue remodeling and reduced blood protein concentration in milk, in late lactation. These results suggest that ovarian secretions, particularly estradiol and progesterone, act to enhance processes for mammary gland involution in late-lactating dairy cows.
Collapse
Affiliation(s)
- L Yart
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Histological analysis of mammary gland remodeling caused by lipopolysaccharide in lactating mice. Cell Tissue Res 2013; 354:495-506. [DOI: 10.1007/s00441-013-1688-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
|
34
|
Aitken SL, Corl CM, Sordillo LM. Immunopathology of mastitis: insights into disease recognition and resolution. J Mammary Gland Biol Neoplasia 2011; 16:291-304. [PMID: 21938490 DOI: 10.1007/s10911-011-9230-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/01/2011] [Indexed: 01/02/2023] Open
Abstract
Mastitis is an inflammation of the mammary gland commonly caused by bacterial infection. The inflammatory process is a normal and necessary immunological response to invading pathogens. The purpose of host inflammatory responses is to eliminate the source of tissue injury, restore immune homeostasis, and return tissues to normal function. The inflammatory cascade results not only in the escalation of local antimicrobial factors, but also in the increased movement of leukocytes and plasma components from the blood that may cause damage to host tissues. A precarious balance between pro-inflammatory and pro-resolving mechanisms is needed to ensure optimal bacterial clearance and the prompt return to immune homeostasis. Therefore, inflammatory responses must be tightly regulated to avoid bystander damage to the milk synthesizing tissues of the mammary gland. The defense mechanisms of the mammary gland function optimally when invading bacteria are recognized promptly, the initial inflammatory response is adequate to rapidly eliminate the infection, and the mammary gland is returned to normal function quickly without any noticeable clinical symptoms. Suboptimal or dysfunctional mammary gland defenses, however, may contribute to the development of severe acute inflammation or chronic mastitis that adversely affects the quantity and quality of milk. This review will summarize critical mammary gland defense mechanisms that are necessary for immune surveillance and the rapid elimination of mastitis-causing organisms. Situations in which diminished efficiency of innate or adaptive mammary gland immune responses may contribute to disease pathogenesis will also be discussed. A better understanding of the complex interactions between mammary gland defenses and mastitis-causing pathogens should prove useful for the future control of intramammary infections.
Collapse
Affiliation(s)
- Stacey L Aitken
- G300 Veterinary Medical Center, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
35
|
Baldi A, Pecorini C, Rebucci R, Saccone F, Cheli F, Miranda-Ribera A, Lecchi C, Ceciliani F. Effect of Escherichia coli lipopolysaccharide on u-PA activity and u-PA and u-PAR RNA expression in a bovine mammary epithelial cell line. Res Vet Sci 2011; 93:758-62. [PMID: 22103977 DOI: 10.1016/j.rvsc.2011.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/29/2011] [Accepted: 10/23/2011] [Indexed: 12/16/2022]
Abstract
It is well known that the plasminogen-activating (PA) system plays a key role in the bovine mammary gland during tissue remodelling. However, the modulation of the PA cascade after bacterial infections needs to be elucidated. This study examined the effects of Escherichia coli lipopolysaccharide (LPS) on cell viability, the modulation of cell-associated u-PA activity, and the regulation of u-PA and u-PA receptor (u-PAR) RNA expression using the BME-UV1 bovine mammary epithelial cell line. LPS did not affect cell viability, but induced an increase in u-PA activity, with the maximum response after 6 h of incubation. Moreover, u-PA and u-PAR mRNA expression were both up-regulated in BME-UV1 cells after 3 h of incubation with LPS. These data indicated that E. coli LPS led to an increase in u-PA activity and RNA expression of u-PA and u-PAR in BME-UV1 cells, thus strengthening the role of the PA system during pathological processes.
Collapse
Affiliation(s)
- Antonella Baldi
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, via Celoria 10, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model. J Biomed Biotechnol 2011; 2011:587470. [PMID: 21976966 PMCID: PMC3184441 DOI: 10.1155/2011/587470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 11/17/2022] Open
Abstract
Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.
