1
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
2
|
Gumusgoz E, Kasiri S, Verma M, Wu J, Villarreal Acha D, Marriam U, Fyffe-Maricich S, Lin A, Chen X, Gray SJ, Minassian BA. CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy. Gene Ther 2024; 31:234-241. [PMID: 38135787 DOI: 10.1038/s41434-023-00433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Singh S, Hämäläinen RH. The Roles of Cystatin B in the Brain and Pathophysiological Mechanisms of Progressive Myoclonic Epilepsy Type 1. Cells 2024; 13:170. [PMID: 38247861 PMCID: PMC10814315 DOI: 10.3390/cells13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht-Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 is caused by mutations in the Cystatin B gene (CSTB). The CSTB protein functions as an intracellular thiol protease inhibitor and inhibits Cathepsin function. It also plays a crucial role in brain development and regulates various functions in neurons beyond maintaining cellular proteostasis. These include controlling cell proliferation and differentiation, synaptic functions and protection against oxidative stress, likely through regulation of mitochondrial function. Depending on the differentiation stage and status of neurons, the protein localizes either to the cytoplasm, nucleus, lysosomes or mitochondria. Further, CSTB can also be secreted to the extracellular matrix for interneuron rearrangement and migration. In this review, we will review the various functions of CSTB in the brain and discuss the putative pathophysiological mechanism underlying EPM1.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
4
|
Singh S, Plotnikova L, Karvonen K, Ryytty S, Hyppönen J, Kälviäinen R, Hämäläinen RH. Generation of a human induced pluripotent stem cell line (UEFi004-A) from a patient with progressive myoclonic epilepsy type 1 (EPM1). Stem Cell Res 2023; 73:103248. [PMID: 37951142 DOI: 10.1016/j.scr.2023.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023] Open
Abstract
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder caused by mutations in the cystatin B gene (CSTB). Affected individual's manifest stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. In this study, we have generated iPSCs from an EPM1 patient's skin fibroblasts with Sendai virus mediated transgene delivery. The iPSCs retained the patient specific promoter region expansion mutation, expressed pluripotency markers, differentiated into all three germ layers, and presented a normal karyotype. The line can in future be used to develop an in-vitro model for EPM1 and may help in understanding disease mechanisms at cellular and molecular level.
Collapse
Affiliation(s)
- Shekhar Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lidiia Plotnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kalle Karvonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Ryytty
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jelena Hyppönen
- Epilepsy Center, Kuopio University Hospital, Kuopio, Finland; Full Member of ERN EpiCARE, Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Reetta Kälviäinen
- Epilepsy Center, Kuopio University Hospital, Kuopio, Finland; Full Member of ERN EpiCARE, Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Riikka H Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Wu Y, Mumford P, Noy S, Cleverley K, Mrzyglod A, Luo D, van Dalen F, Verdoes M, Fisher EMC, Wiseman FK. Cathepsin B abundance, activity and microglial localisation in Alzheimer's disease-Down syndrome and early onset Alzheimer's disease; the role of elevated cystatin B. Acta Neuropathol Commun 2023; 11:132. [PMID: 37580797 PMCID: PMC10426223 DOI: 10.1186/s40478-023-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme. Individuals who have Down syndrome are also at significantly increased risk of developing early-onset Alzheimer's disease (EOAD). The impact of the additional copy of CSTB on Alzheimer's disease development in people who have Down syndrome is not well understood. Here we compared the biology of cathepsin B and CSTB in individuals who had Down syndrome and Alzheimer's disease, with disomic individuals who had Alzheimer's disease or were ageing healthily. We find that the activity of cathepsin B enzyme is decreased in the brain of people who had Down syndrome and Alzheimer's disease compared with disomic individuals who had Alzheimer's disease. This change occurs independently of an alteration in the abundance of the mature enzyme or the number of cathepsin B+ cells. We find that the abundance of CSTB is significantly increased in the brains of individuals who have Down syndrome and Alzheimer's disease compared to disomic individuals both with and without Alzheimer's disease. In mouse and human cellular preclinical models of Down syndrome, three-copies of CSTB increases CSTB protein abundance but this is not sufficient to modulate cathepsin B activity. EOAD and Alzheimer's disease-Down syndrome share many overlapping mechanisms but differences in disease occur in individuals who have trisomy 21. Understanding this biology will ensure that people who have Down syndrome access the most appropriate Alzheimer's disease therapeutics and moreover will provide unique insight into disease pathogenesis more broadly.
Collapse
Affiliation(s)
- Yixing Wu
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Paige Mumford
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Alicja Mrzyglod
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Dinghao Luo
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Floris van Dalen
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
6
|
Gorski K, Jackson CB, Nyman TA, Rezov V, Battersby BJ, Lehesjoki AE. Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Front Mol Neurosci 2023; 16:1175851. [PMID: 37251643 PMCID: PMC10213208 DOI: 10.3389/fnmol.2023.1175851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Veronika Rezov
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Lucchino V, Scaramuzzino L, Scalise S, Lo Conte M, Zannino C, Benedetto GL, Aguglia U, Ferlazzo E, Cuda G, Parrotta EI. Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs. Cells 2022; 11:3491. [PMID: 36359887 PMCID: PMC9655992 DOI: 10.3390/cells11213491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.
Collapse
Affiliation(s)
- Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | |
Collapse
|
8
|
Žerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci 2022; 15:1009976. [PMID: 36340691 PMCID: PMC9634419 DOI: 10.3389/fnmol.2022.1009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2024] Open
Abstract
Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
9
|
Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/Differentiation Program. Front Oncol 2021; 11:707066. [PMID: 34504787 PMCID: PMC8421684 DOI: 10.3389/fonc.2021.707066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from lysosomes and causing inappropriate proteolysis. Our study found that CSTB was downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells compared with normal controls. Immunohistochemical analysis showed that CSTB was mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity was related to the grade classification. A correlation analysis between CSTB and clinical prognosis was performed using gene expression data and clinical information acquired from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of CSTB had shorter disease-free survival times and poorer clinicopathological features (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed based on the TCGA data to explore potential mechanisms, and CSTB appeared to correlate with squamous epithelial proliferation-differentiation processes, such as epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module most associated with CSTB expression (i.e., the brown module) was also the one most associated with grade classification. Upregulation of CSTB promoted the expression levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for differentiation and keratinization in vitro. Gene expression profile data of the overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq) technology. By comparing the GSEA enrichment results of RNA-seq data (from the OSCC models overexpressing CSTB) and existing public database data, three gene sets (i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the data from both sources. Overall, our study shows that CSTB is downregulated in OSCC and might regulate the malignant characteristics of OSCC via the epithelial proliferation/differentiation program.
