1
|
Ibraheem Q. The Role of Matrix Metalloproteinase-2 (MMP2) in Colorectal Cancer Progression: Correlation With Clinicopathological Features and Impact on Cellular Processes. Cureus 2024; 16:e61941. [PMID: 38978899 PMCID: PMC11229389 DOI: 10.7759/cureus.61941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Qais Ibraheem
- Department of Anatomy, Biology and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
2
|
Gao TM, Jin SJ, Fang F, Qian JJ, Zhang C, Zhou BH, Bai DS, Jiang GQ. Novel Preoperative Type IV Collagen to Predict the Risk of Hepatocellular Carcinoma in Patients with Hepatitis B Virus-Related Cirrhotic Portal Hypertension After Laparoscopic Splenectomy and Azygoportal Disconnection. J Hepatocell Carcinoma 2024; 10:2411-2420. [PMID: 38260186 PMCID: PMC10801173 DOI: 10.2147/jhc.s425814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Although laparoscopic splenectomy and azygoportal disconnection (LSD) can significantly decrease portal vein pressure and even the incidence of hepatocellular carcinoma (HCC) in patients with cirrhotic portal hypertension (CPH), postoperative HCC inevitably occurs in certain patients. The purpose of this study was to seek a novel preoperative non-invasive predictive indicator to predict the occurrence of postoperative HCC. Patients and Methods From April 2012 to April 2022, we collected clinical data of 178 hepatitis B virus (HBV)-related CPH patients. Based on inverse treatment probability weighting, candidate variables for predicting postoperative HCC were determined by means analysis. Then, a novel preoperative non-invasive prediction indicator (ie, type IV collagen-alpha fetoprotein-fibrosis-4 score [IVAF-FIB-4]) was established based on candidate variables, and its predictive ability was explored. Results Postoperative HCC occurred in 9 (5.1%) patients. Correlation analyses showed that the IVAF-FIB-4 had a significant positive correlation with HCC (r = 0.835, P < 0.001). IVAF-FIB-4 showed a high accuracy (the area under the receiver operating characteristic curve: 0.939, 95% confidence interval [CI]: 0.818-1.000; sensitivity: 88.9%; specificity: 93.5%). At the end of follow-up, the incidence density of HCC in patients with IVAF-FIB-4 (1) was significant higher than that in patients with IVAF-FIB-4 (0) (138.1/1000 vs 1.1/1000 person-years; rate ratio: 130.475, 95% CI: 16.318-1043.227). In logistic regression, IVAF-FIB-4 was an independent risk factor for HCC (odds ratio: 668.000, 95% CI: 53.895-8279.541; P < 0.001). Conclusion IVAF-FIB-4 is a novel preoperative noninvasive predictive indicator for predicting postoperative HCC in HBV-related CPH patients after LSD, with satisfactory predictive ability.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Fang Fang
- Department of Gastrointestinal Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Bao-Huan Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| |
Collapse
|
3
|
Rashid ZA, Bardaweel SK. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int J Mol Sci 2023; 24:12133. [PMID: 37569509 PMCID: PMC10418771 DOI: 10.3390/ijms241512133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.
Collapse
Affiliation(s)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Somasundaram DB, Aravindan S, Major R, Natarajan M, Aravindan N. MMP-9 reinforces radiation-induced delayed invasion and metastasis of neuroblastoma cells through second-signaling positive feedback with NFκB via both ERK and IKK activation. Cell Biol Toxicol 2023; 39:1053-1076. [PMID: 34626302 DOI: 10.1007/s10565-021-09663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKβ and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKβ- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | - Ryan Major
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Mohan Natarajan
- Department of Pathology & Laboratory Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Kim JH, Najy AJ, Li J, Luo X, Kim HRC, Choudry MHA, Lee YJ. Involvement of Bid in the crosstalk between ferroptotic agent-induced ER stress and TRAIL-induced apoptosis. J Cell Physiol 2022; 237:4180-4196. [PMID: 35994698 PMCID: PMC9691566 DOI: 10.1002/jcp.30863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis. In this study, we investigated the role of Bid in the crosstalk between the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and TRAIL-induced apoptosis. When human colorectal carcinoma HCT116 cells were treated with the ferroptosis-inducing agents artesunate and erastin in combination with TRAIL, TRAIL-induced activation of caspase-8 was enhanced, and subsequently, the truncation of Bid was increased. Similar results were observed when ovarian adenocarcinoma OVCAR-3 cells were treated with the ferroptotic agents in combination with TRAIL. Results from studies with Bid mutants reveal that the truncation of Bid and the presence of intact BH3 domains are critical for synergistic apoptosis. Nonfunctional Bid mutants were not able to activate the mitochondria-dependent apoptosis pathway, which is required for the conversion of p19 to p17, the active form of caspase-3. These results indicate that Bid plays a critical role in the crosstalk between the ferroptotic agent-induced ER stress response and TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Abdo J. Najy
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian Li
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Hyeong-Reh C. Kim
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - M. Haroon A. Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yong J. Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Asemi Z, Behnam M, Pourattar MA, Mirzaei H, Razavi ZS, Tamtaji OR. Therapeutic Potential of Berberine in the Treatment of Glioma: Insights into Its Regulatory Mechanisms. Cell Mol Neurobiol 2021; 41:1195-1201. [PMID: 32557203 DOI: 10.1007/s10571-020-00903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023]
Abstract
Glioma is known as one of the most common primary intracranial tumors accounting for four-fifths of malignant brain tumors. There are several biological pathways that play a synergistic, pathophysiological role in glioma, including apoptosis, autophagy, oxidative stress, and cell cycle arrest. According to previous rese arches, the drugs used in the treatment of glioma have been associated with significant limitations. Therefore, improved and/or new therapeutic platforms are required. In this regard, multiple flavonoids and alkaloids have been extensively studied in the treatment of glioma. Berberine is a protoberberine alkaloid with wide range of pharmacological activities, applicable to various pathological conditions. Few studies have reported beneficial roles of berberine in glioma. Berberine exerts its pharmacological functions in glioma by controlling different molecular and cellular pathways. We reviewed the existing knowledge supporting the use of berberine in the treatment of glioma and its effects on molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | | | - Mohammad Ali Pourattar
- Department of Radiobiology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
7
|
Kalimuthu K, Kim JH, Park YS, Luo X, Zhang L, Ku JL, Choudry MHA, Lee YJ. Glucose deprivation-induced endoplasmic reticulum stress response plays a pivotal role in enhancement of TRAIL cytotoxicity. J Cell Physiol 2021; 236:6666-6677. [PMID: 33586156 DOI: 10.1002/jcp.30329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Abnormalities of the tumor vasculature result in insufficient blood supply and development of a tumor microenvironment that is characterized by low glucose concentrations, low extracellular pH, and low oxygen tensions. We previously reported that glucose-deprived conditions induce metabolic stress and promote tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. In this study, we examined whether the metabolic stress-associated endoplasmic reticulum (ER) stress response pathway plays a pivotal role in the enhancement of TRAIL cytotoxicity. We observed no significant cytotoxicity when human colorectal cancer SW48 cells were treated with various doses of TRAIL (2-100 ng/ml) for 4 h or glucose (0-25 mM) for 24 h. However, a combination of TRAIL and low glucose-induced dose-dependent apoptosis through activation of caspases (-8, -9, and -3). Studies with activating transcription factor 4 (ATF4), C/EBP-homologous protein (CHOP), p53 upregulated modulator of apoptosis (PUMA), or death receptor 5 (DR5)-deficient mouse embryonic fibroblasts or HCT116 cells suggest that the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis are involved in the combined treatment-induced apoptosis. Moreover, the combined treatment-induced apoptosis was completely suppressed in BH3 interacting-domain death agonist (Bid)- or Bcl-2-associated X protein (Bax)-deficient HCT116 cells, but not Bak-deficient HCT116 cells. Interestingly, the combined treatment-induced Bax oligomerization was suppressed in PUMA-deficient HCT116 cells. These results suggest that glucose deprivation enhances TRAIL-induced apoptosis by integrating the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis, consequently amplifying the Bid-Bax-associated mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jin Hong Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yong Seok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences/Department of Medicine, Laboratory of Cell Biology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - M Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Islam Y, Khalid A, Pluchino S, Sivakumaran M, Teixidò M, Leach A, Fatokun AA, Downing J, Coxon C, Ehtezazi T. Development of Brain Targeting Peptide Based MMP-9 Inhibiting Nanoparticles for the Treatment of Brain Diseases with Elevated MMP-9 Activity. J Pharm Sci 2020; 109:3134-3144. [PMID: 32621836 DOI: 10.1016/j.xphs.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Latent and active levels of cerebral matrix metalloproteinase 9 (MMP-9) are elevated in neurological diseases and brain injuries, contributing to neurological damage and poor clinical outcomes. This study aimed developing peptide-based nanoparticles with ability to cross the blood-brain-barrier (BBB) and inhibit MMP-9. Three amphiphilic peptides were synthesised containing brain-targeting ligands (HAIYPRH or CKAPETALC) conjugated with MMP-9 inhibiting peptide (CTTHWGFTLC) linked by glycine (spacer) at the N-terminus, and the peptide sequences were conjugated at the N- terminus to cholesterol. 19F NMR assay was developed to measure MMP-9 inhibition. Cell toxicity was evaluated by the LDH assay, and dialysis studies were conducted with/without fetal bovine serum. An in vitro model was employed to evaluate the ability of nanoparticles crossing the BBB. The amphiphilic peptide (Cholesterol-GGGCTTHWGFTLCHAIYPRH) formed nanoparticles (average size of 202.8 nm) with ability to cross the BBB model. MMP-9 inhibiting nanoparticles were non-toxic to cells, and reduced MMP-9 activity from kobs of 4.5 × 10-6s-1 to complete inhibition. Dialysis studies showed that nanoparticles did not disassemble by extreme dilution (40 folds), but gradually hydrolysed by serum enzymes. In conclusion, the MMP-9 inhibiting nanoparticles reduced the activity of MMP-9, with acceptable serum stability, minimal cell toxicity and ability to cross the in vitro BBB model.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Aneesa Khalid
