1
|
Bibi A, Ali F, Ghanzanfar S, Almajwal A, Razak S, Afsar T, Ahmed S, Shakeela Q, Ahmad S. Identification and molecular characterization of potential probiotic subspecies of Bacillus tequilensis isolated from the gut of Masheer fish, using 16S rRNA gene sequencing. BRAZ J BIOL 2024; 84:e281903. [PMID: 39607252 DOI: 10.1590/1519-6984.281903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024] Open
Abstract
Over the past few decades, there has been increasing interest in using probiotics as an alternative to antibiotics. Researchers have conducted studies to investigate bacterial strains for their probiotic potential. Like other animals, fish also have several bacterial strains in their gut that possess probiotic properties, although this is limited to Bacillus species. Therefore, this study aimed to isolate and characterize probiotic Bacillus species from the gut of Masheer fish (Tor Puititora). Four pure bacterial isolates were selected as potential probiotic strains based on selection criteria, including survival rate in acid and bile salt. The isolates exhibited significant antimicrobial activity against pathogenic bacteria, including Escherichia coli (ATCC8739), Pseudomonas aeruginosa (ATCC9027), and Staphylococcus aureus (ATCC6538). MF2 and MF3 demonstrated clear zones, including antimicrobial activity against all three indicator pathogens. MF1 and MF4 exhibited antimicrobial activity against E. coli (ATCC8739) and P. aeruginosa (ATCC9027). Furthermore, the 16S rRNA gene sequences of all isolates exhibited a close association with Bacillus tequilensis (KCTC13622), with nucleotide similarity of 98.63%, 98.25%, 98.80%, and 98.35%, respectively. Our results demonstrate that these bacterial isolates show promise as an alternative to antibiotics in the fisheries food system. In this study, all isolates identified in the fish gut were subspecies of B. tequilensis.
Collapse
Affiliation(s)
- A Bibi
- Anhui Medical University, The First Affiliated Hospital, School of Basic Medical Sciences, Department of Clinical Laboratory Diagnostics, The Key Laboratory of Microbiology and Parasitology Anhui, Hefei, China
- Hazara University, Department of Microbiology, Mansehra, KP, Pakistan
| | - F Ali
- Chinese Academy of Sciences, Institute of Microbiology, State Key Laboratory of Microbial Resources, Beijing, China
- University of Chinse Academy of Sciences, College of Life Sciences, Beijing, China
| | - S Ghanzanfar
- National University of Medical Science, Department of Biological Sciences, Rawalpindi, Pakistan
| | - A Almajwal
- King Saud University, College of Applied Medical Sciences, Department of Community Health Sciences, Riyadh, Saudi Arabia
| | - S Razak
- King Saud University, College of Applied Medical Sciences, Department of Community Health Sciences, Riyadh, Saudi Arabia
| | - T Afsar
- King Saud University, College of Applied Medical Sciences, Department of Community Health Sciences, Riyadh, Saudi Arabia
| | - S Ahmed
- Hazara University, Department of Microbiology, Mansehra, KP, Pakistan
| | - Q Shakeela
- Abbottabad University of Science and Technology, Department of Microbiology, Abbottabad, KP, Pakistan
| | - S Ahmad
- University of Swabi, Department of Microbiology, Swabi, KP, Pakistan
| |
Collapse
|
2
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [DOI: doi.org/10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
|
5
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [PMID: 37737196 DOI: 10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to explore the effects of Lactobacillus rhamnosus GG (LGG) supplementation on the growth performance, immune function, and antioxidant capacity of foals. Fifteen newborn foals with similar birth weight (51.67 ± 6.07 kg) and good health were randomly assigned to three groups: control group and test groups I and II, which were supplemented with 5.0 × 109 CFU/day and 1.0 × 1010 CFU/day LGG, respectively, for 150 days. LGG intake increased the daily body height (P < .01) and weight (P < .01) gain of foals aged 120 to 150 days. The foals' IgA (P < .05) and IgG (P < .01) plasma levels increased at 30 and 150 days, respectively, and IL-6 plasma level increased at 90 days (P < .01). Plasma total antioxidant capacity level was significantly higher in test group I than in the control and test group II at 30 days (P < .01), whereas glutathione peroxidase level was significantly higher in test group II than in the control and test group I at 30 days (P < .01). Both test groups had significantly higher superoxide dismutase level than the control group (P < .01) and significantly decreased malondialdehyde plasma level at 90 and 150 days (P < .05). Overall, our findings indicate that dietary supplementation of LGG can improve the growth performance, immune function, and antioxidant capacity of newborn foals.
Collapse
Affiliation(s)
- Jian Shi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xinxin Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuhui Ma
- Zhaosu animal Husbandry and Veterinary Development Center, Yili, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
6
|
Monzón-Atienza L, Bravo J, Serradell A, Montero D, Gómez-Mercader A, Acosta F. Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals (Basel) 2023; 13:2369. [PMID: 37508146 PMCID: PMC10376171 DOI: 10.3390/ani13142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
European sea bass production has increased in recent decades. This increase is associated with an annually rising demand for sea bass, which encourages the aquaculture industries to increase their production to meet that demand. However, this intensification has repercussions on the animals, causing stress that is usually accompanied by dysbiosis, low feed-conversion rates, and immunodepression, among other factors. Therefore, the appearance of pathogenic diseases is common in these industries after immunodepression. Seeking to enhance animal welfare, researchers have focused on alternative approaches such as probiotic application. The use of probiotics in European sea bass production is presented as an ecological, safe, and viable alternative in addition to enhancing different host parameters such as growth performance, feed utilization, immunity, disease resistance, and fish survival against different pathogens through inclusion in fish diets through vectors and/or in water columns. Accordingly, the aim of this review is to present recent research findings on the application of probiotics in European sea bass aquaculture and their effect on growth performance, microbial diversity, enzyme production, immunity, disease resistance, and survival in order to help future research.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Gómez-Mercader
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
7
|
Werawatganon D, Vivatvakin S, Somanawat K, Tumwasorn S, Klaikeaw N, Siriviriyakul P, Chayanupatkul M. Effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. BMC Complement Med Ther 2023; 23:166. [PMID: 37217916 DOI: 10.1186/s12906-023-03998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Severe acute pancreatitis is a potentially life-threatening disease. Despite being a common disorder, acute pancreatitis lacks a specific treatment. The present study aimed to examine the effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. METHODS Male ICR mice were randomly divided into 4 groups (n = 6 per group). The control group received two intraperitoneal (i.p.) injections of normal saline as a vehicle control. The acute pancreatitis (AP) group received two i.p. injections of L-arginine 450 mg/100 g body weight. AP plus probiotics groups received L-arginine to induce acute pancreatitis as above. In the single-strain and mixed-strain groups, mice received 1 mL of Lactobacillus plantarum B7 1 × 108 CFU/mL and 1 mL of Lactobacillus rhamnosus L34 1 × 108 CFU/mL and Lactobacillus paracasei B13 1 × 108 CFU/mL by oral gavage, respectively for 6 days starting 3 days prior to the AP induction. All mice were sacrificed 72 h after L-arginine injection. Pancreatic tissue was obtained for histological evaluation and immunohistochemical studies for myeloperoxidase, whereas ileal tissue was used for immunohistochemical studies for occludin, and claudin-1. Blood samples were collected for amylase analysis. RESULTS Serum amylase levels and pancreatic myeloperoxidase levels in the AP group were significantly higher than in controls and significantly decreased in probiotic groups compared with the AP group. Ileal occludin and claudin-1 levels were significantly lower in the AP group than in controls. Ileal occludin levels significantly increased, whereas ileal claudin-1 levels did not significantly change in both probiotic groups as compared with the AP group. The pancreatic histopathology showed significantly higher degree of inflammation, edema, and fat necrosis in the AP group, and these changes improved in mixed-strained probiotic groups. CONCLUSIONS Probiotics, particularly the mixed-strain ones, attenuated AP via the reduction of inflammation and the maintenance of intestinal integrity.
