1
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Le-Trilling VTK, Maaßen F, Katschinski B, Hengel H, Trilling M. Deletion of the non-adjacent genes UL148 and UL148D impairs human cytomegalovirus-mediated TNF receptor 2 surface upregulation. Front Immunol 2023; 14:1170300. [PMID: 37600801 PMCID: PMC10437809 DOI: 10.3389/fimmu.2023.1170300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prototypical β-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.
Collapse
Affiliation(s)
| | - Fabienne Maaßen
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| |
Collapse
|
3
|
Cui Y, Liu D, Zhao Z, Zhang J, Li S, Liu Z. Transcriptome analysis and identification of genes associated with leaf crude protein content in foxtail millet [ Setaria italica (L.) P. Beauv.]. Front Genet 2023; 14:1122212. [PMID: 36741329 PMCID: PMC9895776 DOI: 10.3389/fgene.2023.1122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction: Spruce spider mite is a primary insect pest of Chinese chestnut in China and seriously influences its yield and quality. However, the current management against this mite is costly and poorly effective. In previous research, we bred several foxtail millet materials for interplanting with chestnut tree, and found that they had high levels of crude protein (CP) in leaves and attracted spruce spider mite to feed on the leaves, thereby reducing chestnut damage. Methods: In this study, four foxtail millet varieties with significant differences in leaf crude protein content were used for high-throughput sequencing and identification of genes associated with leaf crude protein content. Gene enrichment analyses were carried out to comprehend the functions of these genes and the biological processes in which they are involved. In addition, transcription factors (TFs) were evaluated. Results: 435 differentially expressed genes (DEGs) were identified, suggesting their potential role in crude protein accumulation. Some differentially expressed genes were found to be associated with nitrogen metabolism and ubiquitin-mediated proteolysis pathways. Moreover, we identified 40 TF genes categorized into 11 transcription factor families. Discussion: Our findings represent an important resource that clarifies the mechanisms of accumulation and control of leaf crude protein in foxtail millet, and provide an opportunity for suppression of spruce spider mite attack on Chinese chestnut by interplanting with foxtail millet varieties with high concentrations of leaf crude protein.
Collapse
Affiliation(s)
- Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zilong Zhao
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Jing Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, China,*Correspondence: Suying Li, ; Zhengli Liu,
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, China,*Correspondence: Suying Li, ; Zhengli Liu,
| |
Collapse
|
4
|
Wang T, Jin C, Yang P, Chen Z, Ji J, Sun Q, Yang S, Feng Y, Tang J, Sun Y. UBE2J1 inhibits colorectal cancer progression by promoting ubiquitination and degradation of RPS3. Oncogene 2023; 42:651-664. [PMID: 36567344 PMCID: PMC9957728 DOI: 10.1038/s41388-022-02581-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Ubiquitin-conjugating enzyme E2 J1 (UBE2J1) has been proven to participate in the ubiquitination of multiple substrate proteins. However, the underlying mechanisms of UBE2J1 as a ubiquitin-conjugating enzyme participating in cancer development and progression remain largely unknown. Here, we identified that UBE2J1 is downregulated in colorectal cancer (CRC) tissues and cell lines which are mediated by DNA hypermethylation of its promoter, and decreased UBE2J1 is associated with poor prognosis. Functionally, UBE2J1 serving as a suppressor gene inhibits the proliferation and metastasis of CRC cells. Mechanistically, UBE2J1-TRIM25, forming an E2-E3 complex, physically interacts with and targets RPS3 for ubiquitination and degradation at the K214 residue. The downregulated RPS3 caused by UBE2J1 overexpression restrains NF-κB translocation into the nucleus and therefore inactivates the NF-κB signaling pathway. Our study revealed a novel role of UBE2J1-mediated RPS3 poly-ubiquitination and degradation in disrupting the NF-κB signaling pathway, which may serve as a novel and promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tuo Wang
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Chi Jin
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Peng Yang
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Zhihao Chen
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Qingyang Sun
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- grid.412676.00000 0004 1799 0784Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984The Colorectal Institute of Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China. .,The Colorectal Institute of Nanjing Medical University, Nanjing, China. .,Nanjing Medical University, Nanjing, China.