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Muttuswamy Sivakumaran
- Department of Haematology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate Peterborough, PE3 9GZ Peterborough, UK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Andrew Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Christopher Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
9
|
Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg Chem 2020; 101:103992. [PMID: 32554279 DOI: 10.1016/j.bioorg.2020.103992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
Abstract
Thiazole derivatives are known to possess various biological activities such as antiparasitic, antifungal, antimicrobial and antiproliferative activities. Matrix metalloproteinases (MMPs) are important protease target involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have also been reported as potential diagnostic and prognostic biomarkers in many types of cancer. Herein, new aryl thiazoles were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines including the invasive MDA-MB-231 line. Some of these compounds showed IC50 values in the submicromolar range in anti-proliferative assays. In order to examine the relationship between their anticancer activity and MMPs targets, the compounds were evaluated for their inhibitory effects on MMP-2 and 9. That data obtained revealed that most of these compounds were potent dual MMP-2/9 inhibitors at nanomolar concentrations. Among these, 2-(1-(2-(2-((E)-4-iodobenzylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)hydrazine-1-carboximidamide (4a) was the most potent non-selective dual MMP-2/9 inhibitor with inhibitory concentrations of 56 and 38 nM respectively. When compound 4a was tested in an MDA-MB-231, HCT-116, MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibit cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Taken together, the results of our studies indicate that the newly discovered thiazole-based MMP-2/9 inhibitors have significant potential for anticancer treatment.
Collapse
|
10
|
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194:112260. [PMID: 32224379 DOI: 10.1016/j.ejmech.2020.112260] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent proteolytic metalloenzyme. MMP-9 is one of the most complex forms of matrix metalloproteinases. MMP-9 has the ability to degrade the extracellular matrix (ECM) components and has important role in the pathophysiological functions. Overexpression and dysregulation of MMP-9 is associated with various diseases. Thus, regulation and inhibition of MMP-9 is an important therapeutic approach for combating various diseases including cancer. Inhibitors of MMP-9 can be used as anticancer agents. Till date no selective MMP-9 inhibitors passed the clinical trials. In this review the structure, activation, function and inhibitors of MMP-9 are mainly focused. Some highly active and/or selective MMP-9 inhibitors have been discussed which may be helpful to explore the structural significance of MMP-9 inhibitors. This study may be useful to design new potent and selective MMP-9 inhibitors against cancer in future.
Collapse
Affiliation(s)
- Subha Mondal
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors. Eur J Med Chem 2019; 181:111563. [DOI: 10.1016/j.ejmech.2019.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022]
|
12
|
Li L, Zhang M, Chen W, Wang R, Ye Z, Wang Y, Li X, Cai C. LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochim Biophys Sin (Shanghai) 2018; 50:996-1006. [PMID: 30239560 DOI: 10.1093/abbs/gmy102] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the major causes of morbidity and mortality in the world. Ischemia/reperfusion (I/R) injury-induced cardiomyocytes death is the main obstacle that limits the heart function recovery of the AMI patients. Reactive oxygen species (ROS) generated by mitochondria is the main pathological stimulus of cardiomyocytes death during heart I/R injury process. Hence, to understand the underlying mechanism of cardioymocytes proliferation and apoptosis under oxidative stress is crucial for effective AMI therapy. In this study, we found that the expression of long non-coding RNA HOTAIR was significantly downregulated in H9c2 cells in response to oxidative stimuli. HOTAIR knockdown further attenuated H9c2 cells proliferation and accelerated H9c2 cells apoptosis in oxidative stress, while HOTAIR overexpression can protect H9c2 cells from oxidative stress-induced injury. Additionally, HOTAIR acted as a sponge for miR-125. MiR-125 inhibitors restored the H9c2 cells proliferation and migration potential after HOTAIR knockdown in oxidative stress. Meanwhile, MMP2 was identified as a target of miR-125. MMP2 knockdown blocked miR-125 inhibitors' protect effect on H9c2 cells in oxidative stress. Further study demonstrated that HOTAIR inhibition can aggravate oxidative stress-induced H9c2 cells injury through HOTAIR/miR-125/MMP2 axis. Our finding revealed a novel regulatory mechanism for cardiomyocytes proliferation and apoptosis under oxidative stress conditions, which provided a therapeutic approach for myocardium repair after AMI injury.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Mengna Zhang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Weizhen Chen
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Ruirui Wang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Zi Ye
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanyan Wang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiao Li
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Cheguo Cai
- Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res 2018; 16:1073-1076. [PMID: 29592897 DOI: 10.1158/1541-7786.mcr-18-0055] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
Since its discovery in 2012, ferroptosis has been well characterized by the accumulation of lipid peroxides due to the failure of glutathione-dependent antioxidant defenses. It is known as an iron-dependent form of programmed cell death, which is distinct from other forms of cell death such as apoptosis and necrosis. Nonetheless, little is known about the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and its role in cell death. Recent studies reveal that the ferroptotic agent-induced ER stress response plays an important role in the cross-talk between ferroptosis and other types of cell death. Ferroptotic agents induce the unfolded protein response and subsequently ER stress-mediated activation of the PERK-eIF2α-ATF4-CHOP pathway. CHOP (C/EBP homologous protein) signaling pathway-mediated p53-independent PUMA (p53 upregulated modulator of apoptosis) expression is involved in the synergistic interaction between ferroptosis and apoptosis. This review highlights the recent literature on ferroptotic and apoptotic agent interactions through the ER stress-mediated PERK-eIF2α-ATF4-CHOP-PUMA pathway and implicates combined treatment to effectively enhance tumoricidal efficacy as a novel therapeutic strategy for cancer. Mol Cancer Res; 16(7); 1073-6. ©2018 AACR.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dae-Hee Lee
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University Medical Center, Korea University, Seoul, Republic of Korea
| | - Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, Choudry HA, Bartlett DL, Lee YJ. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 2017; 8:115164-115178. [PMID: 29383150 PMCID: PMC5777762 DOI: 10.18632/oncotarget.23046] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
Ferroptosis is a type of programmed cell death that depends on iron and is characterized by the accumulation of lipid peroxides. In the present study, we investigated the nature of the interplay between ferroptosis and other forms of cell death such as apoptosis. Human pancreatic cancer PANC-1 and BxPC-3 and human colorectal cancer HCT116 cells were treated with ferroptotic agents such as erastin and artesunate (ART) in combination with the apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We observed synergistic interaction of erastin or ART with TRAIL as determined by cell death assay, caspase activation, poly [ADP-ribose] polymerase 1 (PARP-1) cleavage, flow cytometry analysis, and lipid peroxidation assay. Moreover, erastin and ART induced endoplasmic reticulum (ER) stress and promoted p53 upregulated modulator of apoptosis (PUMA) expression via C/EBP-homologous protein (CHOP). Synergy of erastin/ART and TRAIL was abolished in PUMA-deficient HCT116 cells and CHOP-deficient mouse embryonic fibroblasts, but not in p53-deficient HCT116 cells. The results suggest the involvement of the p53-independent CHOP/PUMA axis in response to ferroptosis inducers, which may play a key role in ferroptotic agent-mediated sensitization to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Se Hoon Hong