Collapse
|
37
|
Dufour D, Germon P, Brusseaux E, Le Roux Y, Dary A. First evidence of the presence of genomic islands in Escherichia coli P4, a mammary pathogen frequently used to induce experimental mastitis. J Dairy Sci 2011; 94:2779-93. [PMID: 21605748 DOI: 10.3168/jds.2010-3446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
Mastitis pathogens belonging to Escherichia coli species are often considered as environmental opportunistic pathogens that invade the udder and are rapidly killed by the immune system of cows. However, several studies have reported that some of these strains are able to persist in the udder for prolonged periods or to adhere and invade mammary epithelial cells, suggesting that they might possess some specific properties or genes that could be involved in their capacity to provoke mastitis. The aim of this work was to search for such specific genes in the E. coli strain P4, which was isolated from a case of severe mastitis and is often used to induce experimental mastitis. We established that this strain belongs to phylogenetic group A of the E. coli species, and that its core genome is very similar to that of the commensal nonpathogenic strain E. coli K-12 MG1655. Seventeen transfer RNA loci, known to be frequently associated with genomic islands, were screened and an altered structure was detected for 7 of them. The partial characterization of 5 of these loci (asnT, leuX, pheV, serU, and thrW) and the complete characterization of 1 (argW) revealed the presence of genomic islands that differ from those already described in pathogenic or nonpathogenic E. coli strains.
Collapse
Affiliation(s)
- D Dufour
- URAFPA (Unité de Recherche sur l'Animal & Fonctionalités des Produits Animaux), Equipe Protéolyse-Biofonctionnalité des Protéines et des Peptides, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
38
|
Le Maréchal C, Thiéry R, Vautor E, Le Loir Y. Mastitis impact on technological properties of milk and quality of milk products—a review. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0009-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2011; 2:101-11. [PMID: 22332039 PMCID: PMC3065755 DOI: 10.3945/an.110.000232] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolism through integrating Zn import, sequestration, and export mechanisms. Recent findings indicate that these tissues utilize Zn for basic cellular processes but also require Zn for unique cellular needs. In addition, abundant Zn is transported into the secretory pathway and a large amount is subsequently secreted in a tightly regulated manner for unique biological processes. Expression of numerous members of the SLC30A (ZnT) and SLC39A (Zip) gene families has been documented in these tissues, yet there is limited understanding of their precise functional role in Zn metabolism or their regulation. Impairments in Zn secretion from the pancreas, prostate, and mammary gland are associated with disorders such as diabetes, infertility, and cancer, respectively. In this review, we will provide a brief summary of the specific role of Zn in each tissue and describe our current knowledge regarding how Zn metabolism is regulated. Finally, in each instance, we will reflect upon how this information shapes our current understanding of the role of Zn in these secretory tissues with respect to human health and disease.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802-6110, USA.
| | | | | | | |
Collapse
|
40
|
Pro-inflammatory and pro-apoptotic responses of TNF-α stimulated bovine mammary endothelial cells. Vet Immunol Immunopathol 2011; 140:282-90. [PMID: 21349589 DOI: 10.1016/j.vetimm.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/14/2011] [Accepted: 01/27/2011] [Indexed: 01/02/2023]
Abstract
Coliform mastitis may be severe in periparturient cows due to enhanced expression of pro-inflammatory cytokines that contribute to disease pathogenesis. Tumor necrosis factor (TNF)-α is implicated with the severity of coliform mastitis by provoking inflammatory responses in affected tissues. The endothelium is an integral organ in regulating inflammatory responses and loss of endothelial integrity may be fatal. Studies in humans suggest that endothelial cell apoptosis may be a consequence of TNF-α exposure and contributes to the development of sepsis, however, its impact on bovine mammary endothelial cells (BMEC) is unknown. We sought to determine the inflammatory and apoptotic responses of primary BMEC exposed to TNF-α in vitro. Stimulation of endothelial monolayers with TNF-α resulted in significant increase of toll-like receptor 4, interleukin-6 and -8, and intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1 gene expression in a time-dependent manner. Caspase-8 and caspase-3 mRNA expression, as well as caspase enzyme activity, also increased significantly following TNF-α stimulation. Cell viability assessed by ATP activity and BMEC apoptosis determined by flow cytometry revealed no significant changes across time with TNF-α stimulation. Results suggest that TNF-α stimulation, at the dose used in this study, can elicit a pro-inflammatory response in BMEC, but not induce apoptosis. The impact of TNF-α on mammary vascular function and the subsequent impact on the pathophysiology of severe coliform mastitis warrant further investigation.