Collapse
Affiliation(s)
- Tian-Tian Xu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xin-Hong Wang
- Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lu-Xi Yang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Luo
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
10
|
Wu Y, Whittaker HT, Noy S, Cleverley K, Brault V, Herault Y, Fisher EMC, Wiseman FK. The effects of Cstb duplication on APP/amyloid-β pathology and cathepsin B activity in a mouse model. PLoS One 2021; 16:e0242236. [PMID: 34292972 PMCID: PMC8297773 DOI: 10.1371/journal.pone.0242236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer’s disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-β that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-β pathology in a transgenic mouse model of amyloid-β deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-β accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-β accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-β plaques or the levels of soluble or insoluble amyloid-β42, amyloid-β40, or amyloid-β38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease.
Collapse
Affiliation(s)
- Yixing Wu
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Heather T. Whittaker
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Suzanna Noy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- LonDownS Consortium, London, United Kingdom
| | - Frances K. Wiseman
- UK Dementia Research Institute at UCL, London, United Kingdom
- LonDownS Consortium, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Sun H, Wan N. Genotype-Phenotype Analysis of 8q24.3 Duplication and 21q22.3 Deletion in a Chinese Patient and Literature Review. Public Health Genomics 2021; 24:218-228. [PMID: 34265769 DOI: 10.1159/000515547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Copy number variants (CNVs) are responsible for many patients with short stature of unknown etiology. This study aims to analyze clinical phenotypes and identify pathogenic CNVs in a patient with short stature, intellectual disability, craniofacial deformities, and anal imperforation. METHODS G-banded karyotyping and chromosomal microarray analysis (CMA) was used on the patient to identify pathogenic causes. Fluorescence in situ hybridization (FISH) was applied to explore the abnormal genetic origin. Literatures were searched using identified CNVs as keywords in the PubMed database to perform genotype-phenotype analysis. RESULTS Cytogenetic analysis revealed a normal karyotype 46,XY. CMA detected a 6.1 Mb duplication at 8q24.3 and a 3.6 Mb deletion at 21q22.3. FISH confirmed that the abnormal chromosomes were inherited from paternal balanced translocation. We compared phenotypes of our patient with 6 patients with 8q24.3 duplication and 7 cases with 21q22.3 deletion respectively. CONCLUSIONS A novel 8q24.3 duplication and 21q22.3 deletion was identified in a Chinese patient. Genotype-phenotype analysis demonstrated that patients with 8q24.3 duplication and 21q22.3 deletion had specific facial features, intellectual disability, short stature, and multiple malformations.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
12
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, Chambery A, Russo R, Ayo-Martin AC, Giordano M, Hoffmann A, Ciusani E, Canafoglia L, Götz M, Di Giaimo R, Cappello S. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med 2020; 12:e11419. [PMID: 32378798 PMCID: PMC7278547 DOI: 10.15252/emmm.201911419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive myoclonus epilepsy (PME) of Unverricht–Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder with the highest incidence of PME worldwide. Mutations in the gene encoding cystatin B (CSTB) are the primary genetic cause of EPM1. Here, we investigate the role of CSTB during neurogenesis in vivo in the developing mouse brain and in vitro in human cerebral organoids (hCOs) derived from EPM1 patients. We find that CSTB (but not one of its pathological variants) is secreted into the mouse cerebral spinal fluid and the conditioned media from hCOs. In embryonic mouse brain, we find that functional CSTB influences progenitors’ proliferation and modulates neuronal distribution by attracting interneurons to the site of secretion via cell‐non‐autonomous mechanisms. Similarly, in patient‐derived hCOs, low levels of functional CSTB result in an alteration of progenitor's proliferation, premature differentiation, and changes in interneurons migration. Secretion and extracellular matrix organization are the biological processes particularly affected as suggested by a proteomic analysis in patients’ hCOs. Overall, our study sheds new light on the cellular mechanisms underlying the development of EPM1.
Collapse
Affiliation(s)
- Francesco Di Matteo
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Isabella Tovecci
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University Federico II, Naples, Italy
| | | | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ane Cristina Ayo-Martin
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | | | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Planegg/Martinsried, Germany.,Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Planegg/Martinsried, Germany.,SyNergy Excellence Cluster, Munich, Germany
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | | |
Collapse
|
14
|
Žerovnik E. Possible Mechanisms by which Stefin B could Regulate Proteostasis and Oxidative Stress. Cells 2019; 8:E70. [PMID: 30669344 PMCID: PMC6357131 DOI: 10.3390/cells8010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
Abstract
Human stefin B is a protease inhibitor from the family of cystatins. It was reported that it forms oligomers in cells. We have shown that it has a role in cell's response to misfolded proteins. We also have shown that its oligomers bind amyloid-beta (Aβ). Here, we discuss ways, how stefin B could reduce build-up of protein aggregates by other proteins and consequently reduces ROS and, how this might be connected to autophagy. When overexpressed, stefin B forms protein aggregates itself and these protein aggregates induce autophagy. Similarly, cystatin C was shown to bind Aβ and to induce autophagy. It is also suggested how more knowledge about the role of stefin B in a cell's response to misfolded proteins could be used to modulate progressive myoclonus epilepsy of type 1 EPM1 disease.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
In Silico Analysis of Missense Mutations as a First Step in Functional Studies: Examples from Two Sphingolipidoses. Int J Mol Sci 2018; 19:ijms19113409. [PMID: 30384423 PMCID: PMC6275066 DOI: 10.3390/ijms19113409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
In order to delineate a better approach to functional studies, we have selected 23 missense mutations distributed in different domains of two lysosomal enzymes, to be studied by in silico analysis. In silico analysis of mutations relies on computational modeling to predict their effects. Various computational platforms are currently available to check the probable causality of mutations encountered in patients at the protein and at the RNA levels. In this work we used four different platforms freely available online (Protein Variation Effect Analyzer- PROVEAN, PolyPhen-2, Swiss-model Expert Protein Analysis System—ExPASy, and SNAP2) to check amino acid substitutions and their effect at the protein level. The existence of functional studies, regarding the amino acid substitutions, led to the selection of the distinct protein mutants. Functional data were used to compare the results obtained with different bioinformatics tools. With the advent of next-generation sequencing, it is not feasible to carry out functional tests in all the variants detected. In silico analysis seems to be useful for the delineation of which mutants are worth studying through functional studies. Therefore, prediction of the mutation impact at the protein level, applying computational analysis, confers the means to rapidly provide a prognosis value to genotyping results, making it potentially valuable for patient care as well as research purposes. The present work points to the need to carry out functional studies in mutations that might look neutral. Moreover, it should be noted that single nucleotide polymorphisms (SNPs), occurring in coding and non-coding regions, may lead to RNA alterations and should be systematically verified. Functional studies can gain from a preliminary multi-step approach, such as the one proposed here.