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dae-Hee Lee
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University Medical Center, Korea University, Seoul 08308, Republic of Korea
| | - Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Min Jee Jo
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yoon A Jeong
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - William T Kwon
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Cao JY, Yin HS, Li HS, Yu XQ, Han X. Interleukin-27 augments the inhibitory effects of sorafenib on bladder cancer cells. ACTA ACUST UNITED AC 2017; 50:e6207. [PMID: 28746469 PMCID: PMC5520222 DOI: 10.1590/1414-431x20176207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Abstract
Both sorafenib and interleukin-27 (IL-27) are antineoplastic drugs. This study aimed to investigate the synergistic effect of these two drugs on bladder cancer cells. HTB-9 and T24 cells were stimulated with IL-27 (50 ng/mL), sorafenib (2 μM) or the synergistic action of these two drugs. The cells without treatment acted as control. Cell proliferation, apoptosis and invasion were measured by bromodeoxyuridine assay, flow cytometry and modified Boyden chamber, respectively. Simultaneously, both modified Boyden chamber and scratch assay were used to assess cell migration. Finally, the phosphorylation levels of key kinases in the Akt/mechanistic target of rapamycin (mTOR)/mitogen-activated protein kinase (MAPK) pathway, and expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were detected by western blot analysis. Stimulation with IL-27 or sorafenib repressed proliferation, migration and invasion but promoted apoptosis, and the effects were all enhanced by the combination of these two drugs in HTB-9 cells. The effect of the combined treatment on bladder cancer cells was verified in T24 cells. Additionally, the phosphorylation levels of AKT, mTOR and MAPK as well as the expression levels of MMP-2 and MMP-9 were all decreased by a single treatment of IL-27 or sorafenib, and further decreased by the combined treatment of these two drugs. The combination of IL-27 and sorafenib inhibited proliferation, migration and invasion and promoted apoptosis of bladder cancer cells compared with mono-drug treatment. Additionally, the AKT/mTOR/MAPK pathway might be implicated in the functional effects by down-regulations of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- J Y Cao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - H S Yin
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - H S Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - X Q Yu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - X Han
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
16
|
Danafar H, Sharafi A, Kheiri Manjili H, Andalib S. Sulforaphane delivery using mPEG-PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol 2016; 22:642-651. [PMID: 26916923 DOI: 10.3109/10837450.2016.1146296] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Among the potent anticancer agents, d,l-sulforaphane (SF) is very effective against many different types of cancer cells. Its clinical application is restricted because of its hydrophobicity, low gastrointestinal absorption and poor bioavailability. In the present study, a reliable micellar delivery system using monomethoxypoly (ethylene glycol)-poly (ɛ-caprolactone) (mPEG-PCL) was established. The encapsulation of SF inside mPEG-PCL as a nano-carrier was established and the cytotoxicity assay against human breast cancer cell line was evaluated. METHODS In this study, SF was encapsulated within mPEG-PCL micelles through a single-step nano-precipitation method, leading to creation of SF-loaded mPEG-PCL (SF/mPEG-PCL) micelles. Di-block mPEG-PCL copolymers were synthesized and used to prepare micelles. MPEG-PCL copolymer was characterized by HNMR, FTIR, differential scanning calorimetry and gel permeation chromatography techniques. Characterization, stability of micelles, the particle size and morphology were determined. The release profile of the SF from the micelles which prepared by the drug-loaded copolymer, was evaluated. The cytotoxicity of free SF, mPEG-PCL and SF-loaded mPEG-PCL micelles was compared with each other by performing MTT assay of the treated MCF-7 cell line. Expression levels of BCL-2, MMP-9, BCL-XL, BAK, BAX and GAPDH (endogenous gene) as control were quantified by real time PCR. To evaluate the apoptotic effects of Free SF compared with SF-loaded mPEG-PCL micelles, flow cytometry analysis was done using the annexin V-FITC apoptosis detection kit. RESULTS Our studies resulted in a successful establishment of uniformity and spherical SF-loaded mPEG-PCL micelles. The encapsulation efficiency of SF was 86 ± 1.58%. The results of atomic force microscopy revealed that the micelles have spherical shapes with size of 107 nm. In vitro release of SF from SF-entrapped micelles was remarkably sustained. The mPEG-PCL micelle showed little cytotoxicity in the case of MCF-7 cell line with concentration up to 1.5 mg/ml, whereas the SF-loaded mPEG-PCL micelles at all concentrations significantly was cytotoxic in the case of MCF-7 cell line. Finally, real-time PCR and flow cytometry were used to demonstrate that the SF-loaded mPEG-PCL could be efficiently inducing apoptosis in MCF-7 cell line. CONCLUSION We achieved to a successful formulation of SF-loaded m-PEG/PCL micelles in this study. Based on the cytotoxicity results of mPEG-PCL micelles against human breast cancer cell line (MCF-7) in this study, it suggested that SF/mPEG-PCL micelles can be an effective breast cancer treatment strategy in the future.
Collapse
Affiliation(s)
- Hossein Danafar
- a Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Medicinal Chemistry , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Ali Sharafi
- c Zanjan Pharmaceutical Biotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Hamidreza Kheiri Manjili
- d Department of Pharmaceutical Nanotechnology , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran , and
| | - Sina Andalib
- e Department of Pharmacology , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
17
|
Joshi P, Jeon YJ, Laganà A, Middleton J, Secchiero P, Garofalo M, Croce CM. MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC. Proc Natl Acad Sci U S A 2015; 112:8650-5. [PMID: 26124099 PMCID: PMC4507199 DOI: 10.1073/pnas.1500886112] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the leading causes of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells without inducing significant toxicity in normal cells. However, several carcinomas, including lung cancer, remain resistant to TRAIL. MicroRNAs (miRNAs) are small noncoding RNAs of ∼ 24 nt that block mRNA translation and/or negatively regulate its stability. They are often aberrantly expressed in cancer and have been implicated in increasing susceptibility or resistance to TRAIL-induced apoptosis by inhibiting key functional proteins. Here we show that miR-148a is down-regulated in cells with acquired TRAIL-resistance compared with TRAIL-sensitive cells. Enforced expression of miR-148a sensitized cells to TRAIL and reduced lung tumorigenesis in vitro and in vivo through the down-modulation of matrix metalloproteinase 15 (MMP15) and Rho-associated kinase 1 (ROCK1). These findings suggest that miR-148a acts as a tumor suppressor and might have therapeutic application in the treatment of NSCLC.
Collapse
Affiliation(s)
- Pooja Joshi
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Young-Jun Jeon
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Justin Middleton
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, 44100 Ferrara, Italy
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210;
| |
Collapse
|
18
|
Luo Z, Zeng H, Ye Y, Liu L, Li S, Zhang J, Luo R. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell. Mol Med Rep 2015; 11:4611-6. [PMID: 25673029 DOI: 10.3892/mmr.2015.3310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/12/2014] [Indexed: 11/05/2022] Open
Abstract
Breast cancer accounts for 22.9% of all types of cancer in females worldwide. Safflower polysaccharide (SPS) is an active fraction purified from safflower petals (Carthamus tinctorius L). The present study investigated the effects of safflower polysaccharide on the proliferation and metastasis of breast cancer cells. Cell viability was analyzed using an MTT assay following treatment of the MCF‑7 cells with increasing concentrations of SPS. The results demonstrated that the SPS compound significantly inhibited the proliferation of the MCF‑7 human breast cancer cell line and these inhibitory effects increased in a dose‑ and time‑dependent manner. The half maximal inhibitory concentration (IC50) value of SPS on breast cancer cells, following treatment for 72 h, was detected using an MTT assay and was calculated as 0.12 mg/ml. The apoptotic rate was detected using flow cytometry in the MCF‑7 human breast cancer cell line and the results revealed that SPS induced cell apoptosis. The apoptotic rate of the MCF‑7 cells treated with SPS was significantly higher compared with that of the untreated cells and increased in a dose‑dependent manner. The expression of B‑cell lymphoma 2 (Bcl‑2) was downregulated and the expression of Bcl‑2‑associated X protein was upregulated in the MCF‑7 cells treated with SPS in a time‑dependent manner. Additionally, the expression of matrix metalloproteinase‑9 was significantly reduced and the expression of tissue inhibitor of metalloproteinase‑1 was increased in the MCF‑7 human breast cancer cell treated with SPS. These results demonstrated that SPS inhibited the metastasis of MCF‑7 breast cancer cells and understanding the underlying mechanisms may provide novel strategies in breast cancer therapy.
