1
|
Wu XS, Luo XY, Li CC, Zhao XF, Zhang C, Chen XS, Lu ZF, Wu T, Yu HN, Peng C, Hu QQ, Shen H, Xu Y, Zhang Y. Discovery and pharmacological characterization of 1,2,3,4-tetrahydroquinoline derivatives as RORγ inverse agonists against prostate cancer. Acta Pharmacol Sin 2024; 45:1964-1977. [PMID: 38698214 PMCID: PMC11336105 DOI: 10.1038/s41401-024-01274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/24/2024] [Indexed: 05/05/2024] Open
Abstract
The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.
Collapse
Affiliation(s)
- Xi-Shan Wu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiao-Yu Luo
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Cheng-Chang Li
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Fan Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Zhang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Shan Chen
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Zhi-Fang Lu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tong Wu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao-Nan Yu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Chao Peng
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing, 210042, China
| | - Qing-Qing Hu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Shen
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong Xu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China.
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yan Zhang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530 China; Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
4
|
Wei F, Zhou X, Chen H, Tian X, Liu Z, Yu B, He X, Bai C, Huang Z. 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivative attenuates lupus nephritis with less effect to thymocyte development. Immunol Res 2021; 69:378-390. [PMID: 34219199 DOI: 10.1007/s12026-021-09204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Retinoic‑acid‑receptor‑related orphan nuclear hormone receptor gamma t (RORγt), a critical transcriptional factor of Th17 cells, is a potential therapeutic target for Th17-mediated autoimmune diseases. In addition, RORγt is essential for thymocyte survival and lymph node development, and RORγt inhibition or deficiency causes abnormal thymocyte development, thymus lymphoma, and lymph node defect. Recent study demonstrated that specific regulation of Th17 differentiation related to the hinge region of RORγt. In this research, we investigated the effect of RORγt inhibitor, 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivative (TTP), in the therapy of lupus nephritis and its safety on thymocyte development. We demonstrated that TTP repressed the development of Th17 cells and ameliorated the autoimmune disease manifestation in the pristane-induced lupus nephritis mice model. The treatment of TTP in the mice did not interfere with thymocyte development, including total thymocyte number and proportion of CD4+CD8+ double-positive populations in the thymus, and had no substantial effects on the pathogenesis of thymoma. The TTP had a stronger affinity with full-length RORγt protein compared with the truncated RORγt LBD region via surface plasmon resonance, which indicated TTP binding to RORγt beyond LBD region. Molecular docking computation showed that the best binding pocket of TTP to RORγt is located in the hinge region of RORγt. In summary, as a RORγt inhibitor, TTP had a potential to develop the clinical medicine for treating Th17-mediated autoimmune diseases with low safety risk for thymocyte development.
Collapse
Affiliation(s)
- Fengjiao Wei
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqing Zhou
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Huanpeng Chen
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xuyan Tian
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Bai
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China.
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China.
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Zhang H, Lapointe BT, Anthony N, Azevedo R, Cals J, Correll CC, Daniels M, Deshmukh S, van Eenenaam H, Ferguson H, Hegde LG, Karstens WJ, Maclean J, Miller JR, Moy LY, Simov V, Nagpal S, Oubrie A, Palte RL, Parthasarathy G, Sciammetta N, van der Stelt M, Woodhouse JD, Trotter BW, Barr K. Discovery of N-(Indazol-3-yl)piperidine-4-carboxylic Acids as RORγt Allosteric Inhibitors for Autoimmune Diseases. ACS Med Chem Lett 2020; 11:114-119. [PMID: 32071676 DOI: 10.1021/acsmedchemlett.9b00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
The clinical success of anti-IL-17 monoclonal antibodies (i.e., Cosentyx and Taltz) has validated Th17 pathway modulation for the treatment of autoimmune diseases. The nuclear hormone receptor RORγt is a master regulator of Th17 cells and affects the production of a host of cytokines, including IL-17A, IL-17F, IL-22, IL-26, and GM-CSF. Substantial interest has been spurred across both academia and industry to seek small molecules suitable for RORγt inhibition. A variety of RORγt inhibitors have been reported in the past few years, the majority of which are orthosteric binders. Here we disclose the discovery and optimization of a class of inhibitors, which bind differently to an allosteric binding pocket. Starting from a weakly active hit 1, a tool compound 14 was quickly identified that demonstrated superior potency, selectivity, and off-target profile. Further optimization focused on improving metabolic stability. Replacing the benzoic acid moiety with piperidinyl carboxylate, modifying the 4-aza-indazole core in 14 to 4-F-indazole, and incorporating a key hydroxyl group led to the discovery of 25, which possesses exquisite potency and selectivity, as well as an improved pharmacokinetic profile suitable for oral dosing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gopal Parthasarathy
- Computational and Structural Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | | | | | | | | | | |
Collapse
|
6
|
Markiewicz A, Brożyna AA, Podgórska E, Elas M, Urbańska K, Jetten AM, Slominski AT, Jóźwicki W, Orłowska-Heitzman J, Dyduch G, Romanowska-Dixon B. Vitamin D receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and retinoid-related orphan receptors (ROR) level in human uveal tract and ocular melanoma with different melanization levels. Sci Rep 2019; 9:9142. [PMID: 31235702 PMCID: PMC6591242 DOI: 10.1038/s41598-019-45161-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
In recent years, a significant number of studies have investigated the preventive role of vitamin D in a number of different neoplasms. In this study, we analyze various components of the vitamin D signaling pathways in the human uveal tract and uveal melanoma, including analysis of the expression of vitamin D receptors (VDR), the activating and inactivating hydroxylases, respectively, CYP27B1 and CYP24A1, and the retinoic acid-related orphan receptors (ROR) α (RORα) and γ (RORγ) in these tissues. We further analyzed the expression of VDR, CYP27B1, CYP24A1, and ROR in relation to melanin levels, clinical stage and prognosis. Our study indicated that the uveal melanoma melanin level inversely correlated with VDR expression. We further showed that vitamin D is metabolized in uveal melanoma. This is significant because until now there has been no paper published, that would describe presence of VDR, hydroxylases CYP27B1 and CYP24A1, and RORα and RORγ in the human uveal tract and uveal melanomas. The outcomes of our research can contribute to the development of new diagnostic and therapeutic methods in uveal tract disorders, especially in uveal melanoma. The presented associations between vitamin D signaling elements and uveal melanoma in comparison to uveal tract encourage future clinical research with larger patients' population.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland.