Collapse
|
16
|
Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Castagnola M, Messana I, Olianas A. Salivary Cystatins: Exploring New Post-Translational Modifications and Polymorphisms by Top-Down High-Resolution Mass Spectrometry. J Proteome Res 2018; 16:4196-4207. [PMID: 29019242 DOI: 10.1021/acs.jproteome.7b00567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cystatins are a complex family of cysteine peptidase inhibitors. In the present study, various proteoforms of cystatin A, cystatin B, cystatin S, cystatin SN, and cystatin SA were detected in the acid-soluble fraction of human saliva and characterized by a top-down HPLC-ESI-MS approach. Proteoforms of cystatin D were also detected and characterized by an integrated top-down and bottom-up strategy. The proteoforms derive from coding sequence polymorphisms and post-translational modifications, in particular, phosphorylation, N-terminal processing, and oxidation. This study increases the current knowledge of salivary cystatin proteoforms and provides the basis to evaluate possible qualitative/quantitative variations of these proteoforms in different pathological states and reveal new potential salivary biomarkers of disease. Data are available via ProteomeXchange with identifier PXD007170.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Barbara Liori
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Federica Vincenzoni
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Irene Messana
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
17
|
Körber I, Katayama S, Einarsdottir E, Krjutškov K, Hakala P, Kere J, Lehesjoki AE, Joensuu T. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia. PLoS One 2016; 11:e0158195. [PMID: 27355630 PMCID: PMC4927094 DOI: 10.1371/journal.pone.0158195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/26/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes.
Collapse
Affiliation(s)
- Inken Körber
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Paula Hakala
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tarja Joensuu
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
18
|
Mancini GM, Schot R, de Wit MCY, de Coo RF, Oostenbrink R, Bindels-de Heus K, Berger LP, Lequin MH, de Vries FA, Wilke M, van Slegtenhorst MA. CSTBnull mutation associated with microcephaly, early developmental delay, and severe dyskinesia. Neurology 2016; 86:877-8. [DOI: 10.1212/wnl.0000000000002422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/29/2015] [Indexed: 11/15/2022] Open
|
19
|
Manninen O, Puolakkainen T, Lehto J, Harittu E, Kallonen A, Peura M, Laitala-Leinonen T, Kopra O, Kiviranta R, Lehesjoki AE. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy. Bone Rep 2015; 3:76-82. [PMID: 28377970 PMCID: PMC5365244 DOI: 10.1016/j.bonr.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/−) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation. μCT reveals changes in trabecular bone of the Cstb−/− mouse model of EPM1, compatible with findings in human patients. Bone histology in Cstb−/− mice shows lower osteoclast number and thinner growth plates in long bones. Cultured osteoclasts of Cstb−/− mice show decreased size and number of mature osteoclasts with impaired bone resorption. Impaired osteoclast formation and resorption are likely to underlie the bone phenotype associated with CSTB deficiency.
Collapse
Affiliation(s)
- Otto Manninen
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | | | - Jemina Lehto
- Department of Medicine, University of Turku, 20520 Turku, Finland
| | - Elina Harittu
- Department of Anatomy, University of Turku, 20520 Turku, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Marko Peura
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | | | - Outi Kopra
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Riku Kiviranta
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
20
|
Železnik TZ, Kadin A, Turk V, Dolenc I. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells. Biochem Biophys Res Commun 2015; 465:213-7. [PMID: 26239660 DOI: 10.1016/j.bbrc.2015.07.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes.
Collapse
Affiliation(s)
- Tajana Zajc Železnik
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Andrey Kadin
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
21
|
Kopra O, Joensuu T, Lehesjoki AE. Mouse Model of Unverricht-Lundborg Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Joensuu T, Tegelberg S, Reinmaa E, Segerstråle M, Hakala P, Pehkonen H, Korpi ER, Tyynelä J, Taira T, Hovatta I, Kopra O, Lehesjoki AE. Gene expression alterations in the cerebellum and granule neurons of Cstb(-/-) mouse are associated with early synaptic changes and inflammation. PLoS One 2014; 9:e89321. [PMID: 24586687 PMCID: PMC3937333 DOI: 10.1371/journal.pone.0089321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited neurodegenerative disease, manifesting with myoclonus, seizures and ataxia, caused by mutations in the cystatin B (CSTB) gene. With the aim of understanding the molecular basis of pathogenetic events in EPM1 we characterized gene expression changes in the cerebella of pre-symptomatic postnatal day 7 (P7) and symptomatic P30 cystatin B -deficient (Cstb(-/-) ) mice, a model for the disease, and in cultured Cstb(-/-) cerebellar granule cells using a pathway-based approach. Differentially expressed genes in P7 cerebella were connected to synaptic function and plasticity, and in cultured cerebellar granule cells, to cell cycle, cytoskeleton, and intracellular transport. In particular, the gene expression data pinpointed alterations in GABAergic pathway. Electrophysiological recordings from Cstb(-/-) cerebellar Purkinje cells revealed a shift of the balance towards decreased inhibition, yet the amount of inhibitory interneurons was not declined in young animals. Instead, we found diminished number of GABAergic terminals and reduced ligand binding to GABAA receptors in Cstb(-/-) cerebellum. These results suggest that alterations in GABAergic signaling could result in reduced inhibition in Cstb(-/-) cerebellum leading to the hyperexcitable phenotype of Cstb(-/-) mice. At P30, the microarray data revealed a marked upregulation of immune and defense response genes, compatible with the previously reported early glial activation that precedes neuronal degeneration. This further implies the role of early-onset neuroinflammation in the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Tarja Joensuu
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Saara Tegelberg
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Eva Reinmaa
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Mikael Segerstråle
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Heidi Pehkonen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Esa R. Korpi
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Jaana Tyynelä
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Outi Kopra
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 2013; 33:3392-400. [DOI: 10.1038/onc.2013.314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/19/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
|
24
|
Abstract
Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.
