1
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
2
|
Zaghloul N, Cohen NS, Ayasolla KR, Li HL, Kurepa D, Ahmed MN. Galantamine ameliorates hyperoxia-induced brain injury in neonatal mice. Front Neurosci 2023; 17:890015. [PMID: 37424990 PMCID: PMC10323435 DOI: 10.3389/fnins.2023.890015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Prolonged oxygen therapy in preterm infants often leads to cognitive impairment. Hyperoxia leads to excess free radical production with subsequent neuroinflammation, astrogliosis, microgliosis and apoptosis. We hypothesized that Galantamine, an acetyl choline esterase inhibitor and an FDA approved treatment of Alzheimer's disease, will reduce hyperoxic brain injury in neonatal mice and will improve learning and memory. Methods Mouse pups at postnatal day 1 (P1) were placed in a hyperoxia chamber (FiO2 95%) for 7 days. Pups were injected IP daily with Galantamine (5 mg/kg/dose) or saline for 7 days. Results Hyperoxia caused significant neurodegeneration in cholinergic nuclei of the basal forebrain cholinergic system (BFCS), laterodorsal tegmental (LDT) nucleus and nucleus ambiguus (NA). Galantamine ameliorated this neuronal loss. Treated hyperoxic group showed a significant increase of choline acetyl transferase (ChAT) expression and a decrease of acetyl choline esterase activity, thus increasing acetyl choline levels in hyperoxia environment. Hyperoxia increased pro-inflammatory cytokines namely IL -1β, IL-6 and TNF α, HMGB1, NF-κB activation. Galantamine showed its potent anti- inflammatory effect, by blunting cytokines surges among treated group. Treatment with Galantamine increased myelination while reducing apoptosis, microgliosis, astrogliosis and ROS production. Long term neurobehavioral outcomes at P60 showed improved locomotor activity, coordination, learning and memory, along with increased hippocampal volumes on MRI with Galantamine treated versus non treated hyperoxia group. Conclusion Together our findings suggest a potential therapeutic role for Galantamine in attenuating hyperoxia-induced brain injury.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Naomi S. Cohen
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Hsiu-Ling Li
- Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, New York, NY, United States
| | - Dalibor Kurepa
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mohamed N. Ahmed
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Protective Effects of Early Caffeine Administration in Hyperoxia-Induced Neurotoxicity in the Juvenile Rat. Antioxidants (Basel) 2023; 12:antiox12020295. [PMID: 36829854 PMCID: PMC9952771 DOI: 10.3390/antiox12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
High-risk preterm infants are affected by a higher incidence of cognitive developmental deficits due to the unavoidable risk factor of oxygen toxicity. Caffeine is known to have a protective effect in preventing bronchopulmonary dysplasia associated with improved neurologic outcomes, although very early initiation of therapy is controversial. In this study, we used newborn rats in an oxygen injury model to test the hypothesis that near-birth caffeine administration modulates neuronal maturation and differentiation in the hippocampus of the developing brain. For this purpose, newborn Wistar rats were exposed to 21% or 80% oxygen on the day of birth for 3 or 5 days and treated with vehicle or caffeine (10 mg/kg/48 h). Postnatal exposure to 80% oxygen resulted in a drastic reduction of associated neuronal mediators for radial glia, mitotic/postmitotic neurons, and impaired cell-cycle regulation, predominantly persistent even after recovery to room air until postnatal day 15. Systemic caffeine administration significantly counteracted the effects of oxygen insult on neuronal maturation in the hippocampus. Interestingly, under normoxia, caffeine inhibited the transcription of neuronal mediators of maturing and mature neurons. The early administration of caffeine modulated hyperoxia-induced decreased neurogenesis in the hippocampus and showed neuroprotective properties in the neonatal rat oxygen toxicity model.
Collapse
|
5
|
Role of sirtuin1 in impairments of emotion-related behaviors in mice with chronic mild unpredictable stress during adolescence. Physiol Behav 2022; 257:113971. [PMID: 36183852 DOI: 10.1016/j.physbeh.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Long-term exposure to physical and/or psychosocial stress during early life and/or adolescence increases the risk of psychiatric disorders such as major depressive disorder and anxiety disorders. However, the molecular mechanisms underlying early stress-induced brain dysfunction are poorly understood. In the present study, mice at 4 weeks old were subjected to chronic mild unpredictable stress (CMUS) for 4 weeks, and subsequently to assays of emotion-related behaviors. Thereafter, they were sacrificed and their brains were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Mice with CMUS during adolescence showed despair behavior, anxiety-like behavior, social behavior deficits, and anhedonia in forced-swim, marble-burying, social interaction, and sucrose preference tests, respectively. Additionally, RT-qPCR revealed that the expression levels of sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates stress responses, were down-regulated in the prefrontal cortex and hippocampus of mice with CMUS compared with control mice. Next, to investigate the pathophysiological role of decreased Sirt1 expression levels in stress-induced behavioral deficits, we assessed the effects of resveratrol, a pharmacological activator of SIRT1, in mice exposed to CMUS. Chronic treatment with resveratrol prevented -induced social behavior deficits and depression-like behaviors. These results suggest that CMUS during adolescence decreases Sirt1 expression in the brain, leading to deficits in emotional behavior. Accordingly, SIRT1 activators, such as resveratrol, may be preventive agents against abnormalities in emotional behavior following stress during an immature period.