Collapse
Affiliation(s)
- Zhongbing Luo
- Department of Oncology, Cancer Center of Southern Medical University, Guangzhou, Guandong 510315, P.R. China
| | - Hongxie Zeng
- Department of Chemotherapy, Ganzhou Cancer Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Yongqiang Ye
- Department of Breast Surgery, Ganzhou Cancer Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Lianbin Liu
- Department of Chemotherapy, Ganzhou Cancer Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Shaojin Li
- Department of Chemotherapy, Ganzhou Cancer Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Junyi Zhang
- Department of Oncology, Cancer Center of Southern Medical University, Guangzhou, Guandong 510315, P.R. China
| | - Rongcheng Luo
- Department of Oncology, Cancer Center of Southern Medical University, Guangzhou, Guandong 510315, P.R. China
| |
Collapse
|
19
|
Bhattacharyya P, Dey R, Saha D, Nag S, Ghosh S, Chowdhury SR, Ganguly D. Role of doxycycline to resolve different types of non-malignant lung and pleural pathology: The results of a pilot observation. Lung India 2015; 32:40-3. [PMID: 25624595 PMCID: PMC4298917 DOI: 10.4103/0970-2113.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Lung lesions may develop from tissue reactions to known or unknown stimuli and present with different morphological descriptions. The pathogenesis may be induced and maintained by different bioactive substances, of which, the upregulation matrix metalloproteinases (MMPs) play a vital role. Inhibition of the MMPs, therefore, may be a prospective mode of therapy for such lesions. MATERIALS AND METHODS A number of patients with lung lesions of different morphologies and presentations were treated empirically with long-term oral doxycycline (100 mg BID) upon exclusion of malignancy and infection in an open, single-arm, prospective, observational pilot study. The effect of the treatment was recorded on serial x-rays/computed tomography (CT) scans and the impact of treatment was measured with a visual analog scale (VAS) or a Likert-like scale. Furthermore, six independent pulmonologists' opinion (expressed on a '0' to '100' scale) were pooled with regard to the significance and the expectedness of such a change. RESULTS Twenty-six patients (mean age 49.33 years and male: female ratio = 10:3) with different types of pulmonary parenchymal/pleural lesions were treated with long-term oral doxycycline for a mean duration of 386.88 days related to the available radiological comparison. They showed a mean improvement of 3.99 on the Likert-like scale and 78% on the VAS scale. The mean significance of the change was 83.33%, with a mean expectedness of 18% as per the pooled opinion of the pulmonologists. INFERENCE The significant and unexpected resolution of different tissue lesions from long-term doxycycline appears to be a novel observation. This needs proper scientific validation.
Collapse
Affiliation(s)
| | - Rana Dey
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| | - Dipanjan Saha
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| | - Saikat Nag
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| | - Subhasish Ghosh
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| | - Sushmita Roy Chowdhury
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| | - Dhiman Ganguly
- Department of Clinical pulmonary medicine, Institute of Pulmocare and Research, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Wang Y, Feng G, Wang J, Zhou Y, Liu Y, Shi Y, Zhu Y, Lin W, Xu Y, Li Z. Differential effects of tumor necrosis factor-α on matrix metalloproteinase-2 expression in human myometrial and uterine leiomyoma smooth muscle cells. Hum Reprod 2014; 30:61-70. [PMID: 25398968 DOI: 10.1093/humrep/deu300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION Does tumor necrosis factor-α (TNF-α) differentially regulate matrix metalloproteinase-2 (MMP-2) expression in leiomyomas compared with normal myometrium? SUMMARY ANSWER TNF-α up-regulates MMP-2 expression and stimulates cell migration through the activation of extracellular signal-regulated kinase (ERK) signaling pathway in leiomyoma smooth muscle cells (SMCs), but not in normal myometrial SMCs. WHAT IS KNOWN ALREADY Uterine leiomyoma, the benign smooth muscle cell tumor, is the single most common indication for hysterectomy. High expression of MMPs or TNF-α has been reported in uterine leiomyomas; however, the molecular mechanism underlying these observations remains unknown. STUDY DESIGN, SIZE, DURATION Samples were obtained between 2009 and 2013 from 12 women of reproductive age at the proliferative phase of the menstrual cycle by hysterectomy. Leiomyomas and matched normal myometrium from each woman were analyzed in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Western blot, RT-qPCR and a wound-healing assay were used to investigate the effects of TNF-α on MMP-2 expression and intracellular signal transduction in cultured SMCs from leiomyomas and matched myometrium. MAIN RESULTS AND THE ROLE OF CHANCE Western blot and RT-qPCR analyses using tissues from clinical patients showed that the levels of MMP-2 protein (P = 0.008) and mRNA (P = 0.009) were significantly higher in uterine leiomyomas compared with their matched myometrium. Treatment with TNF-α significantly up-regulated the protein (P = 0.039) and mRNA (P = 0.037) levels of MMP-2 in cultured leiomyoma SMCs but not in matched myometrial SMCs. The extracellular signal-regulated kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways were activated by TNF-α in leiomyoma SMCs. Specific inhibitors of the ERK or NF-κB pathway (PD98059 or Bay11-7082) suppressed TNF-α-induced MMP-2 expression in leiomyoma SMCs. The wound-healing assay revealed that TNF-α promoted the migration of cultured leiomyoma SMCs (P = 0.036); however, PD98059 compromised the cell migration triggered by TNF-α. LIMITATIONS, REASONS FOR CAUTION This study is descriptive and although we observed clear differential regulation of MMP-2 by TNF-α at mRNA and protein levels in leiomyoma, future studies are needed to identify why the difference in TNF-α response exists between human leiomyoma tissue and normal myometrium. Including some of the experiments such as transfection studies for TNF-α and MMP-2 promoter mapping could have added more insight as to why this difference exists. In addition, further studies in vivo are needed to verify the results obtained from primary cultured SMCs. WIDER IMPLICATIONS OF THE FINDINGS Considering the positive effect of TNF-α on leiomyoma SMC migration, strategies targeting TNF-α, in parallel with the production of more specific inhibitors of MMPs, may provide alternative therapeutic approaches for the treatment of leiomyoma. STUDY FUNDING/COMPETING INTERESTS This work was partially supported by grants from the Program for New Century Excellent Talents in University (NCET-12-0282), National Natural Science Foundation of China (81371620) and Tianjin Natural Science Foundation (12JCZDJC24900). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yuebing Wang
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, China
| | - Guowei Feng
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, China Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiyuan Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yu Zhou
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yixin Liu
- Department of Gynecology, Tianjin Central Hospital for Obstetrics and Gynecology, Tianjin, China
| | - Yiquan Shi
- Department of Gynecology, Tianjin Central Hospital for Obstetrics and Gynecology, Tianjin, China
| | - Yingjun Zhu
- Department of Gynecology, Tianjin Central Hospital for Obstetrics and Gynecology, Tianjin, China
| | - Wanjun Lin
- Department of Gynecology, Tianjin Central Hospital for Obstetrics and Gynecology, Tianjin, China
| | - Yang Xu
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, China
| | - Zongjin Li
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
21
|
Amigo-Jiménez I, Bailón E, Ugarte-Berzal E, Aguilera-Montilla N, García-Marco JA, García-Pardo A. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide. PLoS One 2014; 9:e99993. [PMID: 24956101 PMCID: PMC4067296 DOI: 10.1371/journal.pone.0099993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. METHODS We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. RESULTS In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. CONCLUSIONS Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Arsenic Trioxide
- Arsenicals/pharmacology
- Arsenicals/therapeutic use
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Female
- HEK293 Cells
- Humans
- Hyaluronan Receptors/metabolism
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Oxides/pharmacology
- Oxides/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-jun/genetics
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- Irene Amigo-Jiménez
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elvira Bailón
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Estefanía Ugarte-Berzal
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Aguilera-Montilla
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Angeles García-Pardo
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
22
|
Bousserouel S, Le Grandois J, Gossé F, Werner D, Barth SW, Marchioni E, Marescaux J, Raul F. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model. Int J Oncol 2013; 43:394-404. [PMID: 23754197 PMCID: PMC3775565 DOI: 10.3892/ijo.2013.1976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022] Open
Abstract
Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 μg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 μg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death-receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis.