Collapse
Affiliation(s)
- Spela Magister
- 1. Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
| | | |
Collapse
|
25
|
Canafoglia L, Gennaro E, Capovilla G, Gobbi G, Boni A, Beccaria F, Viri M, Michelucci R, Agazzi P, Assereto S, Coviello DA, Di Stefano M, Rossi Sebastiano D, Franceschetti S, Zara F. Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygousCSTBpoint and indel mutations. Epilepsia 2012. [DOI: 10.1111/j.1528-1167.2012.03718.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Pinto E, Freitas J, Duarte AJ, Ribeiro I, Ribeiro D, Lima JL, Chaves J, Amaral O. Unverricht–Lundborg disease: Homozygosity for a new splicing mutation in the cystatin B gene. Epilepsy Res 2012; 99:187-90. [DOI: 10.1016/j.eplepsyres.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/07/2011] [Accepted: 11/13/2011] [Indexed: 11/28/2022]
|
27
|
Brault V, Martin B, Costet N, Bizot JC, Hérault Y. Characterization of PTZ-induced seizure susceptibility in a down syndrome mouse model that overexpresses CSTB. PLoS One 2011; 6:e27845. [PMID: 22140471 PMCID: PMC3227573 DOI: 10.1371/journal.pone.0027845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/26/2011] [Indexed: 12/27/2022] Open
Abstract
Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment.
Collapse
Affiliation(s)
- Véronique Brault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Inserm U596, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Benoît Martin
- Inserm U642, Rennes, France
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France
| | - Nathalie Costet
- Inserm U642, Rennes, France
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France
| | | | - Yann Hérault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Inserm U596, CNRS UMR7104, Université de Strasbourg, Illkirch, France
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
- Institut Français Clinique de la Souris, GIE CERBM, Illkirch, France
| |
Collapse
|
28
|
Puri R, Suzuki T, Yamakawa K, Ganesh S. Dysfunctions in endosomal–lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 2011; 21:175-84. [DOI: 10.1093/hmg/ddr452] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Polajnar M, Žerovnik E. Impaired autophagy: a link between neurodegenerative diseases and progressive myoclonus epilepsies. Trends Mol Med 2011; 17:293-300. [DOI: 10.1016/j.molmed.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 01/29/2023]
|
30
|
Cohen NR, Hammans SR, Macpherson J, Nicoll JAR. New neuropathological findings in Unverricht-Lundborg disease: neuronal intranuclear and cytoplasmic inclusions. Acta Neuropathol 2011; 121:421-7. [PMID: 20721566 DOI: 10.1007/s00401-010-0738-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Unverricht-Lundborg disease (EPM1A), also known as Baltic myoclonus, is the most common form of progressive myoclonic epilepsy. It is inherited as an autosomal recessive trait, due to mutations in the Cystatin-B gene promoter region. Although there is much work on rodent models of this disease, there is very little published neuropathology in patients with EPM1A. Here, we present the neuropathology of a patient with genetically confirmed EPM1A, who died at the age of 76. There was atrophy and gliosis affecting predominantly the cerebellum, frontotemporal cortex, hippocampus and thalamus. We have identified neuronal cytoplasmic inclusions containing the lysosomal proteins, Cathepsin-B and CD68. These inclusions also showed immunopositivity to both TDP-43 and FUS, in some cases associated with an absence of normal neuronal nuclear TDP-43 staining. There were also occasional ubiquitinylated neuronal intranuclear inclusions, some of which were FUS immunopositive. This finding is consistent with neurodegeneration in EPM1A as at least a partial consequence of lysosomal damage to neurons, which have reduced Cystatin-B-related neuroprotection. It also reveals a genetically defined neurodegenerative disease with both FUS and TDP-43 related pathology.
Collapse
Affiliation(s)
- Nicola R Cohen
- Cellular Pathology, Southampton General Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
31
|
Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. ACTA ACUST UNITED AC 2011; 134:258-77. [PMID: 21186265 DOI: 10.1093/brain/awq341] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koskenkorva P, Hyppönen J, Äikiä M, Mervaala E, Kiviranta T, Eriksson K, Lehesjoki AE, Vanninen R, Kälviäinen R. Severer Phenotype in Unverricht-Lundborg Disease (EPM1) Patients Compound Heterozygous for the Dodecamer Repeat Expansion and the c.202C>T Mutation in the CSTB Gene. NEURODEGENER DIS 2011; 8:515-22. [DOI: 10.1159/000323470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
|
33
|
Kaur G, Mohan P, Pawlik M, DeRosa S, Fajiculay J, Che S, Grubb A, Ginsberg SD, Nixon RA, Levy E. Cystatin C rescues degenerating neurons in a cystatin B-knockout mouse model of progressive myoclonus epilepsy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2256-67. [PMID: 20889561 DOI: 10.2353/ajpath.2010.100461] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vitro studies have shown that cystatin C (CysC) is neuroprotective. Here we demonstrate that CysC is neuroprotective in vivo, in a mouse model of the inherited neurodegenerative disorder, progressive myoclonic epilepsy type 1 (EPM1). Loss-of-function mutations in the cystatin B (CysB) gene, an intracellular cysteine protease inhibitor, lead to this human disease. A CysB-knockout (CysBKO) mouse model develops symptoms that mimic EPM1. CysB deficiency in these mice results in enhanced cathepsin B and D activities, indicating lysosomal dysfunction. We show that expression of CysC is enhanced in the brains of CysBKO mice. Crossbreeding of CysBKO mice with either CysC-overexpressing transgenic mice or CysC-knockout mice demonstrates that clinical symptoms and neuropathologies, including motor coordination disorder, cerebellar atrophy, neuronal loss in the cerebellum and cerebral cortex, and gliosis caused by CysB deficiency, are rescued by CysC overexpression and exacerbated by CysC deficiency. Thus, CysC effectively rescues the CysB loss-of-function mutations, facilitating the reversal of pathophysiological changes and suggesting a novel therapeutic intervention for patients with EPM1 and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gurjinder Kaur
- Nathan S. Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zerovnik E, Staniforth RA, Turk D. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions. Biochimie 2010; 92:1597-607. [PMID: 20685229 DOI: 10.1016/j.biochi.2010.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/20/2010] [Indexed: 11/26/2022]
Abstract
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (E(a)'s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer's disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.