Collapse
|
6
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
7
|
Ostrowski RP, Pucko E, Matyja E. Proteasome and Neuroprotective Effect of Hyperbaric Oxygen Preconditioning in Experimental Global Cerebral Ischemia in Rats. Front Neurol 2022; 13:812581. [PMID: 35250819 PMCID: PMC8891759 DOI: 10.3389/fneur.2022.812581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We investigated the involvement of the proteasome in the mechanism of preconditioning with hyperbaric oxygen (HBO-PC). Methods The experiments were performed on male Wistar rats subjected to a transient global cerebral ischemia of 5 min duration (2-vessel occlusion model) and preconditioned or not with HBO for 5 preceding days (1 h HBO at 2.5 atmosphere absolute [ATA] daily). In subgroups of preconditioned rats, the proteasome inhibitor MG132 was administered 30 min prior to each preconditioning session. Twenty-four hours and 7 days post-ischemia, after neurobehavioral assessment, the brains were collected and evaluated for morphological changes and quantitative immunohistochemistry of cell markers and apoptosis-related proteins. Results We observed reduced damage of CA1 pyramidal cells in the HBO preconditioned group only at 7 days post-ischemia. However, both at early (24 h) and later (7 days) time points, HBO-PC enhanced the tissue expression of 20S core particle of the proteasome and of the nestin, diminished astroglial reactivity, and reduced p53, rabbit anti-p53 upregulated modulator of apoptosis (PUMA), and rabbit anti-B cell lymphoma-2 interacting mediator of cell death (Bim) expressions in the hippocampus and cerebral cortex. HBO-PC also improved T-maze performance at 7 days. Proteasome inhibitor abolished the beneficial effects of HBO-PC on post-ischemic neuronal injury and functional impairment and reduced the ischemic alterations in the expression of investigated proteins. Significance Preconditioning with hyperbaric oxygen-induced brain protection against severe ischemic brain insult appears to involve the proteasome, which can be linked to a depletion of apoptotic proteins and improved regenerative potential.
Collapse
|
8
|
Sarkar T, Patro N, Patro IK. Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biol Open 2020; 9:bio054130. [PMID: 32878878 PMCID: PMC7522020 DOI: 10.1242/bio.054130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Perinatal protein malnourishment (LP) is a leading cause for mental and physical retardation in children from poor socioeconomic conditions. Such malnourished children are vulnerable to additional stressors that may synergistically act to cause neurological disorders in adulthood. In this study, the above mentioned condition was mimicked via a multi-hit rat model in which pups born to LP mothers were co-injected with polyinosinic:polycytidylic acid (Poly I:C; viral mimetic) at postnatal day (PND) 3 and lipopolysaccharide (LPS; bacterial mimetic) at PND 9. Individual exposure of Poly I:C and LPS was also given to LP pups to correlate chronicity of stress. Similar treatments were also given to control pups. Hippocampal cellular apoptosis, β III tubulin catastrophe, altered neuronal profiling and spatial memory impairments were assessed at PND 180, using specific immunohistochemical markers (active caspase 3, β III tubulin, doublecortin), golgi studies and cognitive mazes (Morris water maze and T maze). Increase in cellular apoptosis, loss of dendritic arborization and spatial memory impairments were higher in the multi-hit group, than the single-hit groups. Such impairments observed due to multi-hit stress mimicked conditions similar to many neurological disorders and hence, it is hypothesized that later life neurological disorders might be an outcome of multiple early life hits.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
9
|
Soriano SG, McCann ME. Is Anesthesia Bad for the Brain? Current Knowledge on the Impact of Anesthetics on the Developing Brain. Anesthesiol Clin 2020; 38:477-492. [PMID: 32792178 DOI: 10.1016/j.anclin.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are compelling preclinical data that common general anesthetics cause increased neuroapoptosis in juvenile animals. Retrospective studies demonstrate that young children exposed to anesthesia have school difficulties, which could be caused by anesthetic neurotoxicity, perioperative hemodynamic and homeostatic instability, underlying morbidity, or the neuroinflammatory effects of surgical trauma. Unnecessary procedures should be avoided. Baseline measures of blood pressure are important in determining perioperative blood pressure goals. Inadvertent hypocapnia or moderate hypercapnia and hyperoxia or hypoxia should be avoided. Pediatric patients should be maintained in a normothermic, euglycemic state with neutral positioning. Improving outcomes of infants and children requires the collaboration of anesthesiologists, surgeons, pediatricians and neonatologists.
Collapse
Affiliation(s)
- Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
McCann ME, Lee JK, Inder T. Beyond Anesthesia Toxicity: Anesthetic Considerations to Lessen the Risk of Neonatal Neurological Injury. Anesth Analg 2020; 129:1354-1364. [PMID: 31517675 DOI: 10.1213/ane.0000000000004271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infants who undergo surgical procedures in the first few months of life are at a higher risk of death or subsequent neurodevelopmental abnormalities. Although the pathogenesis of these outcomes is multifactorial, an understanding of the nature and pathogenesis of brain injury in these infants may assist the anesthesiologist in consideration of their day-to-day practice to minimize such risks. This review will summarize the main types of brain injury in preterm and term infants and their key pathways. In addition, the review will address key potential pathogenic pathways that may be modifiable including intraoperative hypotension, hypocapnia, hyperoxia or hypoxia, hypoglycemia, and hyperthermia. Each of these conditions may increase the risk of perioperative neurological injury, but their long-term ramifications are unclear.
Collapse
Affiliation(s)
- Mary Ellen McCann
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology, Johns Hopkins University, Baltimore, Maryland
| | - Terrie Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Kesäniemi J, Lavrinienko A, Tukalenko E, Moutinho AF, Mappes T, Møller AP, Mousseau TA, Watts PC. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evol Ecol 2020. [DOI: 10.1007/s10682-019-10028-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractMitochondria are sensitive to oxidative stress, including that derived from ionizing radiation. To quantify the effects of exposure to environmental radionuclides on mitochondrial DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radionuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains of bank voles from outside the CEZ were characterized by low mtDNA copy number and low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy number and high mtDNA damage, consistent with putative damaging effects of elevated radiation and a compensatory response to maintain sufficient functioning mitochondria. In animals outside the CEZ, the expression levels of PGC-1α gene and mtDNA copy number were positively correlated as expected from this gene’s prominent role in mitochondrial biogenesis; this PGC-1α-mtDNA copy number association is absent in samples from the CEZ. Our data imply that exposure to radionuclides is associated with altered mitochondrial dynamics, evident in level of mtDNA and mtDNA damage and the level of activity in mitochondrial synthesis.