| | - Anna A Brożyna
- Department of Human Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Ewa Podgórska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, 85-796, Bydgoszcz, Poland
| | - Jolanta Orłowska-Heitzman
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Grzegorz Dyduch
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland
| |
Collapse
|
7
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
8
|
Patouret R, Doebelin C, Garcia-Ordonez RD, Chang MR, Ruiz C, Cameron MD, Griffin PR, Kamenecka TM. Identification of an aminothiazole series of RORβ modulators. Bioorg Med Chem Lett 2018; 28:1178-1181. [PMID: 29534930 PMCID: PMC5859951 DOI: 10.1016/j.bmcl.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
Crystallography has identified stearic acid, ALRT 1550 and ATRA as ligands that bind RORβ, however, none of these molecules represent good starting points to develop optimized small molecule modulators. Recently, Compound 1 was identified as a potent dual RORβ and RORγ inverse agonist with no activity towards RORα (Fig. 1). To our knowledge, this is one of only two small molecule RORβ inverse agonists identified in the primary literature from a tractable chemical series and represents an ideal starting point from which to design RORβ-selective modulators. Herein we describe our SAR optimization efforts that led to a series of potent neutral antagonists of RORβ.
Collapse
Affiliation(s)
- Rémi Patouret
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Christelle Doebelin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Ruben D Garcia-Ordonez
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Claudia Ruiz
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Michael D Cameron
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, Ferguson H, Wang IM, Cristescu R, Mudgett J, Engstrom L, Piers KJ, Baltus GA, Barr K, Zhang H, Mehmet H, Hegde LG, Hu X, Carter LL, Aicher TD, Glick G, Zaller D, Hawwari A, Correll CC, Jones DC, Cua DJ. Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity. Cell Rep 2017; 17:3206-3218. [PMID: 28009290 DOI: 10.1016/j.celrep.2016.11.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4+CD8+ (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCR)α selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.
Collapse
Affiliation(s)
- Yanxia Guo
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Kenzie D MacIsaac
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yi Chen
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Richard J Miller
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Renu Jain
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | - Heidi Ferguson
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - I-Ming Wang
- Merck Research Laboratories, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Razvan Cristescu
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - John Mudgett
- Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Laura Engstrom
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kyle J Piers
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gretchen A Baltus
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kenneth Barr
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hongjun Zhang
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Huseyin Mehmet
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Xiao Hu
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Laura L Carter
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Gary Glick
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Dennis Zaller
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Abbas Hawwari
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Mail Code 520, P.O. Box 6664, Al Hasa 31982, Kingdom of Saudi Arabia
| | - Craig C Correll
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dallas C Jones
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Daniel J Cua
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Zhao HX, Huang YX, Tao JG. ST1926 Attenuates Steroid-Induced Osteoporosis in Rats by Inhibiting Inflammation Response. J Cell Biochem 2017; 118:2072-2086. [PMID: 27918081 DOI: 10.1002/jcb.25812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-xing Zhao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Yuan-xia Huang
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Jin-gang Tao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| |
Collapse
|
11
|
Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists. Acta Pharmacol Sin 2016; 37:1516-1524. [PMID: 27374490 DOI: 10.1038/aps.2016.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
AIM Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. METHODS Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. RESULTS A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. CONCLUSION 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Collapse
|
12
|
Bronner SM, Zbieg JR, Crawford JJ. RORγ antagonists and inverse agonists: a patent review. Expert Opin Ther Pat 2016; 27:101-112. [PMID: 27629281 DOI: 10.1080/13543776.2017.1236918] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The transcription factor RORγ plays a critical role in the expression of pro-inflammatory cytokine interleukin IL-17 and is therefore an attractive target for the treatment of inflammatory diseases. Interest in this molecular target has been heightened by the advancement of orally and topically administered RORγ modulators into clinical trials. Areas covered: The present review seeks to summarize published patent applications from assignee companies that have disclosed Investigational New Drug (IND) filings for small molecule RORγ/RORγt antagonists and inverse agonists. Expert opinion: The field of RORγ research is extremely competitive, with the majority of companies targeting psoriasis as the primary disease indication. Vitae Pharmaceuticals is currently the most advanced, with a potential first-in-class oral RORγ-modulator for the treatment of psoriasis. Future efforts will likely expand into potential applications of RORγ-modulators in the lesser explored immune-related areas of rheumatoid arthritis, type 1 diabetes, lupus, and irritable bowel disorder, as well as cancer immunotherapy and castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sarah M Bronner
- a Discovery Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Jason R Zbieg
- a Discovery Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - James J Crawford
- a Discovery Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| |
Collapse
|
13
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Mitochondrial emitted electromagnetic signals mediate retrograde signaling. Med Hypotheses 2015; 85:810-8. [DOI: 10.1016/j.mehy.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
|
15
|
Feng S, Xu S, Wen Z, Zhu Y. Retinoic acid-related orphan receptor RORβ, circadian rhythm abnormalities and tumorigenesis (Review). Int J Mol Med 2015; 35:1493-500. [PMID: 25816151 DOI: 10.3892/ijmm.2015.2155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors are a superfamily of transcription factors including the steroid hormone receptors, non-steroid hormone receptors and the orphan nuclear receptor family. Retinoic acid-related orphan receptor (ROR)β, as a member of the orphan nuclear receptor family, plays an important regulatory role in the maintenance of a variety of physiological and pathological processes. RORβ has been determined to act as an osteogenic repressor in regulating bone formation, and is involved in regulating circadian rhythm. The findings of recent studies concerning the association between tumorigenesis and circadian rhythm have shown that an aberrant circadian rhythm may promote tumorigenesis and tumor progression. The mechanisms discussed in this review demonstrate how aberrant RORβ-induced circadian rhythm may become a new direction for future studies on tumorigenesis and strategy design for cancer prevention.