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China. .,The Colorectal Institute of Nanjing Medical University, Nanjing, China. .,Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China. .,The Colorectal Institute of Nanjing Medical University, Nanjing, China. .,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Jang JH, Jung IY, Kim H, Cho JH. Rainbow trout USP4 downregulates LPS-induced inflammation by removing the K63-linked ubiquitin chain on TAK1. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1019-1026. [PMID: 36372204 DOI: 10.1016/j.fsi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitin-specific protease 4 (USP4) is pivotal in negatively regulating the Toll-like receptor (TLR) signaling-mediated innate immune response. Although USP4 has been well studied in mammals, its role in TLR signaling pathways in fish remains largely unknown. In this study, we investigated the role of USP4 (OmUSP4) in regulating TLR response in rainbow trout Oncorhynchus mykiss. OmUSP4 contained the characteristic domains conserved in other USP4s: domain in USP (DUSP), ubiquitin-like (UBL), and the bi-part catalytic domain known as USP. OmUSP4 expression was increased in RTH-149 cells by stimulation with fish-pathogenic bacteria and bacterial ligands. Gain- and loss-of-function experiments revealed that OmUSP4 mitigated the activation of MAPKs and NF-κB, as well as the expression of pro-inflammatory cytokines in LPS-stimulated cells. OmUSP4 interacted with TAK1, a critical mediator in TLR-mediated NF-κB signaling pathways. LPS stimulation increased the K63-linked polyubiquitination of TAK1, which was significantly suppressed when OmUSP4 was compelled to be overexpressed. These results imply that OmUSP4 might function like mammals to downregulate LPS-induced inflammation in rainbow trout by removing the K63-linked ubiquitin chain on TAK1.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
6
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Huang JP, Li J, Xiao YP, Xu LG. BAG6 negatively regulates the RLR signaling pathway by targeting VISA/MAVS. Front Immunol 2022; 13:972184. [PMID: 36045679 PMCID: PMC9420869 DOI: 10.3389/fimmu.2022.972184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
The virus-induced signaling adaptor protein VISA (also known as MAVS, ISP-1, Cardif) is a critical adaptor protein in the innate immune response to RNA virus infection. Upon viral infection, VISA self-aggregates to form a sizeable prion-like complex and recruits downstream signal components for signal transduction. Here, we discover that BAG6 (BCL2-associated athanogene 6, formerly BAT3 or Scythe) is an essential negative regulator in the RIG-I-like receptor signaling pathway. BAG6 inhibits the aggregation of VISA by promoting the K48-linked ubiquitination and specifically attenuates the recruitment of TRAF2 by VISA to inhibit RLR signaling. The aggregation of VISA and the interaction of VISA and TRAF2 are enhanced in BAG6-deficient cell lines after viral infection, resulting in the enhanced transcription level of downstream antiviral genes. Our research shows that BAG6 is a critical regulating factor in RIG-I/VISA-mediated innate immune response by targeting VISA.