Collapse
Affiliation(s)
- Eva Zerovnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
35
|
|
36
|
Čeru S, Konjar Š, Maher K, Repnik U, Križaj I, Benčina M, Renko M, Nepveu A, Žerovnik E, Turk B, Kopitar-Jerala N. Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 2010; 285:10078-10086. [PMID: 20075068 PMCID: PMC2843170 DOI: 10.1074/jbc.m109.034793] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 01/08/2010] [Indexed: 11/06/2022] Open
Abstract
Stefin B (cystatin B) is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB) gene were reported in patients with Unverricht-Lundborg disease (EPM1). We have identified an interaction between stefin B and nucleosomes, specifically with histones H2A.Z, H2B, and H3. In synchronized T98G cells, stefin B co-immunoprecipitated with histone H3, predominantly in the G(1) phase of the cell cycle. Stefin B-deficient mouse embryonic fibroblasts entered S phase earlier than wild type mouse embryonic fibroblasts. In contrast, increased expression of stefin B in the nucleus delayed cell cycle progression in T98G cells. The delay in cell cycle progression was associated with the inhibition of cathepsin L in the nucleus, as judged from the decreased cleavage of the CUX1 transcription factor. In vitro, inhibition of cathepsin L by stefin B was potentiated in the presence of histones, whereas histones alone did not affect the cathepsin L activity. Interaction of stefin B with the Met-75 truncated form of cathepsin L in the nucleus was confirmed by fluorescence resonance energy transfer experiments in the living cells. Stefin B could thus play an important role in regulating the proteolytic activity of cathepsin L in the nucleus, protecting substrates such as transcription factors from its proteolytic processing.
Collapse
Affiliation(s)
- Slavko Čeru
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Špela Konjar
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Katarina Maher
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Urška Repnik
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Igor Križaj
- Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - Mojca Benčina
- Department of Biotechnology, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Miha Renko
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Alain Nepveu
- Molecular Oncology Group, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Eva Žerovnik
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Boris Turk
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia
| | - Nataša Kopitar-Jerala
- Departments of Biochemistry and Molecular and Structural Biology, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
37
|
Intracellular aggregation of human stefin B: confocal and electron microscopy study. Biol Cell 2010; 102:319-34. [PMID: 20078424 DOI: 10.1042/bc20090163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Protein aggregation is a major contributor to the pathogenic mechanisms of human neurodegenerative diseases. Mutations in the CSTB (cystatin B) gene [StB (stefin B)] cause EPM1 (progressive myoclonus epilepsy of type 1), an epilepsy syndrome with features of neurodegeneration and increased oxidative stress. Oligomerization and aggregation of StB in mammalian cells have recently been reported. It has also been observed that StB is overexpressed after seizures and in certain neurodegenerative conditions, which could potentially lead to its aggregation. Human StB proved to be a good model system to study amyloid fibril formation in vitro and, as we show here, to study protein aggregation in cells. RESULTS Endogenous human StB formed smaller, occasional cytoplasmic aggregates and chemical inhibition of the UPS (ubiquitin-proteasome system) led to an increase in the amount of the endogenous protein and also increased its aggregation. Further, we characterized both the untagged and T-Sapphire-tagged StB on overexpression in mammalian cells. Compared with wild-type StB, the EPM1 missense mutant (G4R), the aggregate-prone EPM1 mutant (R68X) and the Y31 StB variant (both tagged and untagged) formed larger cytosolic and often perinuclear aggregates accompanied by cytoskeletal reorganization. Non-homogeneous morphology of these large aggregates was revealed using TEM (transmission electron microscopy) with StB detected by immunogold labelling. StB-positive cytoplasmic aggregates were partially co-localized with ubiquitin, proteasome subunits S20 and S26 and components of microfilament and microtubular cytoskeleton using confocal microscopy. StB aggregates also co-localized with LC3 and the protein adaptor p62, markers of autophagy. Flow cytometry showed that protein aggregation was associated with reduced cell viability. CONCLUSIONS We have shown that endogenous StB aggregates within cells, and that aggregation is increased upon protein overexpression or proteasome inhibition. From confocal and TEM analyses, we conclude that aggregates of StB show some of the molecular characteristics of aggresomes and may be eliminated from the cell by autophagy. Intracellular StB aggregation shows a negative correlation with cell survival.
Collapse
|
38
|
Ramachandran N, Girard JM, Turnbull J, Minassian BA. The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009; 50 Suppl 5:29-36. [DOI: 10.1111/j.1528-1167.2009.02117.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Delgado-Escueta AV, Bourgeois BFD. Debate: Does genetic information in humans help us treat patients? PRO--genetic information in humans helps us treat patients. CON--genetic information does not help at all. Epilepsia 2009; 49 Suppl 9:13-24. [PMID: 19087113 DOI: 10.1111/j.1528-1167.2008.01922.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PRO: In the past decade, genotyping has started to help the neurologic practitioner treat patients with three types of epilepsy causing mutations, namely (1) SCN1A, a sodium channel gene mutated in Dravet's sporadic severe myoclonic epilepsy of infancy (SMEI and SMEB); (2) laforin (dual specificity protein phosphatase) and malin (ubiquitin E3 ligase) in Lafora progressive myoclonic epilepsy (PME); and (3) cystatin B in Unverricht-Lundborg type of PME. Laforin, malin, and cystatin B are non-ion channel gene mutations that cause PME. Genotyping ensures accurate diagnosis, helps treatment and genetic counseling, psychological and social help for patients and families, and directs families to organizations devoted to finding cures for specific epilepsy diseases. In SCN1A and cystatin B mutations, treatment with sodium channel blockers (phenytoin, carbamazepine, oxcarbazepine, lamotrigine) should be avoided. Because of early and correct diagnosis by genotyping of SCN1A mutations, the avoidance of sodium channel blockers, and aggressive treatment of prolonged convulsive status, there is hope that Dravet's syndrome may not be as severe as observed in all past reports. Genotyping also identifies nonsense mutations in Lafora PME. Nonsense mutations can be corrected by premature stop codon readthrough drugs such as gentamicin. The community practitioner together with