Collapse
Affiliation(s)
- Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Vivatvakin
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Konstantis G, Efstathiou S, Pourzitaki C, Kitsikidou E, Germanidis G, Chourdakis M. Efficacy and safety of probiotics in the treatment of irritable bowel syndrome: A systematic review and meta-analysis of randomised clinical trials using ROME IV criteria. Clin Nutr 2023; 42:800-809. [PMID: 37031468 DOI: 10.1016/j.clnu.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder which affects a great number of patients globally. Clinical trials and meta-analyses have evaluated different therapies for IBS. Some of them have shown that probiotics play a significant role in the management of IBS-patients. Nevertheless, results are controversial, and the efficacy of the administration of probiotics remains to be confirmed, especially in regard to which type of probiotic-strains are beneficial. AIM The aim of the present meta-analysis is to assess the efficacy and safety of the administration of probiotics to IBS-patients with a diagnosis based on Rome IV criteria, which is performed for the first time. METHODS Electronic databases (Pubmed, Scopus and Cochrane) were searched until 26.01.2023 for randomized controlled trials (RCTs) studying the administration of probiotics in adult IBS-patients, who were categorized according to the Rome IV criteria. The risk of bias was assessed using the Cochrane Risk of Bias tool (ROB) 2.0. Weighted and standardized mean difference with the 95% confidence intervals were used for the synthesis of the results. Primary outcomes were the decrease of IBS-Symptom Severity Score (IBS-SSS) and decrease of abdominal pain. The secondary outcomes were the improvement in quality of life (QoL) and the decrease of bloating. Lastly, the adverse effects of probiotics were evaluated. The protocol of the study has been registered at protocols.io (DOI dx.doi.org/10.17504/protocols.io.14egn218yg5d/v1). RESULTS Six double-blind (N = 970) placebo-control RCTs fulfilled the inclusion criteria and overall, nine different strains of probiotics were examined. No significant reduction in IBS-SSS (WMD -43.2, 95% CI -87.5 to 1.0, I2 = 82.9%) was demonstrated, whereas a significant decrease regarding abdominal pain (SMD -0.94, 95% CI -1.53 to -0.35, I2 = 92,2) was shown. Furthermore, no correlation between improvement of QoL and the use of probiotics (SMD -0.64, 95% CI -1.27 to 0.00, I2 = 93,9%) was shown. However, probiotics were associated with a significant reduction in bloating (SMD -0.28, 95% CI -0.47 to -0.09, I2 = 36,0%). A qualitative synthesis was conducted about adverse events and showed that the use of probiotics' is safe without severe adverse events. CONCLUSIONS The administration of probiotics to IBS-patients demonstrated a positive effect on pain and bloating, but due to significant heterogeneity and confounding factors, that were not examined in the included studies, a definitive statement cannot be made. Moreover, probiotics did not lead to an improvement in other parameters. There is a need for larger RCTs in IBS-patients diagnosed according to Rome IV (not III) criteria and especially it is essential to be conducted RCTs which examine the administration of specific strains and have similar methodological characteristics.
Collapse
Affiliation(s)
- Georgios Konstantis
- Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stylianos Efstathiou
- Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Elisavet Kitsikidou
- Department of Internal Medicine, Evangelical Hospital Dusseldorf, Dusseldorf, Germany
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Skou Hedemann M, Rønn M, Elise van der Heide M, Karlshøj Julegaard I, Olaf Nielsen M. Dietary inclusion of methanotrophic microbial cell-derived protein in the early post-weaning period sustains growth performance and intestinal health of weaner piglets. Animal 2023; 17:100798. [PMID: 37148623 DOI: 10.1016/j.animal.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The global demand for sustainably produced protein feeds for animal production is increasing. Methanotrophic bacteria grow on methane and convert it into microbial cell protein (MCP) that has been shown to have high nutritive value for growing pigs. The present aimed to investigate how increasing amounts of MCP in diets fed during the first 15 days after weaning affect the growth performance of piglets from weaning until day 43 postweaning. Furthermore, the effect of MCP on intestinal morphology and histopathology was assessed on day 15 after weaning. During seven consecutive weeks, approximately 480 piglets were recruited for the experiment per batch. The piglets were divided into four groups and housed in eight double pens with 60 piglets per pen. The piglets were fed one of four experimental diets with 0, 3, 6, or 10% of MCP included at the expense of fishmeal and subsequently potato protein for the first 15 days postweaning. Thereafter, all pigs were fed commercial weaner diets in two phases (days 16-30 and days 31-43) until day 43 postweaning. All diets were without medicinal zinc. Feed intake and growth were registered on double pen level during all three phases. On day 15 after weaning, 10 piglets per treatment were randomly selected, autopsied, and sampled for intestinal morphology and histopathology. Daily gain during the first 15 days postweaning tended (P = 0.09) to be affected by the inclusion of MCP in the weaning diet being lowest in the group fed 10% MCP. Treatment did not affect daily feed intake; however, Feed Conversion Ratio (FCR) was significantly affected (P = 0.003) showing the highest FCR in piglets fed 10% MCP. Growth performance was not affected by the experimental treatment during the following phases. In the small intestine, villous height tended (P = 0.09) to show a quadratic response to level of MCP in the diet with the longest villi observed after feeding 6% MCP. Dietary treatment did not affect crypt depth. The villous height to crypt depth (VC) ratio showed a quadratic response to increased dietary inclusion of MCP (P = 0.02) with piglets fed 6% MCP having the highest VC ratio. In conclusion, this study demonstrated that MCP could constitute 6% of diets as-fed (22% of total CP), at the expense of fishmeal and potato protein, for newly weaned piglets without negative effects on growth rates and FCR. The inclusion of MCP in diets for newly weaned piglets could be part of improving the sustainability of pig production.