Collapse
|
12
|
Srivastava A, Srivastava AK, Mishra M, Shankar J, Agrahari A, Kamthan M, Singh PK, Yadav S, Parmar D. A proteomic approach to investigate enhanced responsiveness in rechallenged adult rats prenatally exposed to lindane. Neurotoxicology 2019; 74:184-195. [PMID: 31330156 DOI: 10.1016/j.neuro.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Proteomic analysis was carried out in substantia nigra (SNi) and hippocampus (Hi) isolated from rat offspring born to mothers exposed to lindane (orally; 0.25 mg/kg) from gestation day 5 (GD5) to GD 21 and subsequently rechallenged (orally; 2.5 mg/kg X 21 days) at adulthood (12 weeks). 2D gel electrophoresis revealed no significant differences in the expression of proteins in brain regions isolated from prenatally exposed offspring at adulthood. Significantly greater magnitude of alterations was observed in the expression of proteins related to mitochondrial and energy metabolism, ubiquitin-proteasome pathway, structural and axonal growth leading to increased oxidative stress in Hi and SNi isolated from rechallenged offspring when compared to control offspring treated postnatally with lindane. Western blotting and DNA laddering showed a greater magnitude of increase in apoptosis in the Hi and SNi of rechallenged offspring. Ultrastructural analysis demonstrated disrupted mitochondrial integrity, synaptic disruption and necrotic structures in the brain region of rechallenged offspring. Neurobehavioral studies also demonstrated a greater magnitude of alterations in cognitive and motor functions in rechallenged rats. The data suggest that prenatal exposure of lindane induces persistent molecular changes in the nervous system of offspring which are unmasked leading to neurodegeneration following rechallenge at adulthood.
Collapse
Affiliation(s)
- Ankita Srivastava
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India
| | - Ankur Kumar Srivastava
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India
| | - Manisha Mishra
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jai Shankar
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Microscopy Laboratory, CSIR-IITR, Lucknow, 226001, Uttar Pradesh, India
| | - Anita Agrahari
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohan Kamthan
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Pradhyumna K Singh
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Sanjay Yadav
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Devendra Parmar
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
13
|
Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 2017; 8:e2643. [PMID: 28252642 PMCID: PMC5386560 DOI: 10.1038/cddis.2017.64] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Chen CC, Hsia CW, Ho CW, Liang CM, Chen CM, Huang KL, Kang BH, Chen YH. Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn 2017; 246:162-185. [PMID: 28002632 DOI: 10.1002/dvdy.24481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neural crest stem cells (NCSCs) are a population of adult multipotent stem cells. We are interested in studying whether oxygen tensions affect the capability of NCSCs to self-renew and repair damaged tissues. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro under different oxygen tensions. RESULTS We found significantly increased and decreased rates of cell proliferation in rat NCSCs (rNCSCs) cultured, respectively, at 0.5% and 80% oxygen levels. At 0.5% oxygen, the expression of both hypoxia-inducible factor (HIF) 1α and CXCR4 was greatly enhanced in the rNCSC nuclei and was suppressed by incubation with the CXCR4-specific antagonist AMD3100. In addition, the rate of cell apoptosis in the rNCSCs cultured at 80% oxygen was dramatically increased, associated with increased nuclear expression of TP53, decreased cytoplasmic expression of TPM1 (tropomyosin-1), and increased nuclear-to-cytoplasmic translocation of S100A2. Incubation of rNCSCs with the antioxidant N-acetylcysteine (NAC) overcame the inhibitory effect of 80% oxygen on proliferation and survival of rNCSCs. CONCLUSIONS Our results show for the first time that extreme oxygen tensions directly control NCSC proliferation differentially via distinct regulatory pathways of proteins, with hypoxia via the HIF1α-CXCR4 pathway and hyperoxia via the TP53-TPM1 pathway. Developmental Dynamics 246:162-185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- Department of Finance, School of Management, Shih Hsin University, Wenshan District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital, Longtan District, Taoyuan City, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Bor-Hwang Kang
- Division of Diving Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Zuoying District, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| |
Collapse
|
15
|
Endesfelder S, Makki H, von Haefen C, Spies CD, Bührer C, Sifringer M. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS One 2017; 12:e0171498. [PMID: 28158247 PMCID: PMC5291450 DOI: 10.1371/journal.pone.0171498] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hanan Makki
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Endesfelder S, Zaak I, Weichelt U, Bührer C, Schmitz T. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med 2014; 67:221-34. [PMID: 24129198 DOI: 10.1016/j.freeradbiomed.2013.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023]
Abstract
Caffeine administered to preterm infants has been shown to reduce rates of cerebral palsy and cognitive delay, compared to placebo. We investigated the neuroprotective potential of caffeine for the developing brain in a neonatal rat model featuring transient systemic hyperoxia. Using 6-day-old rat pups, we found that after 24 and 48h of 80% oxygen exposure, apoptotic (TUNEL(+)) cell numbers increased in the cortex, hippocampus, and central gray matter, but not in the hippocampus or dentate gyrus. In the dentate gyrus, high oxygen exposure led to a decrease in the number of proliferating (Ki67(+)) cells and the number of Ki67(+) cells double staining for nestin (immature neurons), doublecortin (progenitors), and NeuN (mature neurons). Absolute numbers of nestin(+), doublecortin(+), and NeuN(+) cells also decreased after hyperoxia. This was mirrored in a decline of transcription factors expressed in immature neurons (Pax6, Sox2), progenitors (Tbr2), and mature neurons (Prox1, Tbr1). Administration of a single dose of caffeine (10mg/kg) before high oxygen exposure almost completely prevented these effects. Our findings suggest that caffeine exerts protection for neonatal neurons exposed to high oxygen, possibly via its antioxidant capacity.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany.