Collapse
|
8
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
9
|
Rehman MYA, Briedé JJ, van Herwijnen M, Krauskopf J, Jennen DGJ, Malik RN, Kleinjans JCS. Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118279. [PMID: 34619179 DOI: 10.1016/j.envpol.2021.118279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination in groundwater is responsible for numerous adverse health outcomes among millions of people. Epigenetic alterations are among the most widely studied mechanisms of As toxicity. To understand how As exposure alters gene expression through epigenetic modifications, a systematic genome-wide study was designed to address the impact of multiple important single nucleotide polymorphisms (SNPs) related to As exposure on the methylome of drinking water As-exposed rural subjects from Pakistan. Urinary As levels were used to stratify subjects into low, medium and high exposure groups. Genome-wide DNA methylation was investigated using MeDIP in combination with NimbleGen 2.1 M Deluxe Promotor arrays. Transcriptome levels were measured using Agilent 8 × 60 K expression arrays. Genotyping of selected SNPs (As3MT, DNMT1a, ERCC2, EGFR and MTHFR) was measured and an integrated genetic risk factor for each respondent was calculated by assigning a specific value to the measured genotypes based on known risk allele numbers. To select a representative model related to As exposure we compared 9 linear mixed models comprising of model 1 (including the genetic risk factor), model 2 (without the genetic risk factor) and models with individual SNPs incorporated into the methylome data. Pathway analysis was performed using ConsensusPathDB. Model 1 comprising the integrated genetic risk factor disclosed biochemical pathways including muscle contraction, cardio-vascular diseases, ATR signaling, GPCR signaling, methionine metabolism and chromatin modification in association with hypo- and hyper-methylated gene targets. A unique pathway (direct P53 effector) was found associated with the individual DNMT1a polymorphism due to hyper-methylation of CSE1L and TRRAP. Most importantly, we provide here the first evidence of As-associated DNA methylation in relation with gene expression of ATR, ATF7IP, TPM3, UBE2J2. We report the first evidence that integrating SNPs data with methylome data generates a more representative epigenome profile and discloses a better insight in disease risks of As-exposed individuals.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jacco Jan Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands.
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| |
Collapse
|
10
|
Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, Mao J, Liu X, Zhu YZ. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med 2021; 11:e591. [PMID: 34841684 PMCID: PMC8567046 DOI: 10.1002/ctm2.591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The methylation of lysine residues has been involved in the multiple biological and diseases processes. Recently, some particular non-histone proteins have been elucidated to be methylated by SMYD2, a SET and MYND domain protein with lysine methyltransferase activity. METHODS SMYD2 was evaluated in synovial tissue and cells derived from rheumatoid arthritis patients. We confirmed TRAF2 could be methylated by SMYD2 using Mass spectrometry, pull-down, immunoprecipitation, methyltransferase assay, ubiquitination assay, luciferase reporter assays, and western blot analyses. Using loss- and gain-of function studies, we explored the biological functions of SMYD2 in vitro and in vivo. Using acute and chronic inflammation with different mice models to determine the impact of SMYD2. RESULTS Here, we first time confirmed that the cytoplasmic protein TRAF2 as the kernel node for NF-κB signaling pathway could be methylated by SMYD2. SMYD2-mediated TRAF2 methylation contributed to the durative sensitization of NF-κB signaling transduction through restraining its own proteolysis and enhancing the activity. In addition, we found knocking down of SMYD2 has different degrees of mitigation in acute and chronic inflammation mice models. Furthermore, as the lysine-specific demethylase, LSD1 could resist methylation on TRAF2 induced by SMYD2. CONCLUSIONS Our data uncovered an unprecedented cytoplasmic protein network that employed methylation of TRAF2 for the maintenance of NF-κB activation during inflammatory diseases.
Collapse
Affiliation(s)
- Weijun Wu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Jinghuan Wang
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Chenxi Xiao
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Zhenghua Su
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Haibi Su
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Wen Zhong
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Jianchun Mao
- Department of RhumatologyShanghai Longhua HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xinhua Liu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Yi Zhun Zhu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
11
|
Tao H, Liao Y, Yan Y, He Z, Zhou J, Wang X, Peng J, Li S, Liu T. BRCC3 Promotes Tumorigenesis of Bladder Cancer by Activating the NF-κB Signaling Pathway Through Targeting TRAF2. Front Cell Dev Biol 2021; 9:720349. [PMID: 34604222 PMCID: PMC8481630 DOI: 10.3389/fcell.2021.720349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
NF-κB signaling is very important in cancers. However, the role of BRCC3-associated NF-κB signaling activation in bladder cancer remains to be characterized. Western blotting and IHC of tissue microarray were used to confirm the abnormal expression of BRCC3 in bladder cancer. Growth curve, colony formation, soft agar assay and Xenograft model were performed to identify the role of BRCC3 over-expression or knock-out in bladder cancer. Further, RNA-Seq and luciferase reporter assays were used to identify the down-stream signaling pathway. Finally, co-immunoprecipitation and fluorescence confocal assay were performed to verify the precise target of BRCC3. Here, we found that high expression of BRCC3 promoted tumorigenesis through targeting the TRAF2 protein. BRCC3 expression is up-regulated in bladder cancer patients which indicates a negative prognosis. By in vitro and in vivo assays, we found genetic BRCC3 ablation markedly blocks proliferation, viability and migration of bladder cancer cells. Mechanistically, RNA-Seq analysis shows that NF-κB signaling is down-regulated in BRCC3-deficient cells. BRCC3 binds to and synergizes with TRAF2 to activate NF-κB signaling. Our results indicate that high BRCC3 expression activates NF-κB signaling by targeting TRAF2 for activation, which in turn facilitates tumorigenesis in bladder cancer. This finding points to BRCC3 as a potential target in bladder cancer patients.