Collapse
Affiliation(s)
- Shujiong Feng
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Song Xu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhenzhen Wen
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
16
|
Knower KC, Chand AL, Eriksson N, Takagi K, Miki Y, Sasano H, Visvader JE, Lindeman GJ, Funder JW, Fuller PJ, Simpson ER, Tilley WD, Leedman PJ, Graham JD, Muscat GEO, Clarke CL, Clyne CD. Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Res Treat 2014; 142:211-23. [PMID: 24122391 DOI: 10.1007/s10549-013-2716-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
The interaction between breast tumor epithelial and stromal cells is vital for initial and recurrent tumor growth. While breast cancer-associated stromal cells provide a favorable environment for proliferation and metastasis, the molecular mechanisms contributing to this process are not fully understood. Nuclear receptors (NRs) are intracellular transcription factors that directly regulate gene expression. Little is known about the status of NRs in cancer-associated stroma. Nuclear Receptor Low-Density Taqman Arrays were used to compare the gene expression profiles of all 48 NR family members in a collection of primary cultured cancer-associated fibroblasts (CAFs) obtained from estrogen receptor (ER)α positive breast cancers (n = 9) and normal breast adipose fibroblasts (NAFs) (n = 7). Thirty-three of 48 NRs were expressed in both the groups, while 11 NRs were not detected in either. Three NRs (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1); estrogen-related receptor beta (ERR-β); and RAR-related orphan receptor beta (ROR-β)) were only detected in NAFs, while one NR (liver receptor homolog-1 (LRH-1)) was unique to CAFs. Of the NRs co-expressed, four were significantly down-regulated in CAFs compared with NAFs (RAR-related orphan receptor-α (ROR-α); Thyroid hormone receptor-β (TR-β); vitamin D receptor (VDR); and peroxisome proliferator-activated receptor-γ (PPAR-γ)). Quantitative immunohistochemistry for LRH-1, TR-β, and PPAR-γ proteins in stromal fibroblasts from an independent panel of breast cancers (ER-positive (n = 15), ER-negative (n = 15), normal (n = 14)) positively correlated with mRNA expression profiles. The differentially expressed NRs identified in tumor stroma are key mediators in aromatase regulation and subsequent estrogen production. Our findings reveal a distinct pattern of NR expression that therefore fits with a sustained and increased local estrogen microenvironment in ER-positive tumors. NRs in CAFs may provide a new avenue for the development of intratumoral-targeted therapies in breast cancer.
Collapse
|
17
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Park Y, Hong S, Lee M, Jung H, Cho WJ, Kim EJ, Son HY, Lee MO, Park HG. N-methylthioureas as new agonists of retinoic acid receptor-related orphan receptor. Arch Pharm Res 2012; 35:1393-401. [PMID: 22941482 DOI: 10.1007/s12272-012-0809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Thirty two thiourea derivatives were prepared and their agonistic activities on the retinoic acid receptor-related orphan receptor α (RORα) were evaluated. The replacement of the 3-allyl-2-imino-thiazolidin-4-one moiety of the lead compound CGP52608 (1) with various functional group substituted aromatic rings, improved the agonistic activity of RORα. Among the prepared derivatives, 1-methyl-3-(4-phenoxy-benzyl)-thiourea (32) showed 2.6-fold higher agonistic activity than CGP52608 in the RORα-activation assay.
Collapse
Affiliation(s)
- Yohan Park
- College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyeongnam, 621-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ranhotra HS. The interplay between retinoic acid receptor-related orphan receptors and human diseases. J Recept Signal Transduct Res 2012; 32:181-9. [PMID: 22686165 DOI: 10.3109/10799893.2012.692120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor-related orphan receptors (RORs) are an important subfamily of transcriptional regulators of the nuclear receptors superfamily. Their discovery over a decade ago by gene cloning strategy have revealed three major isoforms of these orphan receptors in animals. Generation and analyses of isoform-specific ROR null mice have provided revealed-vital roles for the RORs in animals. The RORs undoubtedly participate in a host of biological functions such a metabolism, immunity, development and differentiation, angiogenesis, circadian clock, xenobiotic/drug metabolism and other tissue physiologies for optimal animal survival. Moreover, intense work in the last one decade also revealed a host of human diseases being modulated by the RORs. A number of diseases, such as cancer, autoimmune diseases, inflammation, osteoporosis, metabolic syndrome etc., strongly support the involvement of RORs in their onset and progression. By involving in such diseases, the RORs are indeed a critical factor for optimal cell function and are being intensely investigated as novel targets for drug interventions in the treatment of various diseases. This review focuses on the current knowledge and status about RORs in a number of human disease conditions.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College, Shillong, Meghalaya, India.
| |
Collapse
|
20
|
Nuovo GJ, Hagood JS, Magro CM, Chin N, Kapil R, Davis L, Marsh CB, Folcik VA. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis. Mod Pathol 2012; 25:416-33. [PMID: 22037258 PMCID: PMC3270219 DOI: 10.1038/modpathol.2011.166] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68(+) and CD80(+) cells and significantly fewer CD3(+), CD4(+), and CD45RO(+) cells in areas of relatively (histologically) normal lung in biopsy samples from idiopathic pulmonary fibrosis patients compared with controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, chemokine receptor 6 (CCR6), S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared with histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3(+) T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for forkhead box p3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation. The regenerative mechanisms become skewed to ultimately result in lethal, fibrotic restriction of lung function.