| | - Irina Zaak
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Ulrike Weichelt
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| |
Collapse
|
17
|
Tribl F, Meyer HE, Marcus K. Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Rev Proteomics 2014; 5:333-51. [DOI: 10.1586/14789450.5.2.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
|
19
|
Porzionato A, Macchi V, Zaramella P, Sarasin G, Grisafi D, Dedja A, Chiandetti L, De Caro R. Effects of postnatal hyperoxia exposure on the rat dentate gyrus and subventricular zone. Brain Struct Funct 2013; 220:229-47. [PMID: 24135771 DOI: 10.1007/s00429-013-0650-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Abstract
Premature newborns may be exposed to hyperoxia in the first postnatal period, but clinical and experimental works have raised the question of oxygen toxicity for the developing brain. However, specific analysis of hyperoxia exposure on neurogenesis is still lacking. Thus, the aim of the present study was to evaluate possible changes in the morphometric parameters of the main neurogenic sites in newborn rats exposed to 60 or 95 % oxygen for the first 14 postnatal days. The optical disector, a morphometric method based upon unbiased sampling principles of stereology, was applied to analyse cell densities, total volumes, and total cell numbers of the dentate gyrus (DG) and subventricular zone (SVZ). Apoptosis and proliferation were also studied by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling method and anti-ki67 immunohistochemistry, respectively. Severe hyperoxia increased the percentage of apoptotic cells in the DG. Moderate and severe hyperoxia induced a proliferative response both in the DG and SVZ, but the two neurogenic sites showed different changes in their morphometric parameters. The DG of both the hyperoxic groups showed lower volume and total cell number than that of the normoxic one. Conversely, the SVZ of newborn rats exposed to 95 % hyperoxia showed statistically significant higher volume and total cell number than SVZ of rats raised in normoxia. Our findings indicate that hyperoxia exposure in the first postnatal period affects both the neurogenic areas, although in different ways, i.e. reduction of DG and expansion of SVZ.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Via A Gabelli 65, 35127, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Døhlen G, Antal EA, Castellheim A, Thaulow E, Kielland A, Saugstad OD. Hyperoxic resuscitation after hypoxia-ischemia induces cerebral inflammation that is attenuated by tempol in a reporter mouse model with very young mice. J Perinat Med 2013; 41:251-7. [PMID: 23241583 DOI: 10.1515/jpm-2012-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxygen supplementation is still part of international resuscitation protocols for premature children. Mechanisms for tissue damage by hypoxia/ischemia in the extreme premature involve inflammation. AIM AND METHOD To study cerebral inflammation after hypoxia/ischemia and oxygen treatment in the premature, we measured NF-κB activity in 5-day-old transgenic reporter mice in response to experimental hypoxia/ischemia. results were correlated to cerebral histological evaluation and plasma cytokine levels. A treatment strategy with the antioxidant tempol was tested. RESULTS One day after hypoxia/ischemia NF-κB activation was increased compared to controls [mean difference: 10.6±4.6% (P=0.03)]. Exposure to 100% oxygen after hypoxia/ischemia further increased NF-κB activation compared to hypoxia/ischemia alone [mean difference: 15.0±5.5% (P=0.01)]. Histological changes in the brain were positively correlated with NF-κB activity (P<0.001), but we found no significant difference in tissue damage between resuscitation with air and resuscitation with pure oxygen. Administration of tempol reduced NF-κB activation [mean difference: 14.6±5.0% (P=0.01)] and the plasma level of cytokines; however, the histological damage score was not affected. CONCLUSION Cerebral inflammatory response after hypoxia/ischemia in a mouse model with immature brain development corresponding to human prematurity prior to 32 weeks' gestation was influenced by administration of oxygen. Tempol treatment attenuated inflammation but did not reduce the extent of histological cerebral damage.
Collapse
Affiliation(s)
- Gaute Døhlen
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
Sifringer M, Bendix I, von Haefen C, Endesfelder S, Kalb A, Bührer C, Felderhoff-Mueser U, Spies CD. Oxygen toxicity is reduced by acetylcholinesterase inhibition in the developing rat brain. Dev Neurosci 2013; 35:255-64. [PMID: 23445753 DOI: 10.1159/000346723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
The cholinergic anti-inflammatory pathway is a neural mechanism that suppresses the innate inflammatory response and controls inflammation employing acetylcholine as the key endogenous mediator. In this study, we investigated the effects of the cholinergic agonists, physostigmine and donepezil, on neurodegeneration, inflammation and oxidative stress during oxygen toxicity in the developing rat brain. The aim of this study was to investigate the level of neurodegeneration, expression of proinflammatory cytokines, glutathione and lipid peroxidation after hyperoxia and treatment with the acetylcholinesterase (AChE) inhibitors, physostigmine and donepezil in the brain of neonatal rats. Six-day-old Wistar rats were exposed to 80% oxygen for 12-24 h and received 100 μg/kg physostigmine or 200 μg/kg donepezil intraperitoneally. Sex-matched littermates kept in room air and injected with normal saline, physostigmine or donepezil served as controls. Treatment with both inhibitors significantly reduced hyperoxia-triggered activity of AChE, neural cell death and the upregulation of the proinflammatory cytokines IL-1β and TNF-α in the immature rat brain on the mRNA and protein level. In parallel, hyperoxia-induced oxidative stress was reduced by concomitant physostigmine and donepezil administration, as shown by an increased reduced/oxidized glutathione ratio and attenuated malondialdehyde levels, as a sign of lipid peroxidation. Our results suggest that a single treatment with AChE inhibitors at the beginning of hyperoxia attenuated the detrimental effects of oxygen toxicity in the developing brain and may pave the way for AChE inhibitors, which are currently used for the treatment of Alzheimer's disease, as potential candidates for adjunctive neuroprotective therapies to the immature brain.
Collapse
Affiliation(s)
- Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Konsavage WM, Umstead TM, Wu Y, Phelps DS, Shenberger JS. Hyperoxia-induced alterations in the pulmonary proteome of juvenile rats. Exp Lung Res 2013; 39:107-17. [DOI: 10.3109/01902148.2013.763871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Abstract
As recently as the year 2000, 100% oxygen was recommended to begin resuscitation of depressed newborns in the delivery room. However, the most recent recommendations of the International Liaison Committee on Resuscitation counsel the prudent use of oxygen during resuscitation. In term and preterm infants, oxygen therapy should be guided by pulse oximetry that follows the interquartile range of preductal saturations of healthy term babies after vaginal birth at sea level. This article reviews the literature in this context, which supports the radical but judicious curtailment of the use of oxygen in resuscitation at birth.