epilepsy specialists in PME can work together and acquire gentamicin (Barton-Davis et al., 1999) for "compassionate use" in Lafora PME, a generalized lysosome multiorgan storage disorder that is invariably fatal. In Unverricht-Lundborg PME, new cohorts with genotyped cystatin B mutations have led to the chronic use of antioxidant N-acetylcysteine and combination valproate clobazam or clonazepam plus antimyoclonic drugs topiramate, zonisamide, piracetam, levetiracetam, or brivaracetam. These cohorts have minimal ataxia and no dementia, questioning whether the syndrome is truly progressive. In conclusion, not only is genotyping a prerequisite in the diagnosis of Dravet's syndrome and the progressive myoclonus epilepsies, but it also helps us choose the correct antiepileptic drugs to treat seizures in Dravet's syndrome and Unverricht-Lundborg PME. Genotyping also portends a brighter future, helping us to reassess the true course, severity, and progressive nature of Dravet's syndrome and Unverricht-Lundborg PME and helping us craft a future curative treatment for Dravet's syndrome and Lafora disease. Without the genotyping diagnosis of epilepsy causing mutations we are stuck with imprecise diagnosis and symptomatic treatment of seizures. CON: Genotyping of epilepsy may help to better understand the genetics of epilepsy, to establish an etiology in a patient with epilepsy, to provide genetic counseling, and to confirm a clinical diagnosis. However, critical analysis reveals that genotyping does not contribute to an improved treatment for the patients. In order to improve treatment, genotyping would have to (1) improve our ability to select the drug of choice for a given epilepsy or epileptic syndrome; (2) improve our ability to predict the individual risk of adverse reactions to certain drugs; (3) improve our ability to avoid unnecessary treatments or treatments that could aggravate seizures. Many example illustrate the lack of impact of genetic information on the treatment outcome: we do not treat Dravet syndrome more successfully since SCN1A testing became available; we do not treat Lafora disease more successfully since testing for laforin and malin became available; we do not need to know the genetic nature of Unverricht-Lundborg disease or test for the cystatin B mutation in order to select or avoid certain drugs; we do not treat Rett syndrome more successfully since MECP2 testing became available; we do not treat JME more successfully since we know its genetic origin; we do not treat autosomal dominant nocturnal frontal lobe epilepsy more successfully since we know its genetic origin and can test for its mutation. The clinical characteristics as well as the response to treatment of these epilepsy syndromes have been well established before genotyping became available. It can not be argued that genotyping is necessary for establishing a diagnosis or ensure accurate diagnosis. Since not all individuals with given syndromes have been shown to have the corresponding mutation, the clinical diagnosis must have been based on well-established clinical criteria. In addition, the presence or absence of the mutation in a given patient has never been shown to specifically predict the response to any form of treatment, positive or negative. Finally, the appropriate psychological and social help in a given patient will not depend on the identification of a mutation. This does not leave any role for genotyping in epilepsy for the sole reason of improving treatment of the patient. Claiming that the result of genotyping predicts optimal treatment in certain epilepsies is equivalent to stating that genotyping for diabetes has become available and that, based on this breakthrough, insulin can now be selected as the treatment of choice in those who test positive.
Collapse
Affiliation(s)
- Antonio V Delgado-Escueta
- Epilepsy Genetics/Genomics Laboratories, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, West Los Angeles, California 90073, USA.
| | | |
Collapse
|
40
|
Abstract
The term “epilepsy” describes a heterogeneous group of disorders, most of them caused by interactions between several or even many genes and environmental factors. Much rarer are the genetic epilepsies that are due to single-gene mutations or defined structural chromosomal aberrations, such as microdeletions. The discovery of several of the genes underlying these rare genetic epilepsies has already considerably contributed to our understanding of the basic mechanisms epileptogenesis. The progress made in the last 15 years in the genetics of epilepsy is providing new possibilities for diagnosis and therapy. Here, different genetic epilepsies are reviewed as examples, to demonstrate the various pathways that can lead from genes to seizures.
Collapse
Affiliation(s)
- Ortrud K Steinlein
- Ludwig-Maximilians-University of Munich School of Medicine, Institute of Human Genetics, Goethestr. 29, 80336 Munich, Germany.
| |
Collapse
|
41
|
Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, Lüllmann-Rauch R, Blanz J, Zhang KW, Stankovich J, Kalnins RM, Dowling JP, Andermann E, Andermann F, Faldini E, D'Hooge R, Vadlamudi L, Macdonell RA, Hodgson BL, Bayly MA, Savige J, Mulley JC, Smyth GK, Power DA, Saftig P, Bahlo M. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008; 82:673-84. [PMID: 18308289 PMCID: PMC2427287 DOI: 10.1016/j.ajhg.2007.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/10/2007] [Accepted: 12/28/2007] [Indexed: 01/09/2023] Open
Abstract
Action myoclonus-renal failure syndrome (AMRF) is an autosomal-recessive disorder with the remarkable combination of focal glomerulosclerosis, frequently with glomerular collapse, and progressive myoclonus epilepsy associated with storage material in the brain. Here, we employed a novel combination of molecular strategies to find the responsible gene and show its effects in an animal model. Utilizing only three unrelated affected individuals and their relatives, we used homozygosity mapping with single-nucleotide polymorphism chips to localize AMRF. We then used microarray-expression analysis to prioritize candidates prior to sequencing. The disorder was mapped to 4q13-21, and microarray-expression analysis identified SCARB2/Limp2, which encodes a lysosomal-membrane protein, as the likely candidate. Mutations in SCARB2/Limp2 were found in all three families used for mapping and subsequently confirmed in two other unrelated AMRF families. The mutations were associated with lack of SCARB2 protein. Reanalysis of an existing Limp2 knockout mouse showed intracellular inclusions in cerebral and cerebellar cortex, and the kidneys showed subtle glomerular changes. This study highlights that recessive genes can be identified with a very small number of subjects. The ancestral lysosomal-membrane protein SCARB2/LIMP-2 is responsible for AMRF. The heterogeneous pathology in the kidney and brain suggests that SCARB2/Limp2 has pleiotropic effects that may be relevant to understanding the pathogenesis of other forms of glomerulosclerosis or collapse and myoclonic epilepsies.