Collapse
|
10
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
11
|
Sharma G, Khanna G, Sharma P, Deol PK, Kaur IP. Mechanistic Role of Probiotics in Improving Skin Health. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:27-47. [DOI: 10.1007/978-981-16-5628-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zhu SQ, Liu J, Han B, Zhao WP, Zhou BH, Zhao J, Wang HW. Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118381. [PMID: 34673156 DOI: 10.1016/j.envpol.2021.118381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Colon microenvironment and microbiota dysbiosis are closely related to various human metabolic diseases. In this study, a total of 72 healthy female mice were exposed to fluoride (F) (0, 25, 50 and 100 mg/L F-) in drinking water for 70 days. The effect of F on intestinal barrier and the diversity and composition in colon microbiota have been evaluated. Meanwhile, the relationship among F-induced colon microbiota alterations and antimicrobial peptides (AMPs) expression and short-chain fatty acids (SCFAs) level also been assessed. The results suggested that F decreased the goblet cells number and glycoprotein expression in colon. And further high-throughput 16S rRNA gene sequencing result demonstrated that F exposure induced the diversity and community composition of colonic microbiota significantly changes. Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 11 predominantly characteristic taxa which may be the biomarker in response to F exposure. F-induced intestinal microbiota perturbations lead to the significantly decreased SCFAs levels in colon. Immunofluorescence results showed that F increased the protein expression of interleukin-17A (IL-17A) and IL-22 (P < 0.01) and disturbed the expression of interleukin-17 receptor A (IL-17RA) and IL-22R (P < 0.05 or P < 0.01). In addition, the increased expression of IL-17A and IL-22 cooperatively enhanced the mRNA expression of AMPs which response to F-induced microbiota perturbations. Collectively, destroyed microenvironment and disturbed AMPs are the primary reason of microbiota dysbiosis in colon after F exposure. Colonic homoeostasis imbalance would be helpful for finding the source of F-induced chronic systemic diseases.
Collapse
Affiliation(s)
- Shi-Quan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Wen-Peng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
13
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. Result In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. Conclusion Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
14
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Wang Y, Liu Q, Chen Y, Qian Y, Pan B, Ge L, Wang Q, Ding G, Wang J. Global Trends and Future Prospects of Child Nutrition: A Bibliometric Analysis of Highly Cited Papers. Front Pediatr 2021; 9:633525. [PMID: 34568235 PMCID: PMC8459025 DOI: 10.3389/fped.2021.633525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Child nutrition has always been a global concern. This study performed visual analysis of 1,398 child nutrition highly cited papers (HCPs) from 2009 to 2019. The purpose of the study was to evaluate and present the performances of authors, journals, countries, institutions, top cited papers; to explore the hot topics, prospects, and to propose the future research directions on child nutrition. We used bibliometric methods to conduct in-depth statistical analysis of HCPs on child nutrition, showing research progress, trends and hot spots. We included HCPs on child nutrition from the Science Citation Index-Expanded (SCI-E) database February 7, 2020. Two tools, CiteSpace and VOSviewer, were used to conduct the bibliometric analyses. The results showed that, since 2011, the number of HCPs on child nutrition has increased rapidly. The top three contributors in this field were the USA, the UK and Canada. However, the contribution of developing countries was very limited. Intestinal microflora, food allergy, overweight and obesity were the three major research hotspots in this field. Results of this study provide valuable references for ongoing child nutrition related research, which may be interesting and noteworthy to the researchers involved.
Collapse
Affiliation(s)
- Yunhua Wang
- School of Management, Lanzhou University, Lanzhou, China.,Gansu Provincial Hospital, Lanzhou, China
| | | | - Yongcong Chen
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yaling Qian
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
| | - Bei Pan
- Gansu Provincial Hospital, Lanzhou, China
| | - Long Ge
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Guowu Ding
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
| | | |
Collapse
|
16
|
Gayathri D, Ramesha A. Gluten‑hydrolyzing probiotics: An emerging therapy for patients with celiac disease (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| | - Alurappa Ramesha
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| |
Collapse
|
17
|
Fecal bacteria and metabolite responses to dietary lysozyme in a sow model from late gestation until lactation. Sci Rep 2020; 10:3210. [PMID: 32081946 PMCID: PMC7035255 DOI: 10.1038/s41598-020-60131-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Lysozyme (LZM) is a natural anti-bacterial protein that is found in the saliva, tears and milk of all mammals including humans. Its anti-bacterial properties result from the ability to cleave bacterial cell walls, causing bacterial death. The current study was conducted to investigate the effects of dietary LZM on fecal microbial composition and variation in metabolites in sow. The addition of LZM decreased the fecal short-chain fatty acids (SCFAs). Zonulin and endotoxin in the serum, and feces, were decreased with lysozyme supplementation. Furthermore, fecal concentrations of lipocalin-2 and the pro-inflammatory cytokine TNF-α were also decreased while the anti-inflammatory cytokine IL-10 was increased by lysozyme supplementation. 16S rRNA gene sequencing of the V3-V4 region suggested that fecal microbial levels changed at different taxonomic levels with the addition of LZM. Representative changes included the reduction of diversity between sows, decreased Bacteroidetes, Actinobacteria, Tenericutes and Spirochaetes during lactation as well as an increase in Lactobacillus. These findings suggest that dietary lysozyme supplementation from late gestation to lactation promote microbial changes, which would potentially be the mechanisms by which maternal metabolites and inflammatory status was altered after LZM supplementation.
Collapse
|
18
|
Zhang C, Zhang Y, Li H, Liu X. The potential of proteins, hydrolysates and peptides as growth factors forLactobacillusandBifidobacterium: current research and future perspectives. Food Funct 2020; 11:1946-1957. [DOI: 10.1039/c9fo02961c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are live microorganisms that provide health benefits to the host when consumed in adequate concentrations.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Technology and Business University
- China
| | | | - He Li
- Beijing Technology and Business University
- China
| | - Xinqi Liu
- Beijing Technology and Business University
- China
| |
Collapse
|
19
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
20
|
Lan Y, Verstegen M, Tamminga S, Williams B. The role of the commensal gut microbial community in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200445] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y. Lan
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - M.W.A. Verstegen
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - S. Tamminga
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B.A. Williams
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
21
|
Eslami M, Yousefi B, Kokhaei P, Jazayeri Moghadas A, Sadighi Moghadam B, Arabkari V, Niazi Z. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis 2019; 64:99-108. [PMID: 31174707 DOI: 10.1016/j.cimid.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
|
22
|
Han DH, Shin JM, An S, Kim JS, Kim DY, Moon S, Kim JS, Cho JS, Kim SW, Kim YH, Roh HJ, Shim WS, Rha KS, Kim SW, Lee SS, Kim DW, Cho KS, Yim HJ, Park SK, Rhee CS. Long-term Breastfeeding in the Prevention of Allergic Rhinitis: Allergic Rhinitis Cohort Study for Kids (ARCO-Kids Study). Clin Exp Otorhinolaryngol 2019; 12:301-307. [PMID: 30992421 PMCID: PMC6635702 DOI: 10.21053/ceo.2018.01781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES There is a great deal of interest in the possibility that environmental factors may influence the risk of developing allergic rhinitis (AR) in early life. We investigated the simultaneous effects of mode of delivery and duration of breastfeeding on the development of AR in children. METHODS Data from 1,374 children participating in the Allergic Rhinitis Cohort Study for kids (ARCO-kids study) was analyzed. All subjects were divided into AR or non-allergic rhinitis (NAR) groups. Data on environmental factors, mode of delivery and duration of breastfeeding were collected using a questionnaire. RESULTS Compared with short-term breastfeeding (<6 months), long-term breastfeeding (≥12 months) was significantly associated with a lower prevalence of AR (adjusted odds ratio [aOR], 0.54; 95% confidence interval [CI], 0.34 to 0.88). Children in the AR group also had a higher cesarean delivery rate than those in the NAR group (39.1% vs. 32.8%, P=0.05). Regarding the combined effects of mode of delivery and duration of breastfeeding, long-term breastfeeding with a vaginal delivery strongly suppressed the development of AR, compared to short-term breastfeeding with a cesarean delivery (aOR, 0.47; 95% CI, 0.30 to 0.73). CONCLUSION Long-term breastfeeding (≥12 months) and a vaginal delivery are associated with a lower risk of developing childhood AR.