Collapse
Affiliation(s)
- Jay P Goldsmith
- Department of Pediatrics, Tulane University, 1430 Tulane Avenue, SL37, New Orleans, LA 70112, USA.
| | | |
Collapse
|
24
|
Lentivirus-mediated silencing of I2PP2A through RNA interference attenuates trichloroethylene-induced cytotoxicity in human hepatic L-02 cells. Toxicol Lett 2012; 209:232-8. [DOI: 10.1016/j.toxlet.2011.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 12/31/2022]
|
25
|
Wise-Faberowski L, Loepke A. Anesthesia during surgical repair for congenital heart disease and the developing brain: neurotoxic or neuroprotective? Paediatr Anaesth 2011; 21:554-9. [PMID: 21481079 DOI: 10.1111/j.1460-9592.2011.03586.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lisa Wise-Faberowski
- Department of Anesthesiology, Stanford University Medical Center, Lucile Packard Children’s Hospital, Palo Alto, CA 94305, USA.
| | | |
Collapse
|
26
|
Abstract
The developing brain is particularly vulnerable to reactive oxygen and reactive nitrogen species-mediated damage because of its high concentrations of unsaturated fatty acids, high rate of oxygen consumption, low concentrations of antioxidants, high content of metals catalyzing free radical formation, and large proportion of sensitive immature cells. In this review, we outline the dynamic changes of energy resources, metabolic requirements, and endogenous free radical scavenging systems during physiologic brain development. We further discuss the involvement of oxidative stress in the pathogenesis of neuronal death after exposure of the infant brain to hyperoxia, hypoxia/ischemia, sedative drugs, ethanol, and mechanical trauma. Several approaches have been developed to combat oxidative stress, but neuroprotective treatment strategies are limited in the clinical setting.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | |
Collapse
|
27
|
Puccio AM, Hoffman LA, Bayir H, Zullo TG, Fischer M, Darby J, Alexander S, Dixon CE, Okonkwo DO, Kochanek PM. Effect of short periods of normobaric hyperoxia on local brain tissue oxygenation and cerebrospinal fluid oxidative stress markers in severe traumatic brain injury. J Neurotrauma 2010; 26:1241-9. [PMID: 19505175 DOI: 10.1089/neu.2008.0624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Preliminary evidence suggests local brain tissue oxygenation (PbtO(2)) values of <or=15 mm Hg following severe traumatic brain injury (TBI) represent brain tissue hypoxia. Accordingly, many neurotrauma units attempt to maintain PbtO(2) >or=20 mm Hg to avoid hypoxia. This study tested the impact of a short (2 h) trial of normobaric hyperoxia on measures of oxidative stress. We hypothesized this treatment would positively affect cerebral oxygenation but negatively affect the cellular environment via oxidative stress mechanisms. Cerebrospinal fluid (CSF) was serially assessed in 11 adults (9 male, 2 female), aged 26 +/- 1.8 years with severe TBI (Glasgow Coma Scale score, 6 +/- 1.4) before, during, and after a FiO(2) = 1.0 challenge for markers of oxidative stress, including lipid peroxidation (F(2)-isoprostane [ELISA]), protein oxidation (protein sulfhydryl [fluorescence]), and antioxidant defenses (total antioxidant reserve (AOR) [chemiluminescence] and glutathione [fluorescence]). Physiological parameters [PbtO(2), arterial oxygen content (PaO(2)), intracranial pressure (ICP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP)] were assessed at the same time points. Mean (+/-SD) PbtO(2) and PaO(2) levels significantly changed for each time point. Oxidative stress markers, antioxidant reserve defenses, and ICP, MAP, and CPP did not significantly change for any time period. These preliminary findings suggest that brief periods of normobaric hyperoxia do not produce oxidative stress and/or change antioxidant reserves in CSF. Additional studies are required to examine extended periods of normobaric hyperoxia in a larger sample.
Collapse
Affiliation(s)
- Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gutierrez S, Carnes A, Finucane B, Musci G, Oelsner W, Hicks L, Russell GB, Liu C, Turner CP. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature? Neuroscience 2010; 168:253-62. [PMID: 20298758 DOI: 10.1016/j.neuroscience.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature.
Collapse
Affiliation(s)
- S Gutierrez
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009; 10:635-46. [DOI: 10.1038/nrn2701] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Abstract
Apoptosis occurs physiologically in the mammalian brain during the period of the growth spurt, which in human starts in the 3rd trimester of gestation and ends by the third year of life. Environmental factors can interact with programmed cell death mechanisms to increase the number of neurons undergoing apoptosis and thus produce neuropathological sequelae in the brain. In a series of studies it could be shown that classes of drugs which block N-methyl-D-aspartate (NMDA) glutamate receptors, promote gamma-aminobutyric-acid (GABA(A)) receptor activation or block voltage gated sodium channels, when administered to immature rodents during the period of the brain growth spurt, trigger widespread apoptotic neurodegeneration throughout the developing brain. Studies have also shown that short exposures to non-physiologic oxygen levels can trigger apoptotic neurodegeneration in the brains of infant rodents. Pathomechanisms involved in the proapoptotic action of sedative and anticonvulsant drugs and oxygen include decreased expression of neurotrophins, inactivation of survival signaling proteins, activation of inflammatory cytokines as well as oxidative stress. These findings raise concerns pertaining to the treatment of infants and young children with sedative and anticonvulsant drugs and premature infants with oxygen. The experimental findings imply that new approaches should be developed for patients within these vulnerable age groups.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Pediatric Neurology, University Children's Hospital Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
31
|
Nebrich G, Herrmann M, Hartl D, Diedrich M, Kreitler T, Wierling C, Klose J, Giavalisco P, Zabel C, Mao L. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics. Proteomics 2009; 9:1795-808. [DOI: 10.1002/pmic.200800522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
D'Agostino DP, Olson JE, Dean JB. Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells. Neuroscience 2009; 159:1011-22. [PMID: 19356685 DOI: 10.1016/j.neuroscience.2009.01.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
Abstract
Atomic force microscopy (AFM), malondialdehyde (MDA) assays, and amperometric measurements of extracellular hydrogen peroxide (H(2)O(2)) were used to test the hypothesis that graded hyperoxia induces measurable nanoscopic changes in membrane ultrastructure and membrane lipid peroxidation (MLP) in cultured U87 human glioma cells. U87 cells were exposed to 0.20 atmospheres absolute (ATA) O(2), normobaric hyperoxia (0.95 ATA O(2)) or hyperbaric hyperoxia (HBO(2), 3.25 ATA O(2)) for 60 min. H(2)O(2) (0.2 or 2 mM; 60 min) was used as a positive control for MLP. Cells were fixed with 2% glutaraldehyde immediately after treatment and scanned with AFM in air or fluid. Surface topography revealed ultrastructural changes such as membrane blebbing in cells treated with hyperoxia and H(2)O(2). Average membrane roughness (R(a)) of individual cells from each group (n=35 to 45 cells/group) was quantified to assess ultrastructural changes from oxidative stress. The R(a) of the plasma membrane was 34+/-3, 57+/-3 and 63+/-5 nm in 0.20 ATA O(2), 0.95 ATA O(2) and HBO(2), respectively. R(a) was 56+/-7 and 138+/-14 nm in 0.2 and 2 mM H(2)O(2). Similarly, levels of MDA were significantly elevated in cultures treated with hyperoxia and H(2)O(2) and correlated with O(2)-induced membrane blebbing (r(2)=0.93). Coapplication of antioxidant, Trolox-C (150 microM), significantly reduced membrane R(a) and MDA levels during hyperoxia. Hyperoxia-induced H(2)O(2) production increased 189%+/-5% (0.95 ATA O(2)) and 236%+/-5% (4 ATA O(2)) above control (0.20 ATA O(2)). We conclude that MLP and membrane blebbing increase with increasing O(2) concentration. We hypothesize that membrane blebbing is an ultrastructural correlate of MLP resulting from hyperoxia. Furthermore, AFM is a powerful technique for resolving nanoscopic changes in the plasma membrane that result from oxidative damage.