Collapse
Affiliation(s)
- Souad Bousserouel
- University of Strasbourg, Unit EA 4438, Faculty of Medicine, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Laios A, Mohamed BM, Kelly L, Flavin R, Finn S, McEvoy L, Gallagher M, Martin C, Sheils O, Ring M, Davies A, Lawson M, Gleeson N, D’Arcy T, d’Adhemar C, Norris L, Langhe R, Saadeh FA, O’Leary JJ, O’Toole SA. Pre-Treatment of platinum resistant ovarian cancer cells with an MMP-9/MMP-2 inhibitor prior to cisplatin enhances cytotoxicity as determined by high content screening. Int J Mol Sci 2013; 14:2085-103. [PMID: 23340649 PMCID: PMC3565367 DOI: 10.3390/ijms14012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/05/2013] [Accepted: 01/06/2013] [Indexed: 02/08/2023] Open
Abstract
Platinum resistance is a major cause of treatment failure in ovarian cancer. We previously identified matrix metalloproteinase 9 (MMP-9) as a potential therapeutic target of chemoresistant disease. A2780cis (cisplatin-resistant) and A2780 (cisplatin-sensitive) ovarian carcinoma cell lines were used. The cytotoxic effect of MMP-9/MMP-2 inhibitor, (2R)-2-[(4-Biphenylsulfonyl) amino]-3 phenylpropionic acid (C21H19NO4S) alone or in combination with cisplatin was determined using high content screening. Protein expression was examined using immunohistochemistry and ELISA. Co-incubation of cisplatin and an MMP-9/MMP-2 inhibitor, (2R)-2-[(4-Biphenylsulfonyl) amino]-3 phenylpropionic acid (C21H19NO4S) resulted in significantly greater cytotoxicity as compared to either treatment alone in a cisplatin resistant MMP-9 overexpressing cell line; A2780cis. In addition, pre-incubating with MMP-9i prior to cisplatin further enhances the cytotoxic effect. No significant difference was observed in MMP-9 protein in tissue but a trend towards increased MMP-9 was observed in recurrent serum. We propose that MMP-9/MMP-2i may be utilized in the treatment of recurrent/chemoresistant ovarian cancers that overexpress MMP-9 mRNA but its role in vivo remains to be evaluated.
Collapse
Affiliation(s)
- Alexandros Laios
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Bashir M. Mohamed
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (B.M.M.); (A.D.)
| | - Lynne Kelly
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
| | - Richard Flavin
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Stephen Finn
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Lynda McEvoy
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Michael Gallagher
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Martina Ring
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Anthony Davies
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (B.M.M.); (A.D.)
| | - Margaret Lawson
- Department of Histopathology, St. James’s Hospital, Dublin 8, Ireland; E-Mail:
| | - Noreen Gleeson
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
| | - Tom D’Arcy
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
| | - Charles d’Adhemar
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
| | - Ream Langhe
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Feras Abu Saadeh
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| | - Sharon A. O’Toole
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland; E-Mails: (A.L.); (L.K.); (L.M.E.); (N.G.); (T.D.A.); (L.N.); (R.L.); (F.A.S.)
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James’s Hospital and The Coombe Women and Infants University Hospital, Dublin 8, Ireland; E-Mails: (R.F.); (S.F.); (M.G.); (C.M.); (O.S.); (M.R.); (C.D.A.)
| |
Collapse
|
24
|
Chetty C, Lakka SS, Bhoopathi P, Gondi CS, Veeravalli KK, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Urokinase plasminogen activator receptor and/or matrix metalloproteinase-9 inhibition induces apoptosis signaling through lipid rafts in glioblastoma xenograft cells. Mol Cancer Ther 2010; 9:2605-17. [PMID: 20716639 DOI: 10.1158/1535-7163.mct-10-0245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small interfering RNA (siRNA)-mediated transcriptional knockdown of urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9), alone or in combination, inhibits uPAR and/or MMP-9 expression and induces apoptosis in the human glioblastoma xenograft cell lines 4910 and 5310. siRNA against uPAR (pU-Si), MMP-9 (pM-Si), or both (pUM-Si) induced apoptosis and was associated with the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase. Furthermore, protein levels of the Fas receptor (APO-1/CD-95) were increased following transcriptional inactivation of uPAR and/or MMP-9. In addition, Fas siRNA against the Fas death receptor blocked apoptosis induced by pU-Si, pM-Si, or pUM-Si, thereby indicating the role for Fas signaling in pU-Si-, pM-Si-, or pUM-Si-mediated apoptotic cell death of human glioma xenograft cells. Thus, transcriptional inactivation of uPAR and/or MMP-9 enhanced localization of Fas death receptor, Fas-associated death domain-containing protein, and procaspase-8 into lipid rafts. Additionally, disruption of lipid rafts with methyl β cyclodextrin prevented Fas clustering and pU-Si-, pM-Si-, or pUM-Si-induced apoptosis, which is indicative of coclustering of Fas death receptor into lipid rafts in the glioblastoma xenograft cell lines 4910 and 5310. These data indicate the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in programmed cell death, acting as concentrators of death receptors and downstream signaling molecules, and as the linchpin from which a potent death signal is launched in uPAR- and/or MMP-9-downregulated cells.
Collapse
Affiliation(s)
- Chandramu Chetty
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Metalloproteinase 2 cleaves in vitro recombinant TRAIL: Potential implications for the decreased serum levels of TRAIL after acute myocardial infarction. Atherosclerosis 2010; 211:333-6. [DOI: 10.1016/j.atherosclerosis.2010.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/20/2022]
|
26
|
Zeng H, Wu M, Botnen JH. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes. J Nutr 2009; 139:1613-8. [PMID: 19625696 DOI: 10.3945/jn.109.110320] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.
Collapse
Affiliation(s)
- Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202-9034, USA.
| | | | | |
Collapse
|
27
|
Kassner A, Roberts TPL, Moran B, Silver FL, Mikulis DJ. Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol 2009; 30:1864-9. [PMID: 19661169 DOI: 10.3174/ajnr.a1774] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although thrombolytic therapy (recombinant tissue plasminogen activator [rtPA]) represents an important step forward in acute ischemic stroke (AIS) management, there is a clear need to identify high-risk patients. The purpose of this study was to investigate the role of quantitative permeability (KPS) MR imaging in patients with AIS treated with and without rtPA. We hypothesized that rtPA would increase KPS and that KPS MR imaging can be used to predict the risk of hemorrhagic transformation (HT). MATERIALS AND METHODS Thirty-six patients with AIS were examined within a mean of 3.6 hours of documented symptom onset. KPS MR imaging was performed as part of our AIS protocol. KPS coefficients in the stroke lesion were estimated for all patients, and the relationship between KPS and both HT and rtPA was investigated by using Student t tests. Receiver operating characteristic (ROC) curves were computed for predicting HT from KPS. RESULTS The occurrence rate of HT for patients who received rtPA and those who did not was 43% and 37%, respectively. Assessment of KPS in the lesion revealed significant differences between those who hemorrhaged and those who did not (P < .0001) as well as between rtPA-treated and untreated patients (P = .008). ROC analysis indicated a KPS threshold of 0.67 mL/100 g/min, with a sensitivity of 92% and a specificity of 78%. CONCLUSIONS The results of this study indicate that KPS is able to identify patients at higher risk of HT and may allow use of physiologic imaging rather than time from onset of symptoms to guide treatment decision.
Collapse
Affiliation(s)
- A Kassner
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
28
|
Delgado JP, Vanneaux V, Branger J, Touboul T, Sentilhes L, Mainot S, Lainas P, Leclerc P, Uzan G, Mahieu-Caputo D, Weber A. The role of HGF on invasive properties and repopulation potential of human fetal hepatic progenitor cells. Exp Cell Res 2009; 315:3396-405. [PMID: 19615360 DOI: 10.1016/j.yexcr.2009.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/25/2023]
Abstract
UNLABELLED The success of hepatocyte transplantation has been limited by the low efficiency of transplanted cell integration into liver parenchyma. Human fetal hepatic progenitor cells (hepatoblasts) engraft more effectively than adult hepatocytes in mouse livers. However, the signals required for their integration are not yet fully understood. We investigated the role of HGF on the migration and invasive ability of human hepatic progenitors in vitro and in vivo. Hepatoblasts were isolated from the livers of human fetuses between 10 and 12 weeks of gestation. Their invasive ability was assessed in the presence or absence of HGF. These cells were also transplanted into immunodeficient mice and analyzed by immunohistochemistry. In contrast to TNF-alpha, HGF increased the motogenesis and invasiveness of hepatoblasts, but not of human adult hepatocytes, via phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The invasive ability of human hepatoblasts correlated with the expression and secretion of matrix metalloproteinases (MMPs). Hepatoblasts stimulated with HGF prior transplantation into newborn mice migrated from the portal area into the hepatic parenchyma. CONCLUSIONS In contrast to adult hepatocytes, hepatoblasts display invasive ability that can be modulated by HGF in vitro and in vivo.