Collapse
Affiliation(s)
- Gerard J. Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S. Hagood
- Pediatric Respiratory Medicine, University of California-San Diego, and Rady Children’s Hospital of San Diego, CA, USA
| | - Cynthia M. Magro
- Anatomic Pathology and Clinical Pathology Dermatopathology Service, Weill College of Medicine of Cornell University and New York Presbyterian Hospital, NY, USA
| | - Nena Chin
- Accurate Diagnostic Labs, South Plainfield, NJ, USA
| | - Rubina Kapil
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Luke Davis
- College of Dentistry, The Ohio State University Medical Center, Columbus, OH, USA
| | - Clay B. Marsh
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Virginia A. Folcik
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
21
|
Nazary M, van der Zee HH, Prens EP, Folkerts G, Boer J. Pathogenesis and pharmacotherapy of Hidradenitis suppurativa. Eur J Pharmacol 2011; 672:1-8. [PMID: 21930119 DOI: 10.1016/j.ejphar.2011.08.047] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/17/2011] [Accepted: 08/26/2011] [Indexed: 12/14/2022]
Abstract
The focus of this review is to discuss the pathogenesis and the pharmacotherapy of Hidradenitis suppurativa (HS). HS is a distressing chronic skin disorder characterized by abscesses, boils, fistulas and scarring, generally affecting the groins, anogenital area and axillae. It is a common disease with an estimated prevalence of 1%. The etiology is unknown. HS was thought to be a disease of the apocrine sweat glands, but histological findings indicate that HS is a disease arising from the hair follicles. Several pathogenic factors seem important including genetic predisposition, smoking, obesity and an aberrant immune response to commensal flora. The management of HS is tremendously challenging because effective therapies are lacking. Nevertheless, HS has been treated with topical and systemic antibiotics, retinoids and immunosuppressive drugs such as anti-TNF-α biologics with partial success. In this review we will also discuss a potential new therapy for HS with the anti-psoriases agent acitretin.
Collapse
Affiliation(s)
- Maiwand Nazary
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Benderdour M, Fahmi H, Beaudet F, Fernandes JC, Shi Q. Nuclear receptor retinoid-related orphan receptor α1 modulates the metabolic activity of human osteoblasts. J Cell Biochem 2011; 112:2160-9. [DOI: 10.1002/jcb.23141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ermisch M, Firla B, Steinhilber D. Protein kinase A activates and phosphorylates RORα4 in vitro and takes part in RORα activation by CaMK-IV. Biochem Biophys Res Commun 2011; 408:442-6. [PMID: 21514275 DOI: 10.1016/j.bbrc.2011.04.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/29/2022]
Abstract
The retinoic acid related orphan receptor RORα positively regulates the transcription of genes important for cerebellar development, immune function, lipid metabolism, and circadian rhythm. In the present study, we identified protein kinase A (PKA) as RORα4 phosphorylating kinase in vitro. The primary sequence of RORα4 contains a PKA recognition motif (R-D-S99) within the c-terminal extension of the DNA-binding domain, and mutation of Ser-99 to Ala prevents RORα4 phosphorylation by PKA. Activation of PKA by dBcAMP results in a marked induction of RORα4 activity. Inhibition of PKA with the selective kinase inhibitor H89 inhibits dBcAMP mediated as well as CaMK-IV triggered increase in RORα4 transcriptional activity. The regulation of RORα activity by PKA as well as CaMK-IV provides a new link in the signalling network that regulates metabolic processes such as glycogen and lipid metabolism.
Collapse
Affiliation(s)
- Michael Ermisch
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Boer J, Nazary M. Long-term results of acitretin therapy for hidradenitis suppurativa. Is acne inversa also a misnomer? Br J Dermatol 2010; 164:170-5. [PMID: 20874789 DOI: 10.1111/j.1365-2133.2010.10071.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J Boer
- Department of Dermatology, Deventer Hospital, N. Bolkesteinlaan 75, 7416 SE Deventer, The Netherlands.
| | | |
Collapse
|
25
|
Solt LA, Griffin PR, Burris TP. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol 2010; 21:204-11. [PMID: 20463469 PMCID: PMC5024716 DOI: 10.1097/mol.0b013e328338ca18] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW In the late 1980s, the cloning of several nuclear receptors led to the intense search and isolation of new members of this superfamily. Despite their identification, many of these receptors were dubbed 'orphan' receptors, as their physiological ligands remained unknown. Recent reports have presented evidence for one family of orphan receptors, the retinoic acid receptor-related orphan receptors (RORs), in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, diabetes and obesity. The present review summarizes the studies identifying ligands for the RORs and evaluates their role as targets for potential therapeutics. RECENT FINDINGS Significant progress was made in the initial identification of ligands for the RORs when X-ray crystallographic studies identified several molecules within the ligand-binding pockets of RORalpha and RORbeta. Recently, we identified endogenous and synthetic ligands for RORalpha and RORgamma, thereby solidifying their function as ligand-dependent transcription factors. SUMMARY Recent studies have established roles for the RORs in physiological development and the advent of disease. Identification of ligands for the RORs, both endogenous and synthetic, has established these receptors as attractive new therapeutic targets for the treatment of ROR-related diseases.