Collapse
Affiliation(s)
- D P D'Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, College of Medicine, MDC 8, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | |
Collapse
|
33
|
Kaindl AM, Sifringer M, Koppelstaetter A, Genz K, Loeber R, Boerner C, Stuwe J, Klose J, Felderhoff-Mueser U. Erythropoietin protects the developing brain from hyperoxia-induced cell death and proteome changes. Ann Neurol 2009; 64:523-34. [PMID: 19067366 DOI: 10.1002/ana.21471] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Oxygen toxicity has been identified as a risk factor for adverse neurological outcome in survivors of preterm birth. In infant rodent brains, hyperoxia induces disseminated apoptotic neurodegeneration. Because a tissue-protective effect has been observed for recombinant erythropoietin (rEpo), widely used in neonatal medicine for its hematopoietic effect, we examined the effect of rEpo on hyperoxia-induced brain damage. METHODS Six-day-old C57Bl/6 mice or Wistar rats were exposed to hyperoxia (80% O(2)) or normoxia for 24 hours and received rEpo or normal saline injections intraperitoneally. The amount of degenerating cells in their brains was determined by DeOlmos cupric silver staining. Changes of their brain proteome were determined through two-dimensional electrophoresis and mass spectrometry. Western blot, enzyme activity assays and real-time polymerase chain reaction were performed for further analysis of candidate proteins. RESULTS Systemic treatment with 20,000 IE/kg rEpo significantly reduced hyperoxia-induced apoptosis and caspase-2, -3, and -8 activity in the brains of infant rodents. In parallel, rEpo inhibited most brain proteome changes observed in infant mice when hyperoxia was applied exclusively. Furthermore, brain proteome changes after a single systemic rEpo treatment point toward a number of mechanisms through which rEpo may generate its protective effect against oxygen toxicity. These include reduction of oxidative stress and restoration of hyperoxia-induced increased levels of proapoptotic factors, as well as decreased levels of neurotrophins. INTERPRETATION These findings are highly relevant from a clinical perspective because oxygen administration to neonates is often inevitable, and rEpo may serve as an adjunctive neuroprotective therapy.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Refining the role of oxygen administration during delivery room resuscitation: what are the future goals? Semin Fetal Neonatal Med 2008; 13:368-74. [PMID: 18485848 DOI: 10.1016/j.siny.2008.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen was discovered more than 200 years ago and was thought to be both essential and beneficial for all animal life. Although it is now over 100 years since oxygen was first shown to damage biological tissues exposed to high concentrations, and more than 50 years since it was implicated in the aetiology of retinopathy of prematurity, the use of 100% oxygen was still recommended for the resuscitation of all babies at birth as recently as 2000. However, the 2005 International Liaison Committee on Resuscitation (ILCOR) recommendations allow for the initiation of resuscitation with concentrations of oxygen between 21 and 100%. There are strong arguments in favour of a radical curtailment of the use of oxygen in resuscitation at birth, and for devoting resources to defining the margins of safety for its use in the neonatal period in general.
Collapse
|
35
|
Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Kläre Y, Koppelstätter A, Nebrich G, Klein O, Grams S, Strand A, Luthi-Carter R, Hartl D, Klose J, Bates GP. A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics 2008; 8:720-34. [PMID: 19043139 DOI: 10.1074/mcp.m800277-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is fatal in humans within 15-20 years of symptomatic disease. Although late stage HD has been studied extensively, protein expression changes that occur at the early stages of disease and during disease progression have not been reported. In this study, we used a large two-dimensional gel/mass spectrometry-based proteomics approach to investigate HD-induced protein expression alterations and their kinetics at very early stages and during the course of disease. The murine HD model R6/2 was investigated at 2, 4, 6, 8, and 12 weeks of age, corresponding to absence of disease and early, intermediate, and late stage HD. Unexpectedly the most HD stage-specific protein changes (71-100%) as well as a drastic alteration (almost 6% of the proteome) in protein expression occurred already as early as 2 weeks of age. Early changes included mainly the up-regulation of proteins involved in glycolysis/gluconeogenesis and the down-regulation of the actin cytoskeleton. This suggests a period of highly variable protein expression that precedes the onset of HD phenotypes. Although an up-regulation of glycolysis/gluconeogenesis-related protein alterations remained dominant during HD progression, late stage alterations at 12 weeks showed an up-regulation of proteins involved in proteasomal function. The early changes in HD coincide with a peak in protein alteration during normal mouse development at 2 weeks of age that may be responsible for these massive changes. Protein and mRNA data sets showed a large overlap on the level of affected pathways but not single proteins/mRNAs. Our observations suggest that HD is characterized by a highly dynamic disease pathology not represented by linear protein concentration alterations over the course of disease.