Collapse
Affiliation(s)
- Jean-Paul Delgado
- Inserm U972, University Paris-Sud, IFR 69, Hôpital du Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mace TA, Yamane N, Cheng J, Hylander BL, Repasky EA. The Potential of the Tumor Microenvironment to Influence Apo2L/TRAIL Induced Apoptosis. Immunol Invest 2009; 35:279-96. [PMID: 16916755 DOI: 10.1080/08820130600745463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Apo2L/TRAIL ligation of specific cell surface receptors (DR4 and DR5) induces apoptosis of many malignant cells with little effect on normal cells. This anti-tumor capability has been demonstrated using cell lines of many tumor types, both in vitro and in vivo when the cells are grown as xenografts. We have extended these studies to investigate the efficacy of Apo2L/TRAIL against patient tumor xenografts in SCID mice and found that the growth of many tumors, both of primary and metastatic origin, can be inhibited by Apo2L/TRAIL. The basis of resistance to Apo2L/TRAIL induced apoptosis in malignant cells and normal cells is not completely understood, but it is known that a variety of factors including hypoxia, MMPs and cytokines present in the tumor microenvironment can influence the response of malignant cells to Apo2L/TRAIL. Currently, the clinical potential of several molecules targeting the Apo2L/TRAIL receptors DR4 and DR5 is being investigated. Our goal in this review is to provide a brief overview of a number of factors that have potential to influence the response of patient tumors to Apo2L/TRAIL.
Collapse
Affiliation(s)
- Thomas A Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
30
|
Lukkarinen H, Hogmalm A, Lappalainen U, Bry K. Matrix Metalloproteinase-9 Deficiency Worsens Lung Injury in a Model of Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2009; 41:59-68. [DOI: 10.1165/rcmb.2008-0179oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Secchiero P, Corallini F, Ceconi C, Parrinello G, Volpato S, Ferrari R, Zauli G. Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction. PLoS One 2009; 4:e4442. [PMID: 19221598 PMCID: PMC2637972 DOI: 10.1371/journal.pone.0004442] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/01/2009] [Indexed: 12/27/2022] Open
Abstract
Background Since soluble TRAIL exhibits anti-inflammatory and anti-atherosclerotic activities both in vitro and in animal models, this study was designed to assess the relationship between the serum levels of TRAIL and clinical outcomes in patients with acute myocardial infarction (AMI). Methodology/Principal Findings Levels of TRAIL were measured by ELISA in serial serum samples obtained from 60 patients admitted for AMI, both during hospitalization and in a follow-up of 12 months, as well as in 60 healthy control subjects. Serum levels of TRAIL were significantly decreased in patients with AMI at baseline (within 24 hours from admission), compared with healthy controls, and showed a significant inverse correlation with a series of negative prognostic markers, such as CK, CK-MB and BNP. TRAIL serum levels progressively increased at discharge, but normalized only at 6–12 months after AMI. Of note, low TRAIL levels at the patient discharge were associated with increased incidence of cardiac death and heart failure in the 12-month follow-up, even after adjustment for demographic and clinical risk parameters (hazard ratio [HR] of 0.93 [95% CI, 0.89 to 0.97]; p = 0.001). Conclusions/Significance Although the number of patients studied was limited, our findings indicate for the first time that circulating TRAIL might represent an important predictor of cardiovascular events, independent of conventional risk markers.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yoo J, Park SS, Lee YJ. Pretreatment of docetaxel enhances TRAIL-mediated apoptosis in prostate cancer cells. J Cell Biochem 2008; 104:1636-46. [PMID: 18404675 DOI: 10.1002/jcb.21729] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).
Collapse
Affiliation(s)
- Jinsang Yoo
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
33
|
Yoo J, Lee YJ. Effect of hyperthermia and chemotherapeutic agents on TRAIL-induced cell death in human colon cancer cells. J Cell Biochem 2008; 103:98-109. [PMID: 17520700 DOI: 10.1002/jcb.21389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In the previous study [Yoo and Lee, 2007], we have reported that hyperthermia could enhance the cytotoxicity of TRAIL-induced apoptosis. We observed in human colorectal cancer cell line CX-1 that TRAIL-induced apoptotic death and also that mild hyperthermia promoted TRAIL-induced apoptotic death through caspase activation and cytochrome-c release. Although its effects in vivo are not clear, hyperthermia has been used as an adjunctive therapy for cancer. Hyperthermia is often accompanied by chemotherapy to enhance its effect. In this study, CX-1 colorectal adenocarcinoma cells were treated with TRAIL concurrently with hyperthermia and oxaliplatin or melphalan. To evaluate the cell death effects on tumor cells via hyperthermia and TRAIL and chemotherapeutic agents, FACS analysis, DNA fragmentation, and immunoblottings for PARP-1 and several caspases and antiapoptotic proteins were performed. Activities of casapse-8, caspase-9, and caspase-3 were also measured in hyperthermic condition. Interestingly, when analyzed with Western blot, we detected little change in the intracellular levels of proteins related to apoptosis. Clonogenic assay shows, however, that chemotherapeutic agents will trigger cancer cell death, either apoptotic or non-apoptotic, more efficiently. We demonstrate here that CX-1 cells exposed to 42 degrees C and chemotherapeutic agents were sensitized and died by apoptotic and non-apoptotic cell death even in low concentration (10 ng/ml) of TRAIL.
Collapse
Affiliation(s)
- Jinsang Yoo
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
34
|
Yoo J, Lee YJ. Aspirin Enhances Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Mediated Apoptosis in Hormone-Refractory Prostate Cancer Cells through Survivin Down-Regulation. Mol Pharmacol 2007; 72:1586-92. [PMID: 17848598 DOI: 10.1124/mol.107.039610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether acetylsalicylic acid (ASA), so-called aspirin, enhances TRAIL-induced apoptosis in androgen-dependent LNCaP and androgen-independent LNCaP-derived prostate cancer cells. To evaluate the cell death effects of TRAIL in combination with ASA on tumor cells, we performed DNA fragmentation assay and immunoblot analysis for poly(ADP-ribose) polymerase-1, caspases, and anti-apoptotic proteins. We observed that ASA promoted TRAIL-induced apoptotic death in both LNCaP and its derived cells (C4, C4-2, and C4-2B). These enhancements of TRAIL's effect were related to the decrease in survivin protein expression by pretreatment with ASA. We also confirmed that knockdown in survivin expression by transfecting survivin small interfering RNA increased TRAIL-induced apoptosis. To study the mechanism of survivin down-regulation, we determined the levels of mRNA and the activities of survivin promoter in the ASA-treated and untreated cells. Reduction of the intracellular levels of survivin protein was due to a decrease in transcriptional activity. Data from electrophoretic mobility shift assay and chromatin immunoprecipitation analyses revealed that ASA inhibited the transcription factor E2F-1 binding activity to the survivin promoter region, which is known to regulate survivin gene transcription. Taken together, our studies suggested that ASA-promoted TRAIL cytotoxicity is mediated by down-regulating survivin, and the down-regulation of survivin is due to inhibition of E2F-1 binding activity to the survivin promoter region.