Collapse
Affiliation(s)
- Doo Hee Han
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Seokyung An
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jong Seung Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonbuk National University Medical School, Jeonju, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Joong Saeng Cho
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul, Korea
| | - Si Whan Kim
- Department of Otolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Korea
| | - Hwan-Jung Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ki-Sang Rha
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Wook Kim
- Department of Otorhinolaryngology, Gyeongsang National University Hospital, Jinju, Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung-Sin Lee
- Department of Otolaryngology-Head and Neck Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Kyu-Sup Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Hyo Jin Yim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea.,Graduate School of Immunology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Biomedical Research Center, Seoul, Korea.,Sensory Organ Research Institute, Seoul National University Biomedical Research Center, Seoul, Korea, Korea
| |
Collapse
|
23
|
Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 2018; 59:3320-3333. [PMID: 29993263 DOI: 10.1080/10408398.2018.1490885] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotics are a key tool used nowadays in health care industry to fight against bacterial infections; however, repeated antibiotic use or misuses, have led to bacterial resistance, causing significant threats for many people with common bacterial infections. The use of probiotics to enhance gastrointestinal health has been proposed for many years. In recent years, there has been an increasing interest in the use of probiotic bacteria as alternatives for antibiotics for preventing or treating various intestinal infections. Several important underlying mechanisms responsible for the antagonistic effects of probiotics on different microorganisms include: (1) competitive exclusion for adhesion sites and nutritional sources; (2) secretion of antimicrobial substances; (3) enhancement of intestinal barrier function; and (4) immunomodulation. However, their mode of action is not very well understood and therefore a clearer understanding of these mechanisms is necessitated. This will enable appropriate probiotic strains to be selected for particular applications and may reveal new probiotic functions. The goal of this review was to highlight some studies from literature describing the probiotic interaction with several major foodborne pathogens, as well as explore the mechanisms for such probiotic-pathogen interaction. The review will conclude by presenting future perspective and challenges of probiotic application in food products.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | | | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Huang CH, Yu X, Liao WB. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review. Int J Mol Sci 2018; 19:E1792. [PMID: 29914188 PMCID: PMC6032294 DOI: 10.3390/ijms19061792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH) that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.
Collapse
Affiliation(s)
- Chun Hua Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| | - Xin Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| |
Collapse
|
25
|
Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke. JOURNAL OF SPORTS MEDICINE 2018; 2018:5724575. [PMID: 29850597 PMCID: PMC5926483 DOI: 10.1155/2018/5724575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Exertional heatstroke (EHS) is a medical emergency that cannot be predicted, requires immediate whole-body cooling to reduce elevated internal body temperature, and is influenced by numerous host and environmental factors. Widely accepted predisposing factors (PDF) include prolonged or intense exercise, lack of heat acclimatization, sleep deprivation, dehydration, diet, alcohol abuse, drug use, chronic inflammation, febrile illness, older age, and nonsteroidal anti-inflammatory drug use. The present review links these factors to the human intestinal microbiota (IM) and diet, which previously have not been appreciated as PDF. This review also describes plausible mechanisms by which these PDF lead to EHS: endotoxemia resulting from elevated plasma lipopolysaccharide (i.e., a structural component of the outer membrane of Gram-negative bacteria) and tissue injury from oxygen free radicals. We propose that recognizing the lifestyle and host factors which are influenced by intestine-microbial interactions, and modifying habitual dietary patterns to alter the IM ecosystem, will encourage efficient immune function, optimize the intestinal epithelial barrier, and reduce EHS morbidity and mortality.
Collapse
|
26
|
Baldwin S, Hughes RJ, Hao Van TT, Moore RJ, Stanley D. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS One 2018; 13:e0194825. [PMID: 29570728 PMCID: PMC5865720 DOI: 10.1371/journal.pone.0194825] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Recent advances in culture-free microbiological techniques bring new understanding of the role of intestinal microbiota in heath and performance. Intestinal microbial communities in chickens assume a near-stable state within the week which leaves a very small window for permanent microbiota remodelling. It is the first colonisers that determine the fate of microbial community in humans and birds alike, and after the microbiota has matured there are very small odds for permanent modification as stable community resists change. In this study we inoculated broiler chicks immediately post hatch, with 3 species of Lactobacillus, identified by sequencing of 16S rRNA and pheS genes as L. ingluviei, L. agilis and L. reuteri. The strains were isolated from the gut of healthy chickens as reproducibly persistent Lactobacillus strains among multiple flocks. Birds inoculated with the probiotic mix reached significantly higher weight by 28 days of age. Although each strain was able to colonise when administered alone, administering the probiotic mix at-hatch resulted in colonisation by only L. ingluviei. High initial abundance of L. ingluviei was slowly reducing, however, the effects of at-hatch administration of the Lactobacillus mix on modifying microbiota development and structure remained persistent. There was a tendency of promotion of beneficial and reduction in pathogenic taxa in the probiotic administered group.