Collapse
Affiliation(s)
- Laura A Solt
- The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | |
Collapse
|
26
|
McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 2009; 9:70. [PMID: 19909500 PMCID: PMC2780413 DOI: 10.1186/1471-244x-9-70] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 11/12/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (DBP) as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, RAR-related orphan receptors alpha (RORA) and beta (RORB), was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs) in RORA and RORB. METHODS We genotyped 355 RORA and RORB SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching. RESULTS We report that four intronic RORB SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three RORB haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any RORA SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any RORA or RORB SNPs. CONCLUSION Our findings suggest that clock genes in general and RORB in particular may be important candidates for further investigation in the search for the molecular basis of bipolar disorder.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Psychiatry, Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Stephen J Glatt
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pamela Sklar
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Le-Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alysa E Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Biederman
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Mick
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander B Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ming T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Silveira AC, Morrison MA, Ji F, Xu H, Reinecke JB, Adams SM, Arneberg TM, Janssian M, Lee JE, Yuan Y, Schaumberg DA, Kotoula MG, Tsironi EE, Tsiloulis AN, Chatzoulis DZ, Miller JW, Kim IK, Hageman GS, Farrer LA, Haider NB, DeAngelis MM. Convergence of linkage, gene expression and association data demonstrates the influence of the RAR-related orphan receptor alpha (RORA) gene on neovascular AMD: a systems biology based approach. Vision Res 2009; 50:698-715. [PMID: 19786043 DOI: 10.1016/j.visres.2009.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/04/2009] [Accepted: 09/18/2009] [Indexed: 12/28/2022]
Abstract
To identify novel genes and pathways associated with AMD, we performed microarray gene expression and linkage analysis which implicated the candidate gene, retinoic acid receptor-related orphan receptor alpha (RORA, 15q). Subsequent genotyping of 159 RORA single nucleotide polymorphisms (SNPs) in a family-based cohort, followed by replication in an unrelated case-control cohort, demonstrated that SNPs and haplotypes located in intron 1 were significantly associated with neovascular AMD risk in both cohorts. This is the first report demonstrating a possible role for RORA, a receptor for cholesterol, in the pathophysiology of AMD. Moreover, we found a significant interaction between RORA and the ARMS2/HTRA1 locus suggesting a novel pathway underlying AMD pathophysiology.
Collapse
Affiliation(s)
- Alexandra C Silveira
- Ocular Molecular Genetics Institute and Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e003. [PMID: 19381306 PMCID: PMC2670432 DOI: 10.1621/nrs.07003] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORα, -β, and -γ (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORα plays a critical role in the development of the cerebellum, that both RORα and RORβ are required for the maturation of photoreceptors in the retina, and that RORγ is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORγ in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
29
|
Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. THE JOURNAL OF IMMUNOLOGY 2008; 180:4785-92. [PMID: 18354202 DOI: 10.4049/jimmunol.180.7.4785] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FOXP3 is a forkhead family transcriptional repressor important for the development and function of CD4(+)CD25(+) regulatory T cells. In humans, FOXP3 is expressed as two isoforms, a full-length form and a smaller form lacking exon 2. These two isoforms are expressed in approximately equal amounts in circulating regulatory T cells, and are induced equally in freshly activated CD4(+)CD25(-) T cells. Herein, we show that FOXP3 interacts with retinoic acid receptor-related orphan receptor (ROR)alpha, and that this interaction inhibits transcriptional activation mediated by RORalpha. Full-length FOXP3, but not the isoform lacking exon 2, interacts with RORalpha, and the region of FOXP3 involved in the interaction is encoded by exon 2. Mutation of the LxxLL motif in FOXP3, located in exon 2, abolished interaction and repression by FOXP3. Additionally, the inhibition of RORalpha by FOXP3 does not require an intact forkhead domain, demonstrating a mode of FOXP3 function that is independent of DNA binding. Interestingly, expression of RORalpha in T cells leads to the expression of genes that define Th17 cells, and the expression of each of these gene was inhibited by coexpression of full-length, but not DeltaEx2, FOXP3. These data expand the possible targets of FOXP3-mediated repression and demonstrate functional differences between FOXP3 isoforms.
Collapse
Affiliation(s)
- Jianguang Du
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
30
|
Meissburger B, Wolfrum C. The role of retinoids and their receptors in metabolic disorders. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Lechtken A, Hörnig M, Werz O, Corvey N, Zündorf I, Dingermann T, Brandes R, Steinhilber D. Extracellular signal-regulated kinase-2 phosphorylates RORalpha4 in vitro. Biochem Biophys Res Commun 2007; 358:890-6. [PMID: 17512500 DOI: 10.1016/j.bbrc.2007.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
The retinoic acid related orphan receptor RORalpha activates transcription of genes that play an important role in cerebellar development, the protection against age-related degenerative processes, the regulation of inflammatory responses, and is one of the pivotal participants that control the circadian rhythmicity in the core-clock of mammals. We identified the extracellular signal-regulated kinase 2 (ERK-2) as RORalpha4 phosphorylating kinase in vitro. The primary sequence of RORalpha4 contains an ERK-2 recognition motif (P-L-T(128)-P) within the hinge domain, and mutation of Thr-128 to Ala prevents RORalpha4 phosphorylation by ERK. The RORalpha4-T128A mutant exhibits an increased DNA-binding affinity, an increased transcriptional activity and, in the interplay with the opponent RevErbalpha, acts as a stronger competitor at ROR response elements than RORalpha4-WT.