Collapse
Affiliation(s)
- Samuel F Berkovic
- Department of Medicine, Austin Health and Northern Health, Heidelberg, Victoria 3081, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee MJ, Yu GR, Park SH, Cho BH, Ahn JS, Park HJ, Song EY, Kim DG. Identification of cystatin B as a potential serum marker in hepatocellular carcinoma. Clin Cancer Res 2008; 14:1080-9. [PMID: 18281540 DOI: 10.1158/1078-0432.ccr-07-1615] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE The poor survival rate of hepatocellular carcinoma (HCC) is in part due to the inability to diagnose patients at an early stage. Therefore, the aim of this study was to search for candidate serum marker for HCC and to test their ability to distinguish a HCC from benign liver disease. EXPERIMENTAL DESIGN Genome-wide analysis by a microarray in 40 HCC patients was done between HCC and paired nontumor liver tissues. Expression of cystatin B (CSTB) was examined by mRNA expression analysis and immunohistochemistry. The serum CSTB levels were measured using a sandwich ELISA method in four groups, including normal healthy subjects (group 1, n = 52) and patients with noncirrhotic chronic hepatitis (group 2, n = 53), cirrhosis (group 3, n = 43), and HCC (group 4, n = 62). RESULTS Microarray and statistical analyses identified 248 genes that were expressed differently between HCC and nontumor liver tissues. One of them, CSTB, was expressed preferentially in the HCCs compared with the nontumor tissues, 36 of 45 specimens (80%) by Northern blot and semiquantitative reverse transcription-PCR analyses. The serum CSTB level was much higher in HCC patients than in those with nonmalignant chronic liver disease (groups 2 and 3; P < 0.0001). The receiver operating characteristic curve indicated 5.34 ng/mL to be the optimal value for CSTB, and the sensitivity and specificity for this CSTB value were 85.5% (95% confidence interval, 74.2-93.1%) and 53.1% (95% confidence interval, 42.7-63.4%), respectively, in distinguishing between patients with HCC and those with nonmalignant chronic liver disease. CONCLUSION CSTB is specifically overexpressed in most HCCs and is also elevated in the serum of a large proportion of HCC patients. CSTB or the combination of CSTB and alpha-fetoprotein may be a useful marker for diagnosing patients with HCC with a high sensitivity.
Collapse
Affiliation(s)
- Mi-Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Unverricht-Lundborg disease (EPM1) is an autosomal recessively inherited neurodegenerative disorder and the most common single cause of progressive myoclonus epilepsy worldwide. Mutations in the gene encoding cystatin B (CSTB), a cysteine protease inhibitor, are responsible for the primary defect underlying EPM1. Here, progress toward understanding the molecular mechanisms in EPM1 is reviewed. We summarize the current knowledge about the CSTB gene and mutations as well as the cellular biology of the CSTB protein with emphasis on data emerging from analysis of EPM1 patients. We shed light on the disease mechanisms of EPM1 based on characterization of the CSTB-deficient mouse model.
Collapse
Affiliation(s)
- Tarja Joensuu
- Folkhälsan Institute of Genetics and Neuroscience Center, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
44
|
Cipollini E, Riccio M, Di Giaimo R, Dal Piaz F, Pulice G, Catania S, Caldarelli I, Dembic M, Santi S, Melli M. Cystatin B and its EPM1 mutants are polymeric and aggregate prone in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:312-22. [PMID: 17920138 DOI: 10.1016/j.bbamcr.2007.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
Progressive myoclonus epilepsy type 1 (EPM1) is a neurodegenerative disease correlating with mutations of the cystatin B gene. Cystatin B is described as a monomeric protein with antiprotease function. This work shows that, in vivo, cystatin B has a polymeric structure, highly resistant to SDS, urea, boiling and sensitive to reducing agents and alkaline pH. Hydrogen peroxide increases the polymeric structure of the protein. Mass spectrometry analysis shows that the only component of the polymers is cystatin B. EPM1 mutants of cystatin B transfected in cultured cells are also polymeric. The banding pattern generated by a cysteine-minus mutant is different from that of the wild-type protein as it contains only monomers, dimers and some very high MW bands while misses components of MW intermediate between 25 and 250 kDa. Overexpression of wild-type or EPM1 mutants of cystatin B in neuroblastoma cells generates cytoplasmic aggregates. The cysteine-minus mutant is less prone to the formation of inclusion bodies. We conclude that cystatin B in vivo has a polymeric structure sensitive to the redox environment and that overexpression of the protein generates aggregates. This work describes a protein with a physiological role characterized by highly stable polymers prone to aggregate formation in vivo.
Collapse
Affiliation(s)
- Elena Cipollini
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Joensuu T, Kuronen M, Alakurtti K, Tegelberg S, Hakala P, Aalto A, Huopaniemi L, Aula N, Michellucci R, Eriksson K, Lehesjoki AE. Cystatin B: mutation detection, alternative splicing and expression in progressive myclonus epilepsy of Unverricht-Lundborg type (EPM1) patients. Eur J Hum Genet 2006; 15:185-93. [PMID: 17003839 DOI: 10.1038/sj.ejhg.5201723] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. An unstable expansion of a dodecamer repeat in the CSTB promoter accounts for the majority of EPM1 disease alleles worldwide. We here describe a novel PCR protocol for detection of the dodecamer repeat expansion. We describe two novel EPM1-associated mutations, c.149G > A leading to the p.G50E missense change and an intronic 18-bp deletion (c.168+1_18del), which affects splicing of CSTB. The p.G50E mutation that affects the conserved QVVAG amino acid sequence critical for cathepsin binding fails to associate with lysosomes. This further supports the previously implicated physiological importance of the CSTB-lysosome association. Expression of CSTB mRNA and protein was markedly reduced in lymphoblastoid cells of the patients irrespective of the mutation type. Patients homozygous for the dodecamer expansion mutation showed 5-10% expression compared to controls. By combining database searches with RT-PCR we identified several alternatively spliced CSTB isoforms. One of these, CSTB2, was also present in mouse and was analyzed in more detail. In real-time PCR quantification, CSTB2 expression was less than 5% of total CSTB expression in all human adult and fetal tissues analyzed. In patients homozygous for the minisatellite mutation, the level of CSTB2 was reduced similarly to that of CSTB implicating regulation from the same promoter. The physiological significance of CSTB2 remains to be determined.
Collapse
Affiliation(s)
- Tarja Joensuu
- Department of Medical Genetics and Neuroscience Center, Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Unverricht-Lundborg disease (ULD) is the purest and least severe type of progressive myoclonus epilepsy (PME), and is not associated with progressive cognitive deficit. Symptoms stabilize in adulthood, with a varying degree of permanent, often severe handicap that is mostly due to myoclonus. The disorder follows an autosomal recessive transmission pattern, with onset between 8 and 15 years years of age of generalized tonic-clonic or clonic-tonic-clonic seizures, action myoclonus (massive or segmental), photosensitivity, and often ataxia. Prevalence varies, it is highest in certain isolates (Finland, La Réunion Island) and in region with higher levels of inbreeding (Maghreb). ULD is due to a deficit in cystatin B (stefin B), but the mechanisms leading to the clinical symptoms are not well understood. The causative gene, PME1, was identified in 1991 and localized to chromosome 21q22.3. The mutations are mainly expansions of the CCCCGCCCCGCG dodecamer, but less common point mutations were also found. A variant has been recently reported in a Palestinian family, with localization on chromosome 12. The diagnosis of ULD is made on the basis of family history, age at onset, geographical and ethnic context, and on the typical features of myoclonus and epilepsy, in the absence of cognitive and sensory deficits. Neurophysiological evaluation yields interesting, but unspecific results. There are no biological or pathological markers for ULD. Molecular analysis confirms the diagnosis in most patients. Genetic testing for heterozygotes and even prenatal diagnosis are possible, although seldom performed, if the mutation has been identified. In spite of intensive research, ULD has yet to reveal all of its secrets. It remains a quasi "idiopathic" type of PME, with limited progression. Clinicians and patients are still waiting for an etiologically oriented treatment, which should, ideally, be admnistered early in the course of the disease, if possible before the onset of invalidating symptoms.