Collapse
Affiliation(s)
- Jinsang Yoo
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
35
|
Abstract
Hepatocellular carcinoma (HCC) ranks among the 10 most common cancers worldwide. The fact that HCC is resistant to conventional chemotherapy and is rarely amenable to radiotherapy leaves this disease with no effective therapeutic options and a very poor prognosis. Therefore, the development of more effective therapeutic tools and strategies is much needed. HCCs are phenotypically and genetically heterogeneous tumors that commonly emerge on a background of chronic liver diseases, most of which culminate in cirrhosis, such as alcoholic cirrhosis and chronic hepatitis B and C infections. This review outlines recent findings on the progression of liver disease, including our knowledge of the role of apoptotic processes, with an emphasis on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The proapoptotic and antiapoptotic properties of TRAIL, its involvement in liver injury, and its potential as a therapeutic agent in fibrosis and HCC are discussed. Several contradictory and confusing data have not yet been resolved or placed into perspective, such as the influence of factors that determine the TRAIL sensitivity of target cells, including the tumor microenvironment or cirrhotic tissue. Therefore, we assess these data from the perspectives of gastroenterologists (P.S. and M.W.B.) and a molecular oncologist (I.H.) with research interests in liver injury, apoptosis, and experimental therapeutics.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
36
|
Chetty C, Bhoopathi P, Lakka SS, Rao JS. MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene 2007; 26:7675-83. [PMID: 17599056 PMCID: PMC2167629 DOI: 10.1038/sj.onc.1210584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have previously reported that the downregulation of MMP-2 by adenovirus-mediated delivery of MMP-2 siRNA (Ad-MMP-2) reduced spheroid invasion and angiogenesis in vitro, and, metastasis and tumor growth in vivo. In this study, we investigated the mechanism of Ad-MMP-2-mediated growth inhibition in vitro and in vivo. Ad-MMP-2 infection led to the induction of apoptosis as determined by TUNEL assay, Annexin-V staining and PARP-1 cleavage in a dose-dependent manner in A549 cells. Ad-MMP-2 decreased the content of the antiapoptotic members of the Bcl-2 family proteins (Bcl-2 and Bcl-xL) and increased the content of the pro-apoptotic members of the Bcl-2 family (Bax and Bcl-xS) as determined by immunoblotting analysis. Furthermore, Ad-MMP-2-mediated apoptosis was accompanied by increase in truncated Bid, release of cytochrome c and the activation of caspase-8, -9 and -3. Immunoblot analysis showed that Ad-MMP-2 infection caused upregulation of Fas/Fas-L and FADD, and Anti-Fas-L antibody reversed Ad-MMP-2-induced apoptosis. Tissue inhibitor of metalloproteinases (TIMP)-3, an endogenous inhibitor of MMP-2, which cleaves Fas-L and activates the Fas/Fas-L inducing apoptotic pathway, was increased in Ad-MMP-2-treated cells. Adenovirus-mediated expression of MMP-2 siRNA in human lung xenografts in vivo resulted in increased immunostaining of Fas, Fas-L, cleaved Bid and TIMP-3. This is the first report, to our knowledge, showing that MMP-2 inhibition upregulates TIMP-3 levels, which in turn, promotes apoptosis in lung cancer.
Collapse
Affiliation(s)
- C Chetty
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | | | |
Collapse
|
37
|
Yoo J, Kim HRC, Lee YJ. Hyperthermia enhances tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human cancer cells. Int J Hyperthermia 2007; 22:713-28. [PMID: 17391000 DOI: 10.1080/02656730601074052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This study investigated whether hyperthermia can enhance TRAIL-induced apoptotic death. METHODS Human prostate adenocarcinoma DU-145, human pancreatic carcinoma MIA PaCa-2 and BxPC-3, human colon fibroblast CCD-33Co and rat prostate endothelial YPEN-1 cells were treated with various concentrations of TRAIL (0-200 ngml(-1)) with hyperthermia (40-42 degrees C). RESULTS It was observed in human cancer cells, but not in normal cells, that TRAIL induced apoptotic death and also that hyperthermia (40-42 degrees C) promoted TRAIL-induced apoptotic death. Enhancement of TRAIL-mediated apoptosis by hyperthermia was detected by an increase in PARP cleavage, the hallmark feature of apoptosis, as well as by activation of caspases. There were no significant changes in the intra-cellular levels of death receptors (DRs), decoy receptors (DcRs) and anti-apoptotic proteins. Interestingly, data from in vitro enzyme kinetics assay demonstrated that hyperthermia promoted caspase enzyme activity. CONCLUSIONS These data suggest that cancer cells are more susceptible to TRAIL in the condition of hyperthermia (40-42 degrees C). The promotion of caspase enzyme activity by hyperthermia may be responsible for enhancement of TRAIL-induced apoptotic death.
Collapse
Affiliation(s)
- Jinsang Yoo
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
38
|
Yoo J, Lee YJ. Effect of hyperthermia on TRAIL-induced apoptotic death in human colon cancer cells: Development of a novel strategy for regional therapy. J Cell Biochem 2007; 101:619-30. [PMID: 17212362 DOI: 10.1002/jcb.21203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Approximately 25% of patients with colorectal cancer will develop metastatic disease exclusively or largely confined to the liver, and the vast majority of these cases are not amenable to surgical resection. These unresectable cases of liver metastatic disease can be treated with isolated hepatic perfusion (IHP), which involves a method of complete vascular isolation of the liver to allow treatment of liver tumors with toxic systemic doses of chemotherapeutic agents. To improve the efficacy of IHP, hyperthermia and biological agents have been applied along with the chemotherapeutic agents. In this study, we investigated whether hyperthermia in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) enhances mortality in human colorectal carcinoma CX-1 cells. Cells were treated with various concentrations of TRAIL (0-200 ng/ml) at various temperatures (40-46 degrees C) for 1 h and further incubated at 37 degrees C in the presence of TRAIL. We observed that hyperthermia at 42-43 degrees C effectively promoted TRAIL-induced apoptosis, as indicated by cell death, poly (ADP-ribose) polymerase (PARP) cleavage, and activation of caspase-8, -9, and -3. In contrast, hyperthermia at 45-46 degrees C suppressed TRAIL-induced apoptosis. We also observed that mild hyperthermia, but not acute hyperthermia, promoted cytochrome c release during treatment with TRAIL. Our data suggest that promotion of cytochrome c release during mild hyperthermia is responsible for the enhancement of TRAIL cytotoxicity.
Collapse
Affiliation(s)
- Jinsang Yoo
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
39
|
McCarthy MM, DiVito KA, Sznol M, Kovacs D, Halaban R, Berger AJ, Flaherty KT, Camp RL, Lazova R, Rimm DL, Kluger HM. Expression of tumor necrosis factor--related apoptosis-inducing ligand receptors 1 and 2 in melanoma. Clin Cancer Res 2006; 12:3856-63. [PMID: 16778114 PMCID: PMC1839847 DOI: 10.1158/1078-0432.ccr-06-0190] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The proapoptotic receptors tumor necrosis factor--related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and TRAIL-R2 are targets of drugs in clinical development, and receptor expression levels may be important determinants of sensitivity to receptor agonists. We assessed TRAIL-R1 and TRAIL-R2 expression patterns in a large cohort of melanomas and benign nevi. EXPERIMENTAL DESIGN We analyzed tissue microarrays containing 546 melanomas and 540 nevi using our automated quantitative method to measure protein levels in situ (AQUA). The system uses S100 to define pixels as melanoma (tumor mask) within the array spot and measures intensity of TRAIL-receptor expression using Cy5-conjugated antibodies within the mask. AQUA scores were correlated with clinical and pathologic variables. RESULTS TRAIL-R1 and TRAIL-R2 expression was higher in melanomas than in nevi (P < 0.0001), and higher in primary than in metastatic specimens (P = 0.0031 and P < 0.0001, respectively). TRAIL-R1 and TRAIL-R2 expression exceeding the 95th percentile for nevi was found in 19% and 74% of melanoma specimens, respectively. Although on univariate analysis, high TRAIL-R2 expression correlated with increased survival (P = 0.0439), it was not associated with survival within the primary or metastatic subcohorts. TRAIL-R1 expression was not associated with survival. CONCLUSIONS TRAIL-R1 and TRAIL-R2 expression is higher in malignant melanocytes than in their benign counterparts, suggesting that these receptors might be effective therapeutic targets in melanoma. Expression is higher in early-stage disease than in metastatic specimens, and expression exceeding that found in nevi is found in a substantially larger fraction of melanomas for TRAIL-R2 compared with TRAIL-R1. Assessment of baseline tumor TRAIL receptor expression may be important in analysis of clinical trials involving TRAIL receptor agonists.