Collapse
Affiliation(s)
- Adriane Lechtken
- Institute of Pharmaceutical Chemistry/ZAFES, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Flores MV, Hall C, Jury A, Crosier K, Crosier P. The zebrafish retinoid-related orphan receptor (ror) gene family. Gene Expr Patterns 2007; 7:535-43. [PMID: 17374568 DOI: 10.1016/j.modgep.2007.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/04/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
The retinoid-related orphan receptors Rora, b and c are highly conserved transcription factors belonging to the steroid hormone receptor superfamily. Mammalian ROR proteins perform key regulatory roles in a number of processes during embryonic development and in the adult including neurogenesis, bone metabolism and modulation of circadian rhythms. A more recent area of interest has been their roles in the development and function of the immune system. In particular, RORA has been implicated in the regulation of inflammatory cytokine production, and RORC has been shown to be essential in the development of the T lymphocyte repertoire and of secondary lymphoid organs. We cloned the zebrafish orthologs for the Ror gene family. Assignment of orthologies was supported by analysis of the phylogenetic relationships between zebrafish and other vertebrate Ror genes based on sequence similarities, and conserved syntenies with the human Ror gene loci.
Collapse
Affiliation(s)
- Maria Vega Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Smith DI, McAvoy S, Zhu Y, Perez DS. Large common fragile site genes and cancer. Semin Cancer Biol 2006; 17:31-41. [PMID: 17140807 DOI: 10.1016/j.semcancer.2006.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/07/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
Abstract
The common fragile sites are large regions of genomic instability that are found in all individuals and are hot spots for chromosomal rearrangements and deletions. A number of the common fragile sites have been found to span genes that are encoded by very large genomic regions. Two of these genes, FHIT and WWOX, have already been demonstrated to function as tumor suppressors. In this review we will discuss the large common fragile site genes that have been identified to date, and the role that these genes appear to play both in cellular responses to stress and in the development of cancer.
Collapse
Affiliation(s)
- David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, United States.
| | | | | | | |
Collapse
|
34
|
Lechtken A, Zündorf I, Dingermann T, Firla B, Steinhilber D. Overexpression, refolding, and purification of polyhistidine-tagged human retinoic acid related orphan receptor RORα4. Protein Expr Purif 2006; 49:114-20. [PMID: 16682227 DOI: 10.1016/j.pep.2006.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 11/29/2022]
Abstract
RORalpha4 is a nuclear receptor activating the transcription of genes that are important for a variety of physiological processes like muscle differentiation, lipid and bone metabolism, cerebellar development, and inflammation. Furthermore, it plays an essential role in maintaining circadian rhythmicity of the core clock in the suprachiasmatic nuclei (SCN). Here, we describe the successful overexpression and purification of human full-length RORalpha4 in Escherichia coli using a T7 expression system. The expressed protein formed inclusion bodies which were solubilized in the presence of 6M guanidinium-HCl and renatured by gradual removal of guanidinium-HCl and addition of l-arginine. The refolded protein was purified by nickel affinity chromatography due to an N-terminal polyhistidine tag which can be cleaved with thrombin subsequently. This method permitted us to obtain up to 20mg of pure and native RORalpha4 protein per liter of E. coli culture. The DNA binding activity of the refolded protein was demonstrated by electrophoretic mobility shift assay (EMSA) using an oligonucleotide comprising the ROR-response element (RORE) motif (A/G)GGTCA. In addition, we developed a new monoclonal antibody to human RORalpha in mice with high sensitivity and specificity.
Collapse
Affiliation(s)
- Adriane Lechtken
- Institute of Pharmaceutical Chemistry/ZAFES, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
35
|
Xi H, Schwartz R, Engel I, Murre C, Kersh GJ. Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24:813-826. [PMID: 16782036 DOI: 10.1016/j.immuni.2006.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/20/2005] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
The response of thymocytes to pre-T cell receptor (pre-TCR) signaling includes proliferation and gene rearrangement, two cellular processes that are incompatible. The control of proliferation by pre-TCR signals depends on the activities of the transcription factors RORgammat, Egr3, E12, and E47. Here, we describe a regulatory network in which interplay between these factors ensures transient proliferation that is temporally distinct from gene rearrangement. RORgammat expression was elevated after pre-TCR signaling, and RORgammat promoted gene rearrangement in CD4+, CD8+ cells by inhibiting cell division, promoting survival via Bcl-X(L), and inducing Rag2. Egr3 was transiently induced by pre-TCR signals and promoted a distinct proliferative phase by reducing E protein-dependent RORgammat expression and interacting with RORgammat to prevent induction of target genes. After Egr3 subsided, the expression and function of RORgammat increased. Thus, transient induction of Egr3 delays the effects of RORgammat and enables pre-TCR signaling to induce both proliferation and gene rearrangement.
Collapse
MESH Headings
- Animals
- E-Box Elements
- Early Growth Response Protein 3/genetics
- Early Growth Response Protein 3/metabolism
- Gene Rearrangement, T-Lymphocyte
- Inhibitor of Differentiation Proteins/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Mutant Strains
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- TCF Transcription Factors/metabolism
- Transcription Factor 7-Like 1 Protein
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322
| | - Ruth Schwartz
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Isaac Engel
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Gilbert J Kersh
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322.
| |
Collapse
|
36
|
Zhu Y, McAvoy S, Kuhn R, Smith DI. RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 2006; 25:2901-8. [PMID: 16462772 DOI: 10.1038/sj.onc.1209314] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Common fragile sites (CFSs) are large genomic regions present in all individuals that are highly unstable and prone to breakage and rearrangement, especially in cancer cells with genomic instability. Eight of the 90 known CFSs have been precisely defined and five of these span genes that extend from 700 kb to over 1.5 Mb of genomic sequence. Although these genes reside within some of the most unstable chromosomal regions in the human genome, they are highly conserved evolutionarily. These genes are targets for large chromosomal deletions and rearrangements in cancer and are frequently inactivated in multiple tumor types. There is also an association between these genes and cellular responses to stress. Based upon the association between large genes and CFSs, we began to systematically test other large genes derived from chromosomal regions that were known to contain a CFS. In this study, we demonstrate that the 730 kb retinoic acid receptor-related orphan receptor alpha (RORA) gene is derived from the middle of the FRA15A (15q22.2) CFS. Although this gene is expressed in normal breast, prostate and ovarian epithelium, it is frequently inactivated in cancers that arise from these organs. RORA was previously shown to be involved in the cellular response to hypoxia and here we demonstrate changes in the amount of RORA message produced in cells exposed to a variety of different cellular stresses. Our results demonstrate that RORA is another very large CFS gene that is inactivated in multiple tumors. In addition, RORA appears to play a critical role in responses to cellular stress, lending further support to the idea that the large CFS genes function as part of a highly conserved stress response network that is uniquely susceptible to genomic instability in cancer cells.