Collapse
|
41
|
Singh K, Erdman RA, Swanson KM, Molenaar AJ, Maqbool NJ, Wheeler TT, Arias JA, Quinn-Walsh EC, Stelwagen K. Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia 2010; 15:101-12. [PMID: 20131087 DOI: 10.1007/s10911-010-9164-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022] Open
Abstract
It is well established that milk production of the dairy cow is a function of mammary epithelial cell (MEC) number and activity and that these factors can be influenced by diverse environmental influences and management practises (nutrition, milk frequency, photoperiod, udder health, hormonal and local effectors). Thus, understanding how the mammary gland is able to respond to these environmental cues provides a huge potential to enhance milk production of the dairy cow. In recent years our understanding of molecular events within the MEC underlying bovine lactation has been advanced through mammary microarray studies and will be further advanced through the recent availability of the bovine genome sequence. In addition, the potential of epigenetic regulation (non-sequence inheritable chemical changes in chromatin, such as DNA methylation and histone modifications, which affect gene expression) to manipulate mammary function is emerging. We propose that a substantial proportion of unexplained phenotypic variation in the dairy cow is due to epigenetic regulation. Heritability of epigenetic marks also highlights the potential to modify lactation performance of offspring. Understanding the response of the MEC (cell signaling pathways and epigenetic mechanisms) to external stimuli will be an important prerequisite to devising new technologies for maximising their activity and, hence, milk production in the dairy cow.
Collapse
Affiliation(s)
- Kuljeet Singh
- AgResearch Ltd., Ruakura Research Centre, Hamilton, 3240, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 2009; 40:832-51. [PMID: 19508288 PMCID: PMC2779988 DOI: 10.1111/j.1365-2052.2009.01921.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 12/21/2022]
Abstract
A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3'UTRs of candidate genes.
Collapse
Affiliation(s)
- J Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | | | | | | |
Collapse
|
43
|
A sentinel function for teat tissues in dairy cows: dominant innate immune response elements define early response to E. coli mastitis. Funct Integr Genomics 2009; 10:21-38. [PMID: 19727872 DOI: 10.1007/s10142-009-0133-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/24/2009] [Accepted: 07/26/2009] [Indexed: 12/24/2022]
Abstract
Escherichia coli intramammary infection elicits localized and systemic responses, some of which have been characterized in mammary secretory tissue. Our objective was to characterize gene expression patterns that become activated in different regions of the mammary gland during the acute phase of experimentally induced E. coli mastitis. Tissues evaluated were from Fürstenburg's rosette, teat cistern (TC), gland cistern (GC), and lobulo-alveolar (LA) regions of control and infected mammary glands, 12 and 24 h after bacterial (or control) infusions. The main networks activated by E. coli infection pertained to immune and inflammatory response, with marked induction of genes encoding proteins that function in chemotaxis and leukocyte activation and signaling. Genomic response at 12 h post-infection was greatest in tissues of the TC and GC. Only at 24 h post-infection did tissue from the LA region respond, at which time the response was the greatest of all regions. Similar genetic networks were impacted in all regions during early phases of intramammary infection, although regional differences throughout the gland were noted. Data support an important sentinel function for the teat, as these tissues responded rapidly and intensely, with production of cytokines and antimicrobial peptides.