Collapse
Affiliation(s)
- Huangheng Tao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yixiang Liao
- Jingzhou Hospital, Yangtze University, Jingzhou, China.,The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Youji Yan
- Jingzhou Hospital, Yangtze University, Jingzhou, China.,The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Zhiwen He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiajie Zhou
- Jingzhou Hospital, Yangtze University, Jingzhou, China.,The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shangze Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,School of Medicine, Chongqing University, Chongqing, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Frauenstein A, Ebner S, Hansen FM, Sinha A, Phulphagar K, Swatek K, Hornburg D, Mann M, Meissner F. Identification of covalent modifications regulating immune signaling complex composition and phenotype. Mol Syst Biol 2021; 17:e10125. [PMID: 34318608 PMCID: PMC8447602 DOI: 10.15252/msb.202010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cells signal through rearrangements of protein communities governed by covalent modifications and reversible interactions of distinct sets of proteins. A method that identifies those post‐transcriptional modifications regulating signaling complex composition and functional phenotypes in one experimental setup would facilitate an efficient identification of novel molecular signaling checkpoints. Here, we devised modifications, interactions and phenotypes by affinity purification mass spectrometry (MIP‐APMS), comprising the streamlined cloning and transduction of tagged proteins into functionalized reporter cells as well as affinity chromatography, followed by MS‐based quantification. We report the time‐resolved interplay of more than 50 previously undescribed modification and hundreds of protein–protein interactions of 19 immune protein complexes in monocytes. Validation of interdependencies between covalent, reversible, and functional protein complex regulations by knockout or site‐specific mutation revealed ISGylation and phosphorylation of TRAF2 as well as ARHGEF18 interaction in Toll‐like receptor 2 signaling. Moreover, we identify distinct mechanisms of action for small molecule inhibitors of p38 (MAPK14). Our method provides a fast and cost‐effective pipeline for the molecular interrogation of protein communities in diverse biological systems and primary cells.
Collapse
Affiliation(s)
- Annika Frauenstein
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kshiti Phulphagar
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kirby Swatek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Hornburg
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis 2021; 12:608. [PMID: 34117217 PMCID: PMC8196033 DOI: 10.1038/s41419-021-03887-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
Collapse
Affiliation(s)
- Pengshan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yinkun Fu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Man Mohan
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
14
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
15
|
Yang D, Ma X, Xu J, Jia K, Liu X, Zhang P. Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biol Ther 2021; 22:238-247. [PMID: 33632059 DOI: 10.1080/15384047.2021.1883186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Emerging documents revealed that E2 enzyme family has been implicated in regulating the progression of numerous human cancers. Ubiquitin-conjugating enzyme E2 J1 (UBE2J1), a member of E2 enzyme family, has been reported to participate in the biological process of medulloblastoma, while little is known about its functionality in endometrial cancer (EC). Gene expression at the mRNA and protein levels were identified using RT-qPCR and western blot analysis, separately. The alteration on cell proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) process was determined through 5-Ethynyl-2'-deoxyuridine, cell adhesion, wound healing and transwell assays as well as western blot analysis. The role of UBE2J1 in xenograft tumor in mice was determined. Luciferase reporter and chromatin immunoprecipitation assays were conducted to reveal the undering mechanism of UBE2J1. Our results indicated that UBE2J1 displayed high level in EC tissues and cells and predicted poor prognosis of EC patients. In addition, UBE2J1 depletion inhibited cell proliferation, adhesion, motion, EMT process invitro, and repressed tumor growth invivo. Rescue assays manifested that ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate treatment reversed the effects of UBE2J1 on PI3K/AKT pathway activation and malignant phenotypes of EC cells. Finally, zinc finger X-chromosomal protein (zfx), with high expression in EC tissues, was verified to activate UBE2J1 transcription by binding to UBE2J1 promoter. In conclusion, all facts signified that zfx-induced upregulation of UBE2J1 accelerated the progression of EC via regulating the PI3K/AKT signaling pathway, which suggested that UBE2J1 might be of great significance in probing into the underlying therapeutic strategies of EC.