Collapse
Affiliation(s)
- Stephen Baldwin
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland, Australia
| | - Robert J. Hughes
- South Australian Research and Development Institute, Roseworthy, South Australia, Australia
- The University of Adelaide, School of Animal and Veterinary Sciences Roseworthy, South Australia, Australia
| | - Thi Thu Hao Van
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Robert J. Moore
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Dragana Stanley
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland, Australia
- * E-mail:
| |
Collapse
|
27
|
Exogenous dietary lysozyme improves the growth performance and gut microbiota in broiler chickens targeting the antioxidant and non-specific immunity mRNA expression. PLoS One 2017; 12:e0185153. [PMID: 29059196 PMCID: PMC5653193 DOI: 10.1371/journal.pone.0185153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022] Open
Abstract
Supplementation of exogenous enzymes in chickens has been widely practiced, yet mechanisms responsible are not fully delineated. To investigate the effects of the dietary lysozyme on the growth performance and immunity of broiler chickens, a total of 120 one-day-old Ross 308 chicks were randomly allocated into four groups, each having three replicates (30 birds/group). The chicks were fed the starter (1–21 d) and grower (22–35 d) diets supplemented with 0 (control), 70 (LYZ70), 90 (LYZ90) and 120 (LYZ120) g of lysozyme 10%® per ton of basal diet for five weeks. The results revealed significant improvement in the growth performance and gut environment. There were significant decreases (P < 0.05 or 0.01) in the harmful fecal Coliform and Clostridia and an increase (P ˂ 0.05) in the beneficial Lactobacillus in the lysozyme-supplemented groups, especially in LYZ90. Moreover, the mRNA expressions of Cu, Zn-superoxide dismutase (SOD1), glutathione peroxidase (GSH-Px), interferon-gamma (IFN-γ), interleukin-10 (IL-10), and interleukin-18 (IL-18) were upregulated in response to lysozyme supplementation. In comparison to control, LYZ90 fed birds had a significant increase (P < 0.01) in the GSH-Px gene expression that enhances the antioxidant status of the gut. Expression of the biomarkers involved in the gut non-specific immunity indicated significant increases in the mRNA expression of INF-γ (P < 0.001), IL-10 (P < 0.001), and IL-18 (P < 0.05) in LYZ90 group. Also, serum globulin levels were significantly elevated (P ˂ 0.05) in lysozyme-supplemented groups. Histologically, the intestinal villi length and crypts depth were also enhanced (P ˂ 0.05) by dietary lysozyme supplementation. In conclusion, supplementation of broiler chickens with exogenous lysozyme, especially at 90 g of lysozyme per ton of basal diet dose rate, improved the growth performance, gut antioxidant status, and nonspecific immunity of broiler chickens.
Collapse
|
28
|
Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10:S150-S157. [PMID: 26916014 DOI: 10.1016/j.dsx.2016.01.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China; Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science (IC-UCAS), West Beichen Road, Chaoyang, China
| | - Peyman Rezaie
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Majid Ghayour Mobarhan
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, UK
| |
Collapse
|
29
|
Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 2016; 172:72-84. [PMID: 26809484 DOI: 10.1016/j.vetimm.2016.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| | - Sukumar Kandasamy
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Kuldeep S Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
30
|
Assessment of prebiotic potential of Akpan-yoghurt-like product and effects on the human intestinal microbiota. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Long Y, Lin S, Zhu J, Pang X, Fang Z, Lin Y, Che L, Xu S, Li J, Huang Y, Su X, Wu D. Effects of dietary lysozyme levels on growth performance, intestinal morphology, non-specific immunity and mRNA expression in weanling piglets. Anim Sci J 2015; 87:411-8. [PMID: 26419503 DOI: 10.1111/asj.12444] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to determine the effect of dietary lysozyme levels on growth performance, gut health and non-specific immunity of weanling piglets. A total of 150 weanling piglets were allocated to six treatments. The piglets were fed the same basel diet supplemented with 0, 30, 60, 90 and 120 mg/kg lysozyme as well as antibiotics for 28 days. From day 14 to day 28 of dietary treatment, piglets fed 90 mg/kg lysozyme had greater average daily gain than piglets fed control diet. During the whole experimental period, piglets fed 120 mg/kg lysozyme tended to have greater average daily gain than piglets fed control diet. Compared with piglets fed control diet, piglets fed diets containing antibiotics and 90 mg/kg lysozyme had greater villus height to crypt depth ratio in duodenum and jejunum. Additionally, dietary supplementation of 60 and 90 mg/kg lysozyme as well as antibiotics enhanced the phagocytic activity of peritoneal macrophages in piglets. In conclusion, dietary lysozyme can accelerate the growth of weanling piglets by improving gut health and non-specific immunity and supplementing 90 mg/kg lysozyme is as effective as antibiotics (20 mg/kg colistin sulphate + 50 mg/kg kitasamycin) in improving the growth performance of weanling piglets.
Collapse
Affiliation(s)
- Yanrong Long
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Sen Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Jiatao Zhu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Xiaoxue Pang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| | - Yiming Huang
- Shanghai E.K.M biotechnolgy CO. LTD., Shang Hai, China
| | - Xiang Su
- Guangxi shangda tech CO. LTD., Guang Xi, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
32
|
Lu H, Liu H, Wang J, Shen J, Weng S, Han L, Sun T, Qian L, Wu M, Zhu S, Yu Y, Han W, Zhu J, Moldenhauer A. The chemokine CXCL9 exacerbates chemotherapy-induced acute intestinal damage through inhibition of mucosal restitution. J Cancer Res Clin Oncol 2015; 141:983-92. [PMID: 25398650 DOI: 10.1007/s00432-014-1869-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Acute intestinal damage induced by chemotherapeutic agent is often a dose-limiting factor in clinical cancer therapy. The aim of this study was to investigate the effect of chemokine CXCL9 on the intestinal damage after chemotherapy and explore the therapeutic potential of anti-CXCL9 agents. METHODS In vitro cell proliferation assay was performed with a non-tumorigenic human epithelial cell line MCF10A. Multiple pathway analysis was carried out to explore the pathway that mediated the effect of CXCL9, and the corresponding downstream effector was identified with enzyme-linked immunosorbent assays. Chemotherapy-induced mouse model of intestinal mucositis was prepared by a single injection of the chemotherapeutic agent 5-fluorouracil (5-FU). In vivo expression of cxcl9 and its receptor cxcr3 in intestinal mucosa after chemotherapy was determined by quantitative real-time PCR. Therapeutic treatment with anti-CXCL9 antibodies was investigated to confirm the hypothesis that CXCL9 can contribute to the intestinal epithelium damage induced by chemotherapy. RESULTS CXCL9 inhibited the proliferation of MCF10A cells by activating phosphorylation of p70 ribosomal S6 kinase (p70S6K), which further promotes the secretion of transforming growth factor beta (TGF-β) as the downstream effector. A blockade of phospho-p70S6K with inhibitor abolished the effect of CXCL9 on MCF10A cells and reduced the secretion of TGF-β. The expression levels of cxcl9 and cxcr3 were significantly up-regulated in intestinal mucosa after 5-FU injection. Neutralizing elevated CXCL9 with anti-CXCR9 antibodies successfully enhanced reconstitution of intestinal mucosa and improved the survival rate of mice that received high-dose chemotherapy. CONCLUSIONS CXCL9 inhibits the proliferation of epithelial cells via phosphorylation of p70S6K, resulting in the excretion of TGF-β as downstream mediator. CXCL9/CXCR3 interaction can exacerbate chemotherapeutic agent-induced intestinal damage, and anti-CXCL9 agents are potential novel therapeutic candidates for promoting mucosal restitution.
Collapse
Affiliation(s)
- Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Noori M, Alikhani M, Jahanian R. Effect of partial substitution of milk with probiotic yogurt of different pH on performance, body conformation and blood biochemical parameters of Holstein calves. JOURNAL OF APPLIED ANIMAL RESEARCH 2015. [DOI: 10.1080/09712119.2015.1031772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs. Br J Nutr 2015; 113:1019-31. [PMID: 25761471 DOI: 10.1017/s0007114515000380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (SEM 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat-barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P> 0.05). High Ca diets decreased jejunal zonula occludens 1 (ZO1) and occludin (OCLN) expression, up-regulated jejunal expression of toll-like receptor 2 (TLR2) and down-regulated colonic GLUT2 expression as compared to the adequate Ca diets (P< 0.05). Dietary cereal composition up-regulated jejunal TLR2 expression and interacted (P= 0.021) with dietary Ca on colonic IL1B expression; high Ca concentration up-regulated IL1B expression with wheat-barley diets and down-regulated it with maize diets. Spearman's correlations (r> 0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs.