Collapse
Affiliation(s)
- Y Zhu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MI, USA
| | | | | | | |
Collapse
|
37
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|
38
|
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005; 5:2819-38. [PMID: 15942958 DOI: 10.1002/pmic.200401108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics methods were used to characterize proteins that change their form or abundance in the nucleus of NRK49F rat kidney fibroblasts during prolonged hypoxia (1% O(2), 12 h). Of the 791 proteins that were monitored, about 20% showed detectable changes. The 51 most abundant proteins were identified by mass spectrometry. Changes in nuclear receptor transcription factors (THRalpha1, RORalpha4, HNF4alpha, NUR77), other transcription factors (GATA1, AP-2alpha, OCT1, ATF6alpha, ZFP161, ZNF354A, PDCD2), and transcription cofactors (PC4, PCAF, MTA1, TCEA1, JMY) are indicative of major, co-ordinated changes in transcription. Proteins involved in DNA repair/recombination, ribosomal RNA synthesis, RNA processing, nuclear transport, nuclear organization, protein translation, glycolysis, lipid metabolism, several protein kinases (PKCdelta, MAP3K4, GRK3), as well as proteins with no established functional role were also observed. The observed proteins suggest nuclear regulatory roles for proteins involved in cytosolic processes such as glycolysis and fatty acid metabolism, and roles in overall nuclear structure/organization for proteins previously associated with meiosis and/or spermatogenesis (synaptonemal complex proteins 1 and 2 (SYCP1, SYCP2), meiosis-specific nuclear structural protein 1 (MNS1), LMNC2, zinc finger protein 99 (ZFP99)). Proteins associated with cytoplasmic membrane functions (ACTN4, hyaluronan mediated motility receptor (RHAMM), VLDLR, GRK3) and/or endocytosis (DNM2) were also seen. For 30% of the identified proteins, new isoforms indicative of alternative transcription were detected (e.g., GATA1, ATF6alpha, MTA1, MLH1, MYO1C, UBF, SYCP2, EIF3S10, MAP3K4, ZFP99). Comparison with proteins involved in cell death, cancer, and testis/meiosis/spermatogenesis suggests commonalities, which may reflect fundamental mechanisms for down-regulation of cellular function.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Medicine, Rayne Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|
39
|
Henriques-Coelho T, Oliva-Teles N, Fonseca-Silva ML, Tibboel D, Guimarães H, Correia-Pinto J. Congenital diaphragmatic hernia in a patient with tetrasomy 9p. J Pediatr Surg 2005; 40:e29-31. [PMID: 16226972 DOI: 10.1016/j.jpedsurg.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tetrasomy of the short arm of chromosome 9 constitutes a rare condition resulting in a well clinically recognized syndrome. In our case, in addition to the characteristic phenotype at birth, the existence of a hernia-type Bochdalek diaphragmatic defect was found. Cytogenetic analysis revealed a nonmosaic case of an isochromosome of the entire short arm of chromosome 9 with no involvement of the heterochromatic region of the long arm: 47, XX, +i (9p). Because chromosome 9 contains several gene locus for enzymes and receptors of the retinoid pathway, this case potentially contributes to retinoid hypothesis in the etiology of congenital diaphragmatic hernia.
Collapse
|
40
|
Stapleton CM, Jaradat M, Dixon D, Kang HS, Kim SC, Liao G, Carey MA, Cristiano J, Moorman MP, Jetten AM. Enhanced susceptibility of staggerer (RORαsg/sg) mice to lipopolysaccharide-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2005; 289:L144-52. [PMID: 15778248 DOI: 10.1152/ajplung.00348.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retinoid-related orphan receptor α (RORα), a member of the ROR subfamily of nuclear receptors, has been implicated in the control of a number of physiological processes, including the regulation of several immune functions. To study the potential role of RORα in the regulation of innate immune responses in vivo, we analyzed the induction of airway inflammation in response to lipopolysaccharide (LPS) challenge in wild-type and staggerer (RORαsg/sg) mice, a natural mutant strain lacking RORα expression. Examination of hematoxylin and eosin-stained lung sections showed that RORαsg/sg mice displayed a higher degree of LPS-induced inflammation than wild-type mice. Bronchoalveolar lavage (BAL) was performed at 3, 16, and 24 h after LPS exposure to monitor the increase in inflammatory cells and the level of several cytokines/chemokines. The increased susceptibility of RORαsg/sg mice to LPS-induced airway inflammation correlated with a higher number of total cells and neutrophils in BAL fluids from LPS-treated RORαsg/sg mice compared with those from LPS-treated wild-type mice. In addition, IL-1β, IL-6, and macrophage inflammatory protein-2 were appreciably more elevated in BAL fluids from LPS-treated RORαsg/sg mice compared with those from LPS-treated wild-type mice. The enhanced susceptibility of RORαsg/sg mice appeared not to be due to a repression of IκBα expression. Our observations indicate that RORαsg/sg mice are more susceptible to LPS-induced airway inflammation and are in agreement with the hypothesis that RORα functions as a negative regulator of LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Cliona M Stapleton
- Division of Intramural Research, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yin L, Lazar MA. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 2005; 19:1452-9. [PMID: 15761026 DOI: 10.1210/me.2005-0057] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transcriptional regulation plays a fundamental role in controlling circadian oscillation of clock gene expression. The orphan nuclear receptor Rev-erbalpha has recently been implicated as a major regulator of the circadian clock. Expression of Bmal1, the master regulator of circadian rhythm in mammals, is negatively correlated with Rev-erbalpha mRNA level, but the molecular mechanism underlying this regulation is largely unknown. Here we show that Rev-erbalpha dramatically represses the basal activity of the mouse Bmal1 gene promoter via two monomeric binding sites, both of which are required for repression and are conserved between mouse and human. Rev-erbalpha directly binds to the mouse Bmal1 promoter and recruits the endogenous nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex, in association with a decrease in histone acetylation. The endogenous N-CoR/HDAC3 complex is also associated with the endogenous Bmal1 promoter in human HepG2 liver cells, where a reduction in cellular HDAC3 level markedly increases the expression of Bmal1 mRNA. These data demonstrate a new function for the N-CoR/HDAC3 complex in regulating the expression of genes involved in circadian rhythm by functioning as corepressor for Rev-erbalpha.