Collapse
Affiliation(s)
- Dexin Yang
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xin Ma
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Jie Xu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| |
Collapse
|
16
|
Hu B, Zhang D, Zhao K, Wang Y, Pei L, Fu Q, Ma X. Spotlight on USP4: Structure, Function, and Regulation. Front Cell Dev Biol 2021; 9:595159. [PMID: 33681193 PMCID: PMC7935551 DOI: 10.3389/fcell.2021.595159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
The deubiquitinating enzyme (DUB)–mediated cleavage of ubiquitin plays a critical role in balancing protein synthesis and degradation. Ubiquitin-specific protease 4 (USP4), a member of the largest subfamily of cysteine protease DUBs, removes monoubiquitinated and polyubiquitinated chains from its target proteins. USP4 contains a DUSP (domain in USP)–UBL (ubiquitin-like) domain and a UBL-insert catalytic domain, sharing a common domain organization with its paralogs USP11 and USP15. USP4 plays a critical role in multiple cellular and biological processes and is tightly regulated under normal physiological conditions. When its expression or activity is aberrant, USP4 is implicated in the progression of a wide range of pathologies, especially cancers. In this review, we comprehensively summarize the current knowledge of USP4 structure, biological functions, pathological roles, and cellular regulation, highlighting the importance of exploring effective therapeutic interventions to target USP4.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dingyue Zhang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kejia Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lijiao Pei
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qianmei Fu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
18
|
UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-κB pathway. Oncogene 2019; 39:322-333. [DOI: 10.1038/s41388-019-0987-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
|
19
|
E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clin Chim Acta 2019; 498:126-134. [PMID: 31445029 DOI: 10.1016/j.cca.2019.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite the medical advances of the 21st century, the incidence of cancer continues to increase and the search for a universal cure remains a major health challenge. Our lack of understanding the complex pathophysiology of the tumor microenvironment has hindered the development and efficiency of anti-cancer therapeutic strategies. The tumor microenvironment, composed of multiple cellular and non-cellular components, enables tumor-promoting processes such as proliferation, angiogenesis, migration and invasion, metastasis, and drug resistance. The ubiquitin-mediated degradation system is involved in several physiologic processes including cell cycling, signal transduction, receptor downregulation, endocytosis and transcriptional regulation. Ubiquitination includes attachment of ubiquitin to target proteins via E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. Several studies have shown that E2 enzymes are dysregulated in variety of cancers. Multiple investigations have demonstrated the involvement of E2s in various tumor-promoting processes including DNA repair, cell cycle progression, apoptosis and oncogenic signaling. E2 enzymes consist of 40 members that facilitate ubiquitin-substrate conjugation thereby modulating the stability and interaction of various proteins. As such, E2s are potential biomarkers as diagnostic, prognostic and therapeutic tools. In this review, we discuss the role of E2s in modulating various types of cancer.