Collapse
|
35
|
Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 2015; 203:109-21. [PMID: 25817019 DOI: 10.1016/j.ijfoodmicro.2015.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/22/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.
Collapse
|
36
|
Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res 2015; 2015:284680. [PMID: 26347203 PMCID: PMC4544440 DOI: 10.1155/2015/284680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Fernando J. Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Julia C. Campopiano
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Ricardo G. Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- *Ricardo G. Correa:
| |
Collapse
|
37
|
Tellez G. Prokaryotes Versus Eukaryotes: Who is Hosting Whom? Front Vet Sci 2014; 1:3. [PMID: 26664911 PMCID: PMC4668860 DOI: 10.3389/fvets.2014.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals' actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a "forgotten organ," functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host's biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom?
Collapse
Affiliation(s)
- Guillermo Tellez
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science, The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
38
|
Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V, De Gregorio V, De Rosa M, Schiraldi C. Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 2014; 14:137. [PMID: 24884965 PMCID: PMC4054921 DOI: 10.1186/1471-2180-14-137] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Vaginal lactic acid bacteria defend the host against pathogens through a combination of competitive exclusion, competition for nutrients, production of antimicrobial substances and through the activation of the immune system. A new human isolate named Lactobacillus crispatus L1 was characterized in this work, and a preliminary evaluation of its probiotic potential is described together with a process to obtain a high productivity of viable biomass. RESULTS In a simulated digestion process 1.8⋅10(10) cells∙ml(-1) survived the gastric environment with 80% viability, without being affected by small intestine juices. Experiments on six different C sources were performed to analyze growth and organic acids production and, glucose, provided the best performances. A microfiltration strategy was exploited to improve the cellular yield in 2 L-fermentation processes, reaching 27 g · l(-1) of dry biomass. Moreover, L. crispatus L1 demonstrated a greater stability to high concentrations of lactic acid, compared to other lactobacilli. The specific L. crispatus L1 exopolysaccharide was purified from the fermentation broth and characterized by NMR showing structural features and similarity to exopolysaccharides produced by pathogenic strains. Live L. crispatus L1 cells strongly reduced adhesion of a yeast pathogenic strain, Candida albicans in particular, in adherence assays. Interestingly a higher expression of the human defensin HBD-2 was also observed in vaginal cells treated with the purified exopolysaccharide, indicating a possible correlation with C. albicans growth inhibition. CONCLUSIONS The paper describes the evaluation of L. crispatus L1 as potential vaginal probiotic and the fermentation processes to obtain high concentrations of viable cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, via De Crecchio n°7, Naples 80138, Italy.
| |
Collapse
|
39
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|
40
|
Zhao L, Wu H, Zhao A, Lu H, Sun W, Ma C, Yang Y, Xin X, Zou H, Qiu M, Jia W. The in vivo and in vitro study of polysaccharides from a two-herb formula on ulcerative colitis and potential mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:151-159. [PMID: 24548752 DOI: 10.1016/j.jep.2014.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/08/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lycium barbarum and Astragalus membranaceus are two traditional medicinal herbs widely used in China for nourishing Yin and reinforcing Qi. The purpose of the study was to investigate the prophylactic and curative effects of crude polysaccharides (QHPS) extracted from a two-herb formula composed of Lycium barbarum and Astragalus membranaceus at a ratio of 2:3 in colitis rats, and to further elucidate the potential mechanism of action in epithelial cell proliferation in vitro. MATERIALS AND METHODS An acetic acid (AA)-induced ulcerative colitis rat model was applied in the study. Two independent protocols were used to assess the prophylactic and curative effects of QHPS, respectively, in which rats were either pre-treated with QHPS (0.18g/kg) for 14 days prior to AA induction, or post-treated with QHPS for 7 days after AA induction. The stool consistency and weight loss were used to evaluate disease activity. The morphological changes in intestinal mucosa at the end of the experiments were observed. The serum levels of endotoxin (EDT), diamine oxidase (DAO) and d-lactate (DLA), important biochemical markers for evaluating intestinal mucosal structure and function, were measured. In the in vitro mechanistic studies, rat intestinal epithelial cells (IEC-6) were used to access for epithelium regeneration. RESULTS The intra-colonic instillation of AA induced ulcerative colitis in rat, as indicated by diarrhea, weight loss, and colonic mucosal damage. Both prophylactic and curative treatments effectively reduced the weight loss and diarrhea and attenuated the colonic mucosal damage associated with inducible colitis. The significant increase in serum levels of DAO, DLA and EDT was induced by AA and inhibited by QHPS treatment. Moreover, QHPS could significantly stimulate IEC-6 proliferation in a dose-dependent manner (p<0.05). CONCLUSION The present study indicated for the first time that polysaccharides extracted from this two-herb formula can protect against experimental ulcerative colitis, presumably by promoting the recovery of the intestinal barrier.
Collapse
Affiliation(s)
- Linjing Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongbing Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aihua Zhao
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People׳s Hospital, Shanghai 200233, China
| | - Huili Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Sun
- Infinitus (China) Company Ltd., Guangzhou 510665, China
| | - Chungwah Ma
- Infinitus (China) Company Ltd., Guangzhou 510665, China
| | - Yiting Yang
- Infinitus (China) Company Ltd., Guangzhou 510665, China
| | - Xue Xin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haimiao Zou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Jia
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People׳s Hospital, Shanghai 200233, China
| |
Collapse
|
41
|
Effects of probiotic supplementation on markers of acute pancreatitis in rats. Curr Ther Res Clin Exp 2014; 70:136-48. [PMID: 24683225 DOI: 10.1016/j.curtheres.2009.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Intestinal barrier disruption followed by bacterial translocation seems to play a role in secondary pancreatic infection in acute pancreatitis. The use of probiotics as a possible adjuvant strategy in the treatment of acute pancreatitis needs to be investigated. OBJECTIVE The aim of this study was to determine the effects of dietary supplementation with a prophylactically administered multispecies probiotic mixture on the markers of acute pancreatitis and on the occurrence of bacterial translocation. METHODS Thirty adult male Wistar rats were randomly assigned to 1 of 3 groups of 10 rats each: (1) the PS group, in which the rats were given probiotic supplementation prior to induction of acute pancreatitis; (2) the WP group, in which the rats underwent surgery to induce acute pancreatitis without prior probiotic supplementation; and (3) the control group, in which the rats underwent sham surgery. For 14 days before surgery, animals in the PS group received a single daily dose containing ~1.2 × 10(9) colony-forming units of a probiotic mixture administered intragastrically as a bolus. On day 15, the animals underwent surgery to induce acute pancreatitis (PS and WP groups) or simulated surgery (control group). Blood samples were collected to determine leukocyte count, amylase and lipase activities, and glucose and calcium concentrations immediately before and 6 and 12 hours after the beginning of the procedure. Samples of pancreas, spleen, liver, and mesenteric lymph nodes were harvested for microbiologic and histopathologic analysis after the last blood sample collection. The pathologist examining the histopathology was blinded to treatment assignment. RESULTS The mean leukocyte count was significantly increased in the PS group compared with the WP group (P = 0.018), whereas the serum amylase and lipase activities and the serum glucose and calcium concentrations were not significantly different between the 2 groups. Comparing the risk for tissue colonization in the PS group with that of the WP group, the odds ratio (OR) for pancreas was 2.91 (95% CI, 0.13-67.10); liver, 66.55 (95% CI, 1.89-2282.66); spleen, 88.58 (95% CI, 3.04-2583.08); and mesenteric lymph nodes, 1.23 (95% CI, 0.06-25.48). When the risks for histopathologic changes were compared between the 2 groups, the OR for acinar necrosis was 1.73 (95% CI, 0.21-12.17); steatonecrosis, 12.08 (95% CI, 1.26-115.54); hemorrhage, 1.38 (95% CI, 0.21-9.53); and leukocyte infiltration, 5.91 (95% CI, 0.64-54.89). CONCLUSION Probiotic supplementation before the induction of acute pancreatitis was associated with a greater degree of bacterial translocation and pancreatic tissue damage in this animal model.