Collapse
|
44
|
Bannerman DD, Rinaldi M, Vinyard BT, Laihia J, Leino L. Effects of intramammary infusion of cis-urocanic acid on mastitis-associated inflammation and tissue injury in dairy cows. Am J Vet Res 2009; 70:373-82. [PMID: 19254150 DOI: 10.2460/ajvr.70.3.373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effects of cis-urocanic acid (cis-UCA) on mammary gland (MG) inflammation and injury associated with Escherichia coli-induced mastitis in dairy cows. ANIMALS 12 lactating dairy cows (36 MGs). PROCEDURES At 7-week intervals, a different MG in each cow was experimentally inoculated with E coli. At 6-hour intervals from 6 to 36 hours after inoculation, the inoculated MG in each cow was infused with 40 mL of saline (0.9% NaCl) solution, 12.5mM cis-UCA, or 25mM cis-UCA (4 cows/group); ultimately, each cow received each treatment. Immediately prior to and at various time points after inoculation and treatment, milk samples were collected. Bacterial CFUs, somatic cell counts (SCCs), N-acetyl-beta-D-glucosaminidase (NAGase) and lactate dehydrogenase (LDH) activities, and concentrations of bovine serum albumin, tumor necrosis factor-alpha, and cis-UCA were quantified in each milk sample. Results-Compared with findings in saline solution-treated MGs, NAGase and LDH activities in milk samples from cis-UCA-treated MGs were lower. Cis-UCA had no effect on milk SCCs and milk concentrations of bovine serum albumin and tumor necrosis factor-alpha. Furthermore, cis-UCA had no adverse effect on bacterial clearance; CFUs of E coli in MGs treated with saline solution or cis-UCA were equivalent. CONCLUSIONS AND CLINICAL RELEVANCE In cows, milk NAGase and LDH activities were both lower in E coli-infected MGs infused with cis-UCA than in those infused with saline solution, which suggests that cis-UCA reduced mastitis-associated tissue damage. Furthermore, these data indicated that therapeutic concentrations of cis-UCA in milk can be achieved via intramammary infusion.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Bovine Functional Genomics Laboratory, USDA, Agricultural Research Service, Beltsville, MD, USA
| | | | | | | | | |
Collapse
|
45
|
Swanson KM, Stelwagen K, Dobson J, Henderson HV, Davis SR, Farr VC, Singh K. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J Dairy Sci 2009; 92:117-29. [PMID: 19109270 DOI: 10.3168/jds.2008-1382] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus uberis is a prevalent causative organism of mastitis and resides naturally in the environment of the dairy cow making prevention of the disease difficult. A bovine cDNA microarray comprising approximately 22,000 expressed sequence tags was used to evaluate the transcriptional changes that occur in the mammary gland after the onset of clinical Strep. uberis mastitis. Five lactating Friesian heifers were intramammary infused in an uninfected quarter with approximately 1,000 to 1,500 cfu of a wild-type strain of Strep. uberis. Microarray results showed that Strep. uberis mastitis led to the differential expression of more than 2,200 genes by greater than 1.5-fold compared with noninfected control quarters. The most highly upregulated genes were associated with the immune response, programmed cell death, and oxidative stress. Quantitative real-time reverse transcription PCR analysis confirmed the increase in mRNA expression of immune-related genes complement component 3, clusterin, IL-8, calgranulin C, IFN-gamma , IL-10, IL-1beta, IL-6, toll-like receptor-2, tumor necrosis factor-alpha, serum amyloid A3, lactoferrin, LPS-bonding protein, and oxidative stress-related genes metallothionein 1A and superoxide dimutase 2. In contrast, a decrease of mRNA levels was observed for the major milk protein genes. Bovine mammary epithelial cells in culture challenged with the same Strep. uberis strain used to induce clinical mastitis in the in vivo animal experiment did not cause a change in the mRNA levels of the immune-related genes. This suggests that the expression of immune-related genes by mammary epithelial cells may be initiated by host factors and not Strep. uberis. However, challenging epithelial cells with different Strep. uberis strains and Staphylococcus aureus resulted in an increase in the mRNA expression of a subset of the immune-related genes measured. In comparison, an Escherichia coli challenge caused an increase in the majority of immune-related genes measured. Results demonstrate the complexity of the bovine mammary gland immune response to an infecting pathogen and indicate that a coordinated response exists between the resident, recruited, and inducible immune factors.