Collapse
|
20
|
Menegatti S, Bianchi E, Rogge L. Anti-TNF Therapy in Spondyloarthritis and Related Diseases, Impact on the Immune System and Prediction of Treatment Responses. Front Immunol 2019; 10:382. [PMID: 30941119 PMCID: PMC6434926 DOI: 10.3389/fimmu.2019.00382] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as spondyloarthritis (SpA), psoriasis, Crohn's disease (CD), and rheumatoid arthritis (RA) remain challenging illnesses. They often strike at a young age and cause lifelong morbidity, representing a considerable burden for the affected individuals and society. Pioneering studies have revealed the presence of a TNF-dependent proinflammatory cytokine cascade in several IMIDs, and the introduction of anti-TNF therapy 20 years ago has proven effective to reduce inflammation and clinical symptoms in RA, SpA, and other IMID, providing unprecedented clinical benefits and a valid alternative in case of failure or intolerable adverse effects of conventional disease-modifying antirheumatic drugs (DMARDs, for RA) or non-steroidal anti-inflammatory drugs (NSAIDs, for SpA). However, our understanding of how TNF inhibitors (TNFi) affect the immune system in patients is limited. This question is relevant because anti-TNF therapy has been associated with infectious complications. Furthermore, clinical efficacy of TNFi is limited by a high rate of non-responsiveness (30–40%) in RA, SpA, and other IMID, exposing a substantial fraction of patients to side-effects without clinical benefit. Despite the extensive use of TNFi, it is still not possible to determine which patients will respond to TNFi before treatment initiation. The recent introduction of antibodies blocking IL-17 has expanded the therapeutic options for SpA, as well as psoriasis and psoriatic arthritis. It is therefore essential to develop tools to guide treatment decisions for patients affected by SpA and other IMID, both to optimize clinical care and contain health care costs. After a brief overview of the biology of TNF, its receptors and currently used TNFi in the clinics, we summarize the progress that has been made to increase our understanding of the action of TNFi on the immune system in patients. We then summarize efforts dedicated to identify biomarkers that can predict treatment responses to TNFi and we conclude with a section dedicated to the recently introduced inhibitors of IL-17A and IL-23 in SpA and related diseases. The focus of this review is on SpA, however, we also refer to RA on topics for which only limited information is available on SpA in the literature.
Collapse
Affiliation(s)
- Silvia Menegatti
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| |
Collapse
|
21
|
Kumari R, Gupta P, Tiwari S. Ubc7/Ube2g2 ortholog in Entamoeba histolytica: connection with the plasma membrane and phagocytosis. Parasitol Res 2018; 117:1599-1611. [PMID: 29594345 DOI: 10.1007/s00436-018-5842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and unfolded protein response (UPR) pathways are important for quality and quantity control of membrane and secretory proteins. We have identified orthologs of ER-associated ubiquitin conjugating enzymes (E2s) Ubc6/Ube2j2 and Ubc7/Ube2g2, ubiquitin ligases (E3) Hrd1 and GP78/AMFR, and sensor of UPR, Ire1 in E. histolytica that show conservation of important features of these proteins. Biochemical characterization of the ortholog of ERAD E2, Ubc7/Ube2g2 (termed as EhUbc7), was carried out. This E2 was transcriptionally upregulated several folds upon induction of UPR with tunicamycin. Ire1 ortholog was also upregulated upon UPR induction suggesting a linked UPR and ERAD pathway in this organism. EhUbc7 showed enzymatic activity and, similar to its orthologs in higher eukaryotes, formed polyubiquitin chains in vitro and localized to both cytoplasm and membranes. However, unlike its ortholog in higher eukaryotes, it also showed localization to the plasma membrane along with calreticulin. Inactivation of EhUbc7 significantly inhibited erythrophagocytosis, suggesting a novel function that has not been reported before for this E2. No change in growth, motility, or cell-surface expression of Gal/GalNAC lectin was observed due to inactivation of EhUbc7. The protein was present in the phagocytic cups but not in the phagosomes. A significant decrease in the number of phagocytic cups in inactive EhUbc7 expressing cells was observed, suggesting altered kinetics of phagocytosis. These findings have implications for evolutionary and mechanistic understanding of connection between phagocytosis and ER-associated proteins.