Collapse
|
42
|
Antibodies to Lactobacilli and Bifidobacteria in young children with different propensity to develop islet autoimmunity. J Immunol Res 2014; 2014:325938. [PMID: 24741589 PMCID: PMC3987879 DOI: 10.1155/2014/325938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/18/2022] Open
Abstract
The intestinal microbiota is essential to the maturation and homeostasis of the immune system. Immunoblot assays were used to establish the prevalence of serum IgG, IgM, and IgA antibodies specific for Bifidobacterium adolescentis, Bifidobacterium longum, and Lactobacillus rhamnosus GG proteins in young children presenting with or without type 1 diabetes (T1D). We demonstrated that children between the ages of 6 and 12 months had a substantial increase in the frequency of IgG antibodies specific for L. rhamnosus GG proteins. We measured IgG, IgM, and IgA class antibody reactivity against B. adolescentis DSM 20083, B. adolescentis DSM 20086, and B. longum DSM 20088 proteins demonstrating significantly higher IgA responses against B. adolescentis DSM 20083 strain proteins in children who developed islet autoimmunity and T1D later in life. B. adolescentis strains showed more IgM type antibodies in children who developed T1D later in life, but the difference was not statistically significant. B. longum proteins were recognized by IgG and IgA antibodies to a higher extent compared to other bacteria studied. These results confirm that differences in immune reactivity against some commensal strains in young children may represent a different risk factor for developing T1D.
Collapse
|
43
|
Sant’Anna MDSL, Ferreira CLDLF. Can Intestinal Constipation Be Modulated by Prebiotics, Probiotics and Symbiotics? ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.512120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine 2013; 32:470-7. [PMID: 24291196 DOI: 10.1016/j.vaccine.2013.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 01/25/2023]
Abstract
Rotavirus-induced diarrhea causes more than 500,000 deaths annually in the world, and although vaccines are being made available, new effective treatment strategies should still be considered. Purified antibodies derived from hyperimmune bovine colostrum (HBC), from cows immunized with rotavirus, were previously used for treatment of rotavirus diarrhea in children. A combination of HBC antibodies and a probiotic strain of Lactobacillus (L. rhamnosus GG) was also found to be more effective than HBC alone in reducing diarrhea in a mouse model of rotavirus infection. In order to further improve this form of treatment, L. rhamnosus GG was engineered to display surface expressed IgG-binding domains of protein G (GB1, GB2, and GB3) which capture HBC-derived IgG antibodies (HBC-IgG) and thus target rotavirus. The expression of IgG-binding domains on the surface of the bacteria as well as their binding to HBC-IgG and to rotavirus (simian strain RRV) was demonstrated by Western blot, flow cytometry, and electron microscopy. The prophylactic effect of engineered L. rhamnosus GG and anti-rotaviral activity of HBC antibodies was evaluated in a mouse pup model of RRV infection. The combination therapy with engineered L. rhamnosus GG (PG3) and HBC was significantly more effective in reducing the prevalence, severity, and duration of diarrhea in comparison to HBC alone or a combination of wild-type L. rhamnosus GG and HBC. The new therapy reduces the effective dose of HBC between 10 to 100-fold and may thus decrease treatment costs. This antibody capturing platform, tested here for the first time in vivo, could potentially be used to target additional gastrointestinal pathogens.
Collapse
|
45
|
Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 2013; 80:478-85. [PMID: 24212578 DOI: 10.1128/aem.02472-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.
Collapse
|
46
|
Garcia-Garcia E, Galindo-Villegas J, Mulero V. Mucosal immunity in the gut: the non-vertebrate perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:278-288. [PMID: 23537860 DOI: 10.1016/j.dci.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Much is now known about the vertebrate mechanisms involved in mucosal immunity, and the requirement of commensal microbiota at mucosal surfaces for the proper functioning of the immune system. In comparison, very little is known about the mechanisms of immunity at the barrier epithelia of non-vertebrate organisms. The purpose of this review is to summarize key experimental evidence illustrating how non-vertebrate immune mechanisms at barrier epithelia compare to those of higher vertebrates, using the gut as a model organ. Not only effector mechanisms of gut immunity are similar between vertebrates and non-vertebrates, but it also seems that the proper functioning of non-vertebrate gut defense mechanisms requires the presence of a resident microbiota. As more information becomes available, it will be possible to obtain a more accurate picture of how mucosal immunity has evolved, and how it adapts to the organisms' life styles.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | | | | |
Collapse
|
47
|
Ventola H, Lehtoranta L, Madetoja M, Simonen-Tikka ML, Maunula L, Roivainen M, Korpela R, Holma R. Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats. World J Gastroenterol 2012; 18:5925-31. [PMID: 23139609 PMCID: PMC3491600 DOI: 10.3748/wjg.v18.i41.5925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/28/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of live and dead Lactobacillus rhamnosus GG (GG) on rotavirus infection in a neonatal rat model.
METHODS: At the age of 2 d, suckling Lewis rat pups were supplemented with either live or dead GG and the treatment was continued daily throughout the experiment. At the age of 5 and 6 d the pups received oral rotavirus (RV) SA-11 strain. The pups were sacrificed at the age of 7 or 8 d by decapitation. The gastrointestinal tract was removed and macroscopic observations were done. The consistency of feces in the colon was classified using a four-tier system. RV was detected from the plasma, small intestine, colon and feces by real-time quantitative polymerase chain reaction (PCR).