Collapse
Affiliation(s)
- Claus Zabel
- Institute for Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
D'Agostino DP, Colomb DG, Dean JB. Effects of hyperbaric gases on membrane nanostructure and function in neurons. J Appl Physiol (1985) 2008; 106:996-1003. [PMID: 18818382 DOI: 10.1152/japplphysiol.91070.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This mini-review summarizes current ideas of how hyperbaric gases (>1-10 atmospheres absolute) affect neuronal mechanisms of excitability through molecular interaction with membrane components. The dynamic nature of the lipid bilayer, its resident proteins, and the underlying cytoskeleton make each respective nanostructure a potential target for modulation by hyperbaric gases. Depending on the composition of the gas mixture, the relative concentrations of O(2) and inert gas, and total barometric pressure, the net effect of a particular gas on the cell membrane will be determined by the gas' 1) lipid solubility, 2) ability to oxidize lipids and proteins (O(2)), and 3) capacity, in the compressed state, to generate localized shear and strain forces between various nanostructures. A change in the properties of any one membrane component is anticipated to change conductance of membrane-spanning ion channels and thus neuronal function.
Collapse
Affiliation(s)
- Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, College of Medicine, University of South Florida, Tampa 33612, USA
| | | | | |
Collapse
|
37
|
Kaindl AM, Koppelstaetter A, Nebrich G, Stuwe J, Sifringer M, Zabel C, Klose J, Ikonomidou C. Brief alteration of NMDA or GABAA receptor-mediated neurotransmission has long term effects on the developing cerebral cortex. Mol Cell Proteomics 2008; 7:2293-310. [PMID: 18587059 DOI: 10.1074/mcp.m800030-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurotransmitter signaling is essential for physiologic brain development. Sedative and anticonvulsant agents that reduce neuronal excitability via antagonism at N-methyl-D-aspartate receptors (NMDARs) and/or agonism at gamma-aminobutyric acid subtype A receptors (GABA(A)Rs) are applied frequently in obstetric and pediatric medicine. We demonstrated that a 1-day treatment of infant mice at postnatal day 6 (P6) with the NMDAR antagonist dizocilpine or the GABA(A)R agonist phenobarbital not only has acute but also long term effects on the cerebral cortex. Changes of the cerebral cortex proteome 1 day (P7), 1 week (P14), and 4 weeks (P35) following treatment at P6 suggest that a suppression of synaptic neurotransmission during brain development dysregulates proteins associated with apoptosis, oxidative stress, inflammation, cell proliferation, and neuronal circuit formation. These effects appear to be age-dependent as most protein changes did not occur in mice subjected to such pharmacological treatment in adulthood. Previously performed histological evaluations of the brains revealed widespread apoptosis and decreased cell proliferation following such a drug treatment in infancy and are thus consistent with brain protein changes reported in this study. Our results point toward several pathways modulated by a reduction of neuronal excitability that might interfere with critical developmental events and thus affirm concerns about the impact of NMDAR- and/or GABA(A)R-modulating drugs on human brain development.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Institute of Human Genetics, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Lee JK, Shin JH, Suh J, Choi IS, Ryu KS, Gwag BJ. Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis 2008; 30:174-85. [PMID: 18316197 DOI: 10.1016/j.nbd.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 12/01/2007] [Accepted: 01/08/2008] [Indexed: 01/16/2023] Open
Abstract
Cortical neurons deprived of serum undergo apoptosis that is sensitive to inhibitors of macromolecule synthesis. Proteomic analysis revealed differential expression of 49 proteins in cortical neurons 8 h after serum deprivation. Tissue inhibitor of metalloproteinases-3 (TIMP-3), a pro-apoptotic protein in various cancer cells, was increased during serum deprivation-induced apoptosis (SDIA), but not during necrosis induced by excitotoxicity or oxidative stress. Levels of TIMP-3 were markedly increased in degenerating motor neurons in a transgenic model of familial amyotrophic lateral sclerosis. The TIMP-3 expression was accompanied by increase in Fas-FADD interaction, activated caspase-8, and caspase-3 during SDIA and in vulnerable spinal cord of the ALS mouse. SDIA and activation of the Fas pathway were prevented by addition of an active MMP-3. Timp-3 deletion by RNA interference attenuated SDIA in N2a cells. These findings provide evidence that TIMP-3 is an upstream mediator of neuronal apoptosis and likely contributes to neuronal loss in neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jae Keun Lee
- Research Institute for Neural Science and Technology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Sedowofia K, Giles D, Wade J, Cunningham S, McColm JR, Minns R, McIntosh N. Myelin expression is altered in the brains of neonatal rats reared in a fluctuating oxygen atmosphere. Neonatology 2008; 94:113-22. [PMID: 18332640 DOI: 10.1159/000119721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preterm infants receiving supplemental oxygen therapy experience frequent fluctuations in their blood oxygen levels, the magnitude of which has been associated with the incidence and severity of retinopathy of prematurity in such infants. OBJECTIVE Our objective was to investigate in a relevant animal model whether the immature brain with its poorly vascularised white matter might also be susceptible to injury when exposed to such fluctuations in blood oxygen. METHODS Newborn rats were reared in an atmosphere in which a computer reproduced the oxygen fluctuations derived from the transcutaneous oxygen levels of a 24-week preterm infant who had developed severe retinopathy. Following 14 days of exposure, we measured the expression of active caspase-3, myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in the brains comparing with rat pups raised in room air. RESULTS Compared to room air controls, at day 14, the expression of active caspase-3 was increased by up to 162% (significant increase in 7 of 9 regions), MBP decreased by up to 70% (significant in the hypothalamus only) and GFAP increased by up to 103% (significant in 6 of 7 regions. On day 21, following 7 days of reparative recovery, GFAP levels in most areas of oxygen-exposed brains had returned to near control levels. There were no longer significant differences in caspase-3 levels apart from the cerebral cortex, cerebellum and striatum. In contrast, MBP expression was now much higher in most regions of the treated brains compared to controls. CONCLUSION We conclude that fluctuations in blood oxygen, observed in preterm survivors, may constitute a source of injury to the white matter and corpus striatum of the developing brain and contribute to the neurological sequelae in extremely premature infants.