Collapse
Affiliation(s)
- Mary M. McCarthy
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kyle A. DiVito
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Daniela Kovacs
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
- Istituto Dermatologico San Gallicano, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Aaron J. Berger
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Keith T. Flaherty
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert L. Camp
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Rossitza Lazova
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - David L. Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Harriet M. Kluger
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Kurbanov BM, Geilen CC, Fecker LF, Orfanos CE, Eberle J. Efficient TRAIL-R1/DR4-Mediated Apoptosis in Melanoma Cells by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). J Invest Dermatol 2005; 125:1010-9. [PMID: 16297203 DOI: 10.1111/j.0022-202x.2005.23900.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Therapy resistance is crucial for the high mortality of melanoma. The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) bears high potential as a new anticancer agent, as binding to the death receptors TRAIL receptor 1/death receptor 4 (TRAIL-R1/DR4) or TRAIL receptor 2/death receptor 5 (TRAIL-R2/DR5) triggers apoptosis in most cancer cells. For melanoma, however, only a weak responsiveness of primary cultures was reported, and in particular the role of DR4 was neglected. For evaluating melanoma susceptibility, we studied the functionality of DR4 and DR5 in melanoma cells as well as their expression in vivo. DR5 was consistently expressed in melanoma cell lines, whereas DR4 was found in only 2/7 cell lines. High sensitivity to TRAIL-induced apoptosis was characteristic for DR4-positive melanoma cells, whereas DR4-negative cells showed less and delayed response or were resistant. The use of selective DR4/DR5 blocking antibodies unequivocally proved the prevalent role of DR4 in those melanoma cells, where it was expressed. The significance of these data for the in vivo situation was finally evaluated by immunohistochemistry, which proved pronounced expression of DR4 as well as of DR5 in melanoma primary tumors. Thus, DR4 expression in vivo and the high efficiency of DR4-mediated apoptosis may suggest reassessment of the suitability of TRAIL and especially of DR4-based strategies for melanoma treatment.
Collapse
Affiliation(s)
- Bahtier M Kurbanov
- Department of Dermatology and Allergy, Skin Cancer Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Kim KM, Song JJ, An JY, Kwon YT, Lee YJ. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J Biol Chem 2005; 280:41047-56. [PMID: 16199534 DOI: 10.1074/jbc.m503713200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues. However, not all cancers are sensitive to TRAIL-mediated apoptosis. Thus, TRAIL-resistant cancer cells must be sensitized first to become responsive to TRAIL. In this study, we observed that pretreatment by acetylsalicylic acid (ASA) augmented TRAIL-induced apoptotic death in human prostate adenocarcinoma LNCaP and human colorectal carcinoma CX-1 cells. Western blot analysis showed that pretreatment of ASA followed by TRAIL treatment activated caspases (8, 9, and 3) and cleaved poly(ADP-ribose) polymerase, the hallmark feature of apoptosis. Most interestingly, at least 12 h of pretreatment with ASA was prerequisite for promoting TRAIL-induced apoptosis and was related to down-regulation of BCL-2. Biochemical analysis revealed that ASA inhibited NF-kappaB activity, which is known to regulate BCL-2 gene expression, by dephosphorylating IkappaB-alpha and inhibiting IKKbeta activity but not by affecting the HER-2/neu phosphatidylinositol 3-kinase-Akt signal pathway. Overexpression of BCL-2 suppressed the promotive effect of ASA on TRAIL-induced apoptosis and changes in mitochondrial membrane potential. Taken together, our studies suggested that ASA-promoted TRAIL cytotoxicity is mediated through down-regulating BCL-2 and by decreasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- Ki M Kim
- Department of Surgery and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
42
|
Menon B, Singh M, Singh K. Matrix metalloproteinases mediate β-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. Am J Physiol Cell Physiol 2005; 289:C168-76. [PMID: 15728709 DOI: 10.1152/ajpcell.00606.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in β-adrenergic receptor (β-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). β-AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed β-AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited β-AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with β1-integrins after β-AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of β1-integrin signaling using laminin inhibited the increased association of MMP-2 with β1-integrins. β-AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) β-AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits β-AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with β1integrins and poly-ADP-ribose-polymerase cleavage.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Physiology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70576, Johnson City, Tennessee 37614, USA
| | | | | |
Collapse
|
43
|
Rossello A, Nuti E, Catalani MP, Carelli P, Orlandini E, Rapposelli S, Tuccinardi T, Atkinson SJ, Murphy G, Balsamo A. A new development of matrix metalloproteinase inhibitors: twin hydroxamic acids as potent inhibitors of MMPs. Bioorg Med Chem Lett 2005; 15:2311-4. [PMID: 15837315 DOI: 10.1016/j.bmcl.2005.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/24/2005] [Accepted: 03/02/2005] [Indexed: 11/27/2022]
Abstract
Starting from the observation that the CbzNH(CH2)2 side chain of the potent MMP-2/MMP-14 inhibitor, benzyl-(3R)-4-(hydroxyamino)-3-[isopropoxy(1,1'-biphenyl-4-yl-sulfonyl)amino]-4-oxobutylcarbamate, (R)-1 lies in a hydrophobic region (S1) exposed to the solvent of the protease active site, we hypothesized that an aminoethylcarboxamido chain structurally related to that of (R)-1 might be an useful tool to bind another linker stretching out from the protein. This would be able to interact either with a enzyme region adjacent to the active site, or with other molecules of matrix metalloproteinases (MMPs), or other proteins of the extracellular matrix (ECM) that may be involved in the enzyme activation. On these basis we describe new dimeric compounds of type 2, twin hydroxamic acids, obtained by the joint of two drug entities of (R)-1 linked in P1 by extendable semirigid linkers. Type 2 compounds are potentially able to undergo more complex inhibitor-enzyme interactions than those occurring with monomeric compounds of type 1, thus influencing positively the potency, selectivity and/or cytotoxicity of the new compounds.
Collapse
Affiliation(s)
- Armando Rossello
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer 2005; 1755:37-69. [PMID: 15907591 DOI: 10.1016/j.bbcan.2005.03.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
The matrix metalloproteinases(MMP)-2 and -9, also known as the gelatinases have been long recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. In the recent years, a plethora of non-matrix proteins have also been identified as gelatinase substrates thus significantly broadening our understanding of these enzymes as proteolytic executors and regulators in various physiological and pathological states including embryonic growth and development, angiogenesis and tumor progression, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. Although the effect of broad-spectrum inhibitors of MMPs in the treatment of cancer has been disappointing in clinical trials, novel mechanisms of gelatinase inhibition have been now identified. Inhibition of the association of the gelatinases with cell-surface integrins appears to offer highly specific means to target these enzymes without inhibiting their catalytic activity in multiple cell types including endothelial cells, tumor cells and leukocytes. Here, we review the multiple functions of the gelatinases in cancer, and especially their role in the tumor cell migration and invasion.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, P.O. B 56 (Viikinkaari 5D), University of Helsinki, Finland
| | | |
Collapse
|
45
|
Rossello A, Nuti E, Carelli P, Orlandini E, Macchia M, Nencetti S, Zandomeneghi M, Balzano F, Uccello Barretta G, Albini A, Benelli R, Cercignani G, Murphy G, Balsamo A. N-i-Propoxy-N-biphenylsulfonylaminobutylhydroxamic acids as potent and selective inhibitors of MMP-2 and MT1-MMP. Bioorg Med Chem Lett 2005; 15:1321-6. [PMID: 15713379 DOI: 10.1016/j.bmcl.2005.01.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 11/18/2022]
Abstract
Structural manipulation of the pharmacophoric model of type A selective MMP inhibitors (MMPi), obtained by the insertion of some alkyl substituents R2 possessing an appropriate geometry, steric bulkiness and lipophilicity, is able to improve potency, in the subnanomolar range on MMP-2, and to give a good MMP inhibition on MMP-14 (MT1-MMP) in the designed MMPi of type C, while maintaining a good MMP-1/MMP-2 selectivity profile. The simultaneous inhibition of these two enzymes yields type C compounds, which are potent antiangiogenic agents, able to block a chemoinvasion model on HUVEC cells in the micromolar range.
Collapse
Affiliation(s)
- Armando Rossello
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-κB and inhibition of Bcl-xL expression. Oncogene 2004; 23:4993-5003. [PMID: 15048072 DOI: 10.1038/sj.onc.1207655] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of downstream activation of caspases 9 and 3. However, the combination of DETANONOate and TRAIL resulted in activation of the mitochondrial pathway and activation of caspases 9 and 3, and induction of apoptosis. These findings demonstrate that DETANONOate-mediated sensitization of CaP to TRAIL-induced apoptosis is via inhibition of constitutive NF-kappa B activity and Bcl-(xL) expression.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|