RESULTS: In this neonatal rat model, RV induced a mild-to-moderate diarrhea in all except one pup of the RV-inoculated rats. RV moderately reduced body weight development from day 6 onwards. On day 7, after 2 d of RV infection, live and dead GG groups gained significantly more weight than the RV group without probiotics [36% (P = 0.001) and 28% (P = 0.031), respectively]. In addition, when compared with the RV control group, both live and dead GG reduced the weight ratio of colon/animal body weight to the same level as in the healthy control group, with reductions of 22% (P = 0.002) and 28% (P < 0.001), respectively. Diarrhea increased moderately in both GG groups. However, the diarrhea incidence and severity in the GG groups were not statistically significantly different as compared with the RV control group. Moreover, observed diarrhea did not provoke weight loss or death. The RV control group had the largest amount of RV PCR-positive samples among the RV-infected groups, and the live GG group had the smallest amount. Rats receiving live GG had significantly less RV in the colon (P = 0.027) when compared with the RV control group. Live GG was also more effective over dead GG in reducing the quantity of RV from plasma (P = 0.047).
CONCLUSION: Both live and dead GG have beneficial effects in RV infection. GG may increase RV clearance from the body and reduce colon swelling.
Collapse
|
48
|
Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. ANNALS OF NUTRITION AND METABOLISM 2012; 61:160-74. [PMID: 23037511 DOI: 10.1159/000342079] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/28/2022]
Abstract
Probiotics are live microorganisms that provide health benefits to the host when ingested in adequate amounts. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases, but the mechanisms responsible for these effects have not been fully elucidated yet. Several important mechanisms underlying the antagonistic effects of probiotics on various microorganisms include the following: modification of the gut microbiota, competitive adherence to the mucosa and epithelium, strengthening of the gut epithelial barrier and modulation of the immune system to convey an advantage to the host. Accumulating evidence demonstrates that probiotics communicate with the host by pattern recognition receptors, such as toll-like receptors and nucleotide-binding oligomerization domain-containing protein-like receptors, which modulate key signaling pathways, such as nuclear factor-ĸB and mitogen-activated protein kinase, to enhance or suppress activation and influence downstream pathways. This recognition is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage. A clear understanding of these mechanisms will allow for appropriate probiotic strain selection for specific applications and may uncover novel probiotic functions. The goal of this systematic review was to explore probiotic modes of action focusing on how gut microbes influence the host.
Collapse
Affiliation(s)
- Miriam Bermudez-Brito
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology José Mataix, Biomedical Research Center, University of Granada, Armilla, Spain
| | | | | | | | | |
Collapse
|
49
|
Comparison of the kinetics of intestinal colonization by associating 5 probiotic bacteria assumed either in a microencapsulated or in a traditional, uncoated form. J Clin Gastroenterol 2012; 46 Suppl:S85-92. [PMID: 22955366 DOI: 10.1097/mcg.0b013e3182672796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameters able to significantly affect the probiotic value of a microorganism is its survival during the transit through the stomach and the duodenum. Some techniques may be applied that aim to improve this parameter, but microencapsulation of bacterial cells remains one of the most important. A recent study assessed the kinetics of intestinal colonization by a mixture of 2 probiotic strains, given either in a microencapsulated or in a traditional, uncoated form. METHODS A comparison between the intestinal colonization by associating 5 microencapsulated bacteria and the same uncoated strains was performed by a double-blind, randomized, cross-over study. The study (December 2007 to January 2009) involved 53 healthy volunteers. In particular, subjects were divided into 2 groups: group A (27 subjects) was given a mix of probiotic strains Probiotical S.p.A. (Novara, Italy), Lactobacillus acidophilus LA02 (DSM 21717), Lactobacillus rhamnosus LR04 (DSM 16605), L. rhamnosus GG, or LGG (ATCC 53103), L. rhamnosus LR06 (DSM 21981), and Bifidobacterium lactis BS01 (LMG P-21384) in an uncoated form, whereas group B (26 subjects) received the same strains microencapsulated with a gastroprotected material. The uncoated strains were administered at 5×10⁹ cfu/strain/d (a total of 25×10⁹ cfu/d) for 21 days, whereas the microencapsulated bacteria were given at 1×10⁹ cfu/strain/d (a total of 5×10⁹ cfu/d) for 21 days. At the end of the first period of supplementation with probiotics, a 3-week wash-out phase was included in the study setting. At the end of the wash-out period, the groups crossed over their treatment regimen; that is, group A was administered the microencapsulated bacteria and group B the uncoated bacteria. The administered quantities of each strain were the same as the first treatment. A quantitative evaluation of intestinal colonization by probiotics, either microencapsulated or uncoated, was undertaken by examining fecal samples at the beginning of the study (time 0), after 10 days and after 21 days of each treatment period. In particular, fecal total Lactobacilli, heterofermentative Lactobacilli, and total Bifidobacteria were quantified at each checkpoint. A genomic analysis of an appropriate number of colonies was performed to quantify individual L. rhamnosus strains among heterofermentative Lactobacilli. RESULTS A statistically significant increase in the fecal amounts of total Lactobacilli, heterofermentative Lactobacilli, and total Bifidobacteria was registered in both groups at the end of each supplementation period compared with d₀ or d₄₂ (group A: P=0.0002, P=0.0001, and P<0.0001 at d₂₁, P=0.0060, P=0.0069, and P<0.0001 at d₆₃ for total Lactobacilli, heterofermentative Lactobacilli, and Bifidobacteria, respectively; group B: P=0.0002, P=0.0006, and P<0.0001 at d₂₁, P=0.0015, P=0.0016, and P<0.0001 at d₆₃ for total Lactobacilli, heterofermentative Lactobacilli, and Bifidobacteria, respectively), confirming the ability of each strain in the administered composition to colonize the human gut, whether supplemented in a gastroprotected or in a traditional freeze-dried form. On the contrary, subjects receiving microencapsulated bacteria reported a kinetics of intestinal colonization that was entirely comparable with those who were given uncoated strains at a 5 times higher amount. CONCLUSIONS The microencapsulation technique used in this study is a valid approach aimed to significantly improve the survival of strains during gastroduodenal transit, thus enhancing their probiotic value and allowing the use of a 5 times lower amount.
Collapse
|
50
|
The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam 2012; 2012:151085. [PMID: 22577594 PMCID: PMC3346986 DOI: 10.1155/2012/151085] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/07/2012] [Indexed: 12/20/2022] Open
Abstract
Progress in the understanding of the pathophysiology of irritable bowel syndrome (IBS), once thought to be a purely psychosomatic disease, has advanced considerably and low-grade inflammation and changes in the gut microbiota now feature as potentially important. The human gut harbours a huge microbial ecosystem, which is equipped to perform a variety of functions such as digestion of food, metabolism of drugs, detoxification of toxic compounds, production of essential vitamins, prevention of attachment of pathogenic bacteria to the gut wall, and maintenance of homeostasis in the gastrointestinal tract. A subset of patients with IBS may have a quantitative increase in bacteria in the small bowel (small intestinal bacterial overgrowth). Qualitative changes in gut microbiota have also been associated with IBS. Targeting the gut microbiota using probiotics and antibiotics has emerged as a potentially effective approach to the treatment of this, hitherto enigmatic, functional bowel disorder. The gut microbiota in health, quantitative and qualitative microbiota changes, and therapeutic manipulations targeting the microbiota in patients with IBS are reviewed in this paper.
Collapse
|