Collapse
Affiliation(s)
- K M Swanson
- AgResearch Ltd., Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
46
|
Daly KA, Mailer SL, Digby MR, Lefévre C, Thomson P, Deane E, Nicholas KR, Williamson P. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid. Vet Immunol Immunopathol 2008; 129:36-48. [PMID: 19157568 DOI: 10.1016/j.vetimm.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 01/22/2023]
Abstract
The immunological function of the metatherian mammary gland plays a crucial part in neonatal survival of the marsupial young. Marsupial pouch young do not develop adult like immune responses until just prior to leaving the pouch. The immune components of the maternal milk secretions are important during this vulnerable early post-partum period. In addition, infection of the mammary gland has not been recognized in metatherians, despite the ready availability of pathogens in the pouch. Regardless of which, little is known about the immunobiology of the mammary gland and the immune responses of mammary epithelial cells in metatherians. In this study, a molecular approach was utilized to examine the response of tammar (Macropus eugenii) mammary epithelial cells to Escherichia coli derived lipopolysaccharide (LPS) and Staphylococcus aureus derived lipoteichoic acid (LTA). Using custom-made cDNA microarrays, candidate genes were identified in the transciptome, which were involved in antigen presentation, inflammation, cell growth and proliferation, cellular damage and apoptosis. Quantification of mRNA expression of several of these candidate genes, along with seven other genes (TLR4, CD14, TNF-alpha, cathelicidin, PRDX1, IL-5 and ABCG2) associated with innate immunity in LPS and LTA challenged mammary epithelial cells and leukocytes, was assessed for up to 24 h. Differences in genes associated with cellular damage and pro-inflammatory cytokine production were seen between stimulated mammary epithelial cells and leukocytes. LTA challenge tended to result in lower level induction of pro-inflammatory cytokines, increased PRDX1 mRNA levels, suggesting increased oxidative stress, and increased CD14 expression, but in a non-TLR4-dependent manner. The use of functional genomic tools in the tammar identified differences in the response of tammar mammary epithelial cells (MEC) and leukocytes to challenge with LPS and LTA, and validates the utility of the approach. The results of this study are consistent with a model in which tammar mammary epithelial cells have the capacity to elicit a complex and robust immune response to pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Faculty of Veterinary Science, B19, University of Sydney, Camperdown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rinaldi M, Moroni P, Leino L, Laihia J, Paape MJ, Bannerman DD. Effect of cis-urocanic acid on bovine neutrophil generation of reactive oxygen species. J Dairy Sci 2008; 89:4188-201. [PMID: 17033005 DOI: 10.3168/jds.s0022-0302(06)72464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neutrophils play a fundamental role in the host innate immune response during mastitis and other bacterial-mediated diseases of cattle. One of the critical mechanisms by which neutrophils contribute to host innate immune defenses is through their ability to phagocytose and kill bacteria. The ability of neutrophils to kill bacteria is mediated through the generation of reactive oxygen species (ROS). However, the extracellular release of ROS can be deleterious to the host because ROS induce tissue injury. Thus, in diseases such as mastitis that are accompanied by the influx of neutrophils, the generation of large quantities of ROS may result in significant injury to the mammary epithelium. cis-Urocanic acid (cis-UCA), which is formed from the UV photoisomerization of the trans isoform found naturally in human and animal skin, is an immunosuppressive molecule with anti-inflammatory properties. Little is known about the effect of cis-UCA on neutrophils, although one report demonstrated that it inhibits human neutrophil respiratory burst activity. However, the nature of this inhibition remains unknown. Because of the potential therapeutic use that a molecule such as cis-UCA may have in blocking excessive respiratory burst activity that may be deleterious to the host, the ability of cis-UCA to inhibit bovine neutrophil production of ROS was studied. Further, because