Collapse
Affiliation(s)
- Rinki Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Gupta
- Microbiology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP, 474002, India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Di Venere A, Nicolai E, Sinibaldi F, Di Pierro D, Caccuri AM, Mei G. Studying the TRAF2 binding to model membranes: The role of subunits dissociation. Biotechnol Appl Biochem 2018; 65:38-45. [PMID: 28960521 DOI: 10.1002/bab.1615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/24/2017] [Indexed: 11/08/2022]
Abstract
The ability of a C-terminal truncated form of TRAF2 to bind synthetic vesicles has been quantitatively studied by steady-state fluorescence energy transfer from the protein to large unilamellar vesicles (LUVs) prepared with different lipid mixtures. The dissociation constants, the free energy of binding, and the average number of phospholipids interacting with truncated TRAF2 have been evaluated from the corresponding binding curves. The results indicate that the protein strongly interacts with the lipid bilayer, preferentially in the monomeric state. These findings have been discussed in terms of their possible role in the activity of TRAF2 in vivo.
Collapse
Affiliation(s)
- Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,NAST Center, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,NAST Center, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sinibaldi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Maria Caccuri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,NAST Center, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,NAST Center, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J 2018; 32:230-242. [PMID: 28874458 PMCID: PMC5731130 DOI: 10.1096/fj.201700415rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
The tumor necrosis factor receptor-associated factor 2 (TRAF2) is a second messenger adaptor protein that plays an essential role in propagating TNF-α-mediated signaling pathways. Modulation of TRAF2 activity by ubiquitination is well studied; however, the deubiquitinating enzyme (DUB), which regulates TRAF2 stability, has not been identified. Here we reveal USP48 as the first identified DUB to deubiquitinate and stabilize TRAF2 in epithelial cells. Down-regulation of USP48 increases K48-linked polyubiquitination of TRAF2 and reduces TRAF2 protein levels. Interestingly, USP48 only targets the TRAF2 related to JNK pathway, not the TRAF2 related to NF-κB and p38 pathways. USP48 is serine phosphorylated in response to TNF-α. The phosphorylation is catalyzed by glycogen synthase kinase 3β (GSK3β), ultimately resulting in increases in USP48 DUB activity. Furthermore, we reveal a new biologic function of TRAF2 that contributes to epithelial barrier dysfunction, which is attenuated by knockdown of USP48. Inhibition of TRAF2/JNK pathway increases E (epithelial)-cadherin expression and enhances epithelial barrier integrity, while knockdown of USP48 attenuates TNF-α/JNK pathway and increases E-cadherin expression and cell-cell junction in epithelial cells. These data, taken together, indicate that USP48 stabilizes TRAF2, which is promoted by GSK3β-mediated phosphorylation. Further, down-regulation of USP48 increases E-cadherin expression and epithelial barrier integrity through reducing TRAF2 stability.-Li, S., Wang, D., Zhao, J., Weathington, N. M., Shang, D., Zhao, Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel M Weathington
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yutong Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
24
|
Ceccarelli A, Di Venere A, Nicolai E, De Luca A, Rosato N, Gratton E, Mei G, Caccuri AM. New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:813-822. [PMID: 28499815 DOI: 10.1016/j.bbalip.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role.