Collapse
Affiliation(s)
- P Genton
- Centre Saint-Paul--H. Gastaut, Marseille.
| |
Collapse
|
47
|
Zerovnik E, Skerget K, Tusek-Znidaric M, Loeschner C, Brazier MW, Brown DR. High affinity copper binding by stefin B (cystatin B) and its role in the inhibition of amyloid fibrillation. FEBS J 2006; 273:4250-63. [PMID: 16939620 DOI: 10.1111/j.1742-4658.2006.05426.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show that human stefin B, a protease inhibitor from the family of cystatins, is a copper binding protein, unlike stefin A. We have used isothermal titration calorimetry to directly monitor the binding event at pH 7 and pH 5. At pH 7 stefin B shows a picomolar affinity for copper but at pH 5 the affinity is in the nanomolar range. There is no difference in the affinity of copper between the wildtype stefin B (E31 isoform) and a variant (Y31 isoform), whereas the mutant (P79S), which is tetrameric, does not bind copper. The conformation of stefin B remains unaltered by copper binding. It is known that below pH 5 stefin B undergoes a conformational change and amyloid fibril formation. We show that copper binding inhibits the amyloid fibril formation and, to a lesser degree, the initial aggregation. Similarities to and differences from other copper binding amyloidogenic proteins are discussed.
Collapse
Affiliation(s)
- Eva Zerovnik
- Department of Biochemistry and Molecular Biology, JoZef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
48
|
Leinonen T, Pirinen R, Böhm J, Johansson R, Rinne A, Weber E, Kosma VM. Biological and prognostic role of acid cysteine proteinase inhibitor (ACPI, cystatin A) in non-small-cell lung cancer. J Clin Pathol 2006; 60:515-9. [PMID: 16790691 PMCID: PMC1994551 DOI: 10.1136/jcp.2006.038711] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acid cysteine protease inhibitor (ACPI) is an intracellular protein, often linked to neoplastic changes in epithelium and thought to have an inhibitory role in malignant transformation. AIM To analyse the expression and prognostic role of ACPI in non-small-cell lung cancer (NSCLC). METHOD Histological samples from 199 patients with resected NSCLC were stained immunohistochemically for the expression of ACPI in normal and preneoplastic bronchial epithelium, and in various types of lung carcinomas. RESULTS A normal bronchial epithelium showed positive staining for ACPI in the basal cells, whereas the upper two-thirds of the dysplastic epithelium was ACPI positive. High staining for ACPI was found in 74% (91/123) of squamous-cell carcinomas, whereas 16% (8/49) of adenocarcinomas and 30% of (8/27) large-cell carcinomas showed the high expression of ACPI (p<0.001). Among squamous-cell carcinomas, low expression of ACPI was correlated with poor tumour differentiation (p=0.032). In the whole tissue, reduced expression of ACPI was associated with tumour recurrence (p=0.024). In overall survival (OS) and disease-free survival (DFS) analyses, the histological type of the tumour (both p<0.001) and stage of the tumour (p=0.001, p=0.013, respectively) were related to patient outcome. Low expression of ACPI in tumour cells was associated with poor OS and DFS (p<0.041, p=0.004, respectively). In multivariate analysis, ACPI did not retain its prognostic value, whereas the traditional factors were the most important prognostic factors. CONCLUSIONS ACPI expression is linked with the malignant transformation of the bronchial epithelium and predicts a risk of tumour recurrence as well as poor rate of survival for the patients. However, ACPI does not have any independent prognostic value in NSCLC.
Collapse
Affiliation(s)
- T Leinonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Laitala-Leinonen T, Rinne R, Saukko P, Väänänen HK, Rinne A. Cystatin B as an intracellular modulator of bone resorption. Matrix Biol 2006; 25:149-57. [PMID: 16321512 DOI: 10.1016/j.matbio.2005.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.
Collapse
Affiliation(s)
- Tiina Laitala-Leinonen
- Bone Biology Research Consortium, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
50
|
Horiuchi H, Osawa M, Furutani R, Morita M, Tian W, Awatsu Y, Shimazaki H, Umetsu K. Polymerase Chain Reaction-Based Analysis Using Deaminated DNA of Dodecamer Expansions in CSTB, Associated with Unverricht-Lundborg Myoclonus Epilepsy. ACTA ACUST UNITED AC 2005; 9:328-33. [PMID: 16379547 DOI: 10.1089/gte.2005.9.328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Progressive myoclonus epilepsy of the Unverricht-Lundborg type is an autosomal recessive disorder that is characterized clinically by myoclonic seizures and ataxia. The majority of affected individuals carry repeat expansions of a dodecamer in the promoter region of the cystatin B gene. The unusually high GC content of this tract is refractory to conventional polymerase chain reaction (PCR), and, as a result, a circumventive procedure involving the deamination of DNA with sodium bisulfite has been proposed. This study evaluates the effectiveness of this deamination modification for the detection of dodecamer repeat variants. An analysis of 258 healthy Japanese individuals revealed an allele with four copies of the dodecamer repeat with a frequency of 0.01, in addition to the more commonly observed two and three copy repeat alleles. Homozygous repeat expansions 600 and 680 base pairs in length were detected in the analyses of two affected individuals. For these cases, sequencing, along with an alternative PCR-stutter formation, revealed 41 and 48 copies, respectively, of the dodecamer repeat. The complete conversion of C to T was observed in the expanded tracts, indicating that no methylation occurred at the CpG sites. Based on these results, it was concluded that the use of deaminated DNA allows for a precise analysis of consecutive GC tracts.
Collapse
Affiliation(s)
- H Horiuchi
- Department of Experimental and Forensic Pathology, Yamagata University Faculty of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|