Collapse
MESH Headings
- ARNTL Transcription Factors
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Cell Line
- Chromatin Immunoprecipitation
- Circadian Rhythm
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Expression Regulation
- Histone Deacetylases/metabolism
- Humans
- Immunoblotting
- Liver/cytology
- Liver/metabolism
- Mice
- Models, Genetic
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Lei Yin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia 19104-6149, USA
| | | |
Collapse
|
42
|
Gohil K, Godzdanker R, O'Roark E, Schock BC, Kaini RR, Packer L, Cross CE, Traber MG. α-Tocopherol Transfer Protein Deficiency in Mice Causes Multi-Organ Deregulation of Gene Networks and Behavioral Deficits with Age. Ann N Y Acad Sci 2004; 1031:109-26. [PMID: 15753139 DOI: 10.1196/annals.1331.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Functions of alpha-tocopherol (alpha-T) in vivo, other than those for fertility in females, are intensely debated. The discovery of alpha-T deficiency in patients with ataxia (AVED) followed by the identification of mutations in the gene encoding alpha-tocopherol transfer protein (TTP) in AVED patients demonstrates an essential role of alpha-T and TTP for normal neurological function. alpha-T molecular targets that account for alpha-T-sensitive neurological dysfunction remain to be discovered. We have used high-density oligonucleotide arrays to search for putative alpha-T-sensitive genes in the CNS and other tissues in an in vivo model of alpha-T deficiency imposed at birth by the deletion of the TTP gene in mice. Repression of genes affecting synaptic function and myelination and induction of genes for neurodegeneration in the motor cortex of alpha-T-deficient mice were identified. The expression of retinoic acid-related orphan receptor alpha (ROR-alpha) was repressed in the cortex and adrenal glands of TTP-deficient mice. Deficiency of ROR-alpha causes ataxia in mice and may account for ataxia in AVED patients. These observations suggest that some of the actions of alpha-T are mediated by the transcription factor ROR-alpha. The behavior of young TTP-null mice was essentially normal, but older mice showed inactivity, ataxia, and memory dysfunction. mRNA profiles of old alpha-T-deficient cerebral cortices are compatible with repressed activity of oligodendrocytes and astrocytes. In conclusion, gene-expression profiling studies have identified novel alpha-T-modulated genes and cells in the CNS that may be causatively linked with delayed neurodegeneration and age-related decline in behavioral repertoires.
Collapse
Affiliation(s)
- Kishorchandra Gohil
- Center for Comparative Respiratory and Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kedjouar B, de Médina P, Oulad-Abdelghani M, Payré B, Silvente-Poirot S, Favre G, Faye JC, Poirot M. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem 2004; 279:34048-61. [PMID: 15175332 DOI: 10.1074/jbc.m405230200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value.
Collapse
Affiliation(s)
- Blandine Kedjouar
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan, Département Innovation Thérapeutique et Oncologie Moléculaire, Institut Claudius Regaud, 20-24 rue du Pont Saint Pierre, 31052 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Moraitis AN, Giguère V. The Co-repressor Hairless Protects RORα Orphan Nuclear Receptor from Proteasome-mediated Degradation. J Biol Chem 2003; 278:52511-8. [PMID: 14570920 DOI: 10.1074/jbc.m308152200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RORalpha is a constitutively active orphan nuclear receptor essential for cerebellar development and is previously shown to regulate genes involved in both myogenesis and adipogenesis. The transcriptional activity of RORalpha is dependent on the presence of a ubiquitous ligand and can be abolished by interaction with Hairless (Hr), a ligand-oblivious nuclear receptor co-repressor. In this study, we first demonstrate that RORalpha is a short-lived protein and that treatment with the MG-132 proteasome inhibitor results in the accumulation of ubiquitin-conjugated receptor and inhibition of transcription. These data show that RORalpha transcriptional activity and degradation are intrinsically linked. In addition, the introduction of inactivation mutations in the ligand-binding pocket and co-regulator-binding surface of RORalpha significantly increases protein stability, indicating that ligand and/or co-regulator binding perpetuates RORalpha degradation. Strikingly, expression of the co-repressor Hr results in the stabilization of RORalpha because of an inhibition of proteasome-mediated degradation of the receptor. Stabilization of RORalpha by Hr requires intact nuclear receptor recognition LXXLL motifs within Hr. Interestingly, the co-repressor nuclear receptor co-repressor (NCoR) has no effect on RORalpha protein turnover. This study shows that stabilization of RORalpha is an essential component of Hr-mediated repression and suggests a molecular mechanism to achieve transcriptional repression by a liganded receptor-co-repressor complex.
Collapse
Affiliation(s)
- Anna N Moraitis
- Molecular Oncology Group, McGill University Health Center and the Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | |
Collapse
|