Collapse
Affiliation(s)
- Kofi Sedowofia
- Child Life and Health Section, Division of Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Kaindl AM, Zabel C, Stefovska V, Lehnert R, Sifringer M, Klose J, Ikonomidou C. Subacute proteome changes following traumatic injury of the developing brain: Implications for a dysregulation of neuronal migration and neurite arborization. Proteomics Clin Appl 2007; 1:640-9. [PMID: 21136719 DOI: 10.1002/prca.200600696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among children and adolescents. To gain insight into developmental events influenced by TBI, we analyzed subacute mouse brain proteome changes in a percussion head trauma model at P7 ipsi- and contralateral to the site of injury. The comparison of brain proteomes of trauma mice and controls revealed reproducible changes in the intensity of 28 proteins (30 protein spots) in response to trauma. The changes detected suggest that TBI leads to apoptosis, inflammation, and oxidative stress. These changes were consistent with our results of histological and biochemical evaluation of the brains which revealed widespread apoptotic neurodegeneration, microglia activation, and increased levels of protein carbonyls. Furthermore, we detected changes in proteins involved in neuronal migration as well as axonal and dendritic growth and guidance, suggesting interference of trauma with these developmental events.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Institute of Human Genetics, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Department of Pediatric Neurology, University Childrens' Hospital, Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
McGinnis WR. Could oxidative stress from psychosocial stress affect neurodevelopment in autism? J Autism Dev Disord 2007; 37:993-4. [PMID: 17404828 DOI: 10.1007/s10803-007-0372-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
|
43
|
Ratner V, Kishkurno SV, Slinko SK, Sosunov SA, Sosunov AA, Polin RA, Ten VS. The contribution of intermittent hypoxemia to late neurological handicap in mice with hyperoxia-induced lung injury. Neonatology 2007; 92:50-8. [PMID: 17596736 DOI: 10.1159/000100086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 11/15/2006] [Indexed: 11/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is considered by many to be an independent risk factor for poor neurodevelopment in premature infants. However, infants with BPD experience intermittent hypoxic episodes. This study was undertaken to determine whether intermittent hypoxic stress associated with BPD contributes to the development of neurological deficit. The model of BPD was produced in neonatal mice by exposure to hyperoxia (65% O(2)) for 4 weeks. Arterial blood gases, pulmonary mechanics, and histopathology were used to define the degree of lung injury. The mice were subjected to brief (10 min/day) and intermittent (10 days) hypoxic stress (8% O(2)) at different stages of the development of hyperoxia-induced lung injury. At 8 weeks of life, the neurofunction was assessed by water maze and rota-rod tests followed by cerebral morphological analysis using Nissl, bromodeoxyuridine, and caspase-3 immunostaining. Data were compared to naïve normoxic littermates and those mice that were exposed only to hyperoxia or intermittent hypoxia alone. Mice with BPD subjected to brief/intermittent hypoxia demonstrated a significantly poorer navigational memory performance as compared with normoxic mice and mice with BPD that were not subjected to intermittent hypoxia. The neurofunctional handicap in these mice was associated with significantly decreased brain weight and increased cerebral expression of caspase-3. Our results suggest that intermittent hypoxia associated with hyperoxia-induced lung injury, but not lung injury itself, results in significant neurological handicap in neonatal mice with BPD.
Collapse
Affiliation(s)
- Veniamin Ratner
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Seefeldt I, Nebrich G, Römer I, Mao L, Klose J. Evaluation of 2-DE protein patterns from pre- and postnatal stages of the mouse brain. Proteomics 2006; 6:4932-9. [PMID: 16912972 DOI: 10.1002/pmic.200600188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brains of the mouse from three developmental stages, embryo day 16 (Ed16), postnatal stage one week (1W) and eight weeks (8W), were distributed to different laboratories for a collaborative proteome analysis (The Human Brain Proteome Project). As one of the laboratories involved in this project, we separated total protein extracts of the brains by large gel 2-DE. From the 2-DE protein patterns a section was evaluated for each of the three stages according to resolution, reproducibility and quantitative changes using an image analysis software. The evaluated pattern section was selected to allow comparisons of 2-DE patterns between different laboratories on the basis of optimum separation. Changes in protein expression were analysed within two phases of development: Stage Ed16 versus stage 1W and stage 1W versus stage 8W. Out of the 200 protein spots evaluated 5-6% showed quantitative changes in the range of > or = 30% between two stages. The relationship in the frequency of up- and down-regulated protein spots differed between the two investigated phases. Most of the protein spots which showed altered expression between two stages were identified by MS. High quality in protein separation and evaluation is demonstrated.
Collapse
Affiliation(s)
- Ingo Seefeldt
- Institut für Humangenetik, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm (Vienna) 2006; 113:1041-54. [PMID: 16835691 DOI: 10.1007/s00702-006-0513-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
Proteomics is a promising approach, which provides information about the expression of proteins and increasingly finds application in life science and disease research. Meanwhile, proteomics has proven to be applicable even on post mortem human brain tissue and has opened a new area in neuroproteomics. Thereby, neuroproteomics is usually employed to generate large protein profiles of brain tissue, which mostly reflect the expression of highly abundant proteins. As a complementary approach, the focus on sub-proteomes would enhance more specific insight into brain function. Sub-proteomes are accessible via several strategies, including affinity pull-down approaches, immunoprecipitation or subcellular fractionation. The extraordinary potential of subcellular proteomics to reveal even minute differences in the protein constitution of related cellular organelles is exemplified by a recent global description of neuromelanin granules from the human brain, which could be identified as pigmented lysosome-related organelles.
Collapse
Affiliation(s)
- F Tribl
- The National Parkinson Foundation (NPF) Research Laboratories, Miami, FL, USA.
| | | | | | | | | | | |
Collapse
|