neutrophil generation of ROS is necessary for optimal neutrophil bactericidal activity, a response which is critical for the host innate immune defense against infection, the effects of cis-UCA on bovine neutrophil phagocytosis and bacterial killing were assayed. cis-Urocanic acid dose-dependently inhibited the respiratory burst activity of bovine neutrophils as measured by luminol chemiluminescence. Subsequently, the effect of cis-UCA on the production of specific oxygen radicals was investigated using more selective assays. Using 2 distinct assays, we established that cis-UCA inhibited the generation of extracellular superoxide. In contrast, cis-UCA had no effect on the generation of intracellular levels of superoxide or other ROS. At concentrations that inhibited generation of extracellular superoxide, bovine neutrophil phagocytosis and bacterial activity remained intact. Together, these data suggest that cis-UCA inhibits the tissue-damaging generation of extracellular ROS while preserving neutrophil bactericidal activity.
Collapse
Affiliation(s)
- M Rinaldi
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Italy 20133
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Agents that increase natural protective mechanisms have been proposed for prevention and treatment of intramammary infections. The objective of this study was to describe the effects of a single intramammary infusion of a lipopolysaccharide (LPS)-based biological response modifier (BRM) on cellular death mechanism in uninfected andStaphylococcus aureus-infected bovine mammary glands during involution. Three groups of 12 cows, each one including 6Staph. aureus-infected and 6 uninfected, were infused in two mammary quarters with BRM or placebo and slaughtered at 7, 14 and 21 d of involution. In infected quarters, BRM treatment produced a significant increase in percent of stained epithelial cells for the apoptosis-promoting protein Bax at every observation period. In addition, BRM produced a significant increase of immunostained stromal cells for Bax compared with placebo-treated quarters. BRM treatment produced an increase in percentages of epithelial cells staining with active caspase-3 at 7 d and 14 d of involution compared with placebo-treated quarters and a significant decrease in percentages of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive epithelial cells at 7 d and 21 d of involution. In addition, BRM treatment caused an increase in percentage of stromal cells immunostaining for active caspase-3 and TUNEL. An increase of active caspase-3 and TUNEL epithelial and stromal cell immunostaining was observed inStaph. aureus-infected compared with uninfected quarters. Cellular proliferation, determined by Ki-67 immunostaining, was increased in epithelial and stromal cells fromStaph. aureus-infected compared with uninfected quarters at every observation period. These results provide new insights into the mechanism of mammary cell death in uninfected andStaph. aureus-infected bovine mammary gland during involution and illustrate the effects of LPS-based BRM on apoptosis and cell proliferation during mammary involution.
Collapse
|
49
|
Role of the plasminogen activation system in extracellular matrix degradation processes in normal or pathological conditions in sheep. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2007.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Shpigel NY, Elazar S, Rosenshine I. Mammary pathogenic Escherichia coli. Curr Opin Microbiol 2008; 11:60-5. [PMID: 18291708 DOI: 10.1016/j.mib.2008.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/04/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Pathogenic Escherichia coli can be classified into several pathotypes, and it is believed that each pathotype carries one or more specific gene repertoire (or virulence factors combination) that distinguishes them from non-pathogenic E. coli strains and from other pathotypes. In contrast to this notion, it was proposed that this is not the case for E. coli mastitis, a common disease in farm animals and that any given E. coli isolate can cause this disease, even strains that are considered non-pathogenic. In this review we will re-examine this latter concept and recent advances in the study E. coli mastitis.
Collapse
Affiliation(s)
- Nahum Y Shpigel
- The Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | |
Collapse
|