Collapse
Affiliation(s)
- Arianna Ceccarelli
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA
| | - Giampiero Mei
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Anna Maria Caccuri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
25
|
Chen S, Tan Y, Deng H, Shen Z, Liu Y, Wu P, Tan C, Jiang Y. UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget 2017; 8:71736-71749. [PMID: 29069742 PMCID: PMC5641085 DOI: 10.18632/oncotarget.17601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 J2 (UBE2J2) is an ubiquitin proteasome component that responds to proteotoxic stress. We found that UBE2J2 was highly expressed in cellular protrusions of HCCLM3 metastatic hepatocellular carcinoma (HC) cells. Immunohistochemical analyses showed that UBE2J2 was expressed at higher levels in HC patient tissues than in corresponding non-tumor tissues. Because cellular protrusions are important for cell invasion, we hypothesized that UBE2J2 promotes HC cell invasion. We used chip-based surface plasmon resonance (SPR) to assess possible mechanisms of UBE2J2-regulated HCCLM3 cell invasion. We found that p-EGFR interacted with UBE2J2, and this finding was confirmed by co-immunoprecipitation analysis. UBE2J2 overexpression activated endothelial-mesenchymal transition in the non-invasive SMMC7721 HC cell line, and promoted invasion. UBE2J2 silencing reduced HCCLM3 cell invasion and endocytosis, and downregulated p-EGFR expression. p-EGFR inhibition by lapatinib reduced UBE2J2-promoted cell invasion, suggesting p-EGFR is important for UBE2J2-mediated HCCLM3 cell invasion. These findings demonstrate that endocytosis by HC cells is closely related to invasion, and may provide new anti-HC therapeutic targets. UBE2J2 may also be a novel biomarker for clinical HC diagnosis.
Collapse
Affiliation(s)
- Shaopeng Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ying Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | | | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanhong Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Pan Wu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Elangovan M, Chong HK, Park JH, Yeo EJ, Yoo YJ. The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery. J Cell Commun Signal 2017; 11:265-273. [PMID: 28321712 DOI: 10.1007/s12079-017-0386-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
The human Ube2j1 and Ube2j2 are the only ubiquitin-conjugating enzymes (E2s) that are localized to endoplasmic reticulum (ER) through its C-terminal transmembrane domains. Ube2j1 is a known substrate of MAPK signalling pathway and it is phosphorylated at serine-184 during ER stress. Here, we demonstrate that Ube2j1, not Ube2j2 is essential for the recovery of cells from transient ER stress. The ectopic expression of wild-type Ube2j1 and phospho-mimic mutant, Ube2j1S184D but not phospho-mutant Ube2j1S184A can recover cells from ER stress. We also found that ubiquitin-ligase (E3), c-IAP1 preferentially interacts with phosphorylated Ube2j1. Moreover, we noticed that phosphorylated Ube2j1 is rapidly degraded by the proteasome during ER stress cell recovery. Taken together, these data suggest that Ube2j1 and its phosphorylation is important for transient ER stress cell recovery and the phosphorylated Ube2j1 is degraded by the proteasome.
Collapse
Affiliation(s)
- Muthukumar Elangovan
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Hae Kwan Chong
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Hee Park
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eui Ju Yeo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
27
|
Molino Y, Jabès F, Bonnet A, Gaudin N, Bernard A, Benech P, Khrestchatisky M. Gene expression comparison reveals distinct basal expression of HOX members and differential TNF-induced response between brain- and spinal cord-derived microvascular endothelial cells. J Neuroinflammation 2016; 13:290. [PMID: 27832801 PMCID: PMC5105278 DOI: 10.1186/s12974-016-0749-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023] Open
Abstract
Background The heterogeneity of endothelial cell types underlies their remarkable ability to sub-specialize and provide specific requirements for a given vascular bed. Here, we compared rat microvascular endothelial cells (MECs) derived from the brain and spinal cord in both basal and inflammatory conditions. Methods We used whole rat genome microarrays to compare, at different time points, basal and TNF-α-induced gene expression of rat MECs from in vitro models of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). Validation at both messenger RNA (mRNA) and protein levels was performed on freshly extracted microvessels (MVs) from the brain and spinal cord (BMVs and SCMVs, respectively), as these were considered the closest in vivo tissues to cultured MECs. Results Most of the genes encoding adhesion/tight junction molecules and known endothelial markers were similarly expressed in brain and spinal cord MECs (BMECs and SCMECs, respectively). However, one striking finding was the higher expression of several Hox genes, which encode transcription factors involved in positional identity. The differential expression of Hoxa9 and Hoxb7 at the mRNA levels as well as protein levels was confirmed in BMVs and SCMVs. Although the TNF-α response was in general higher in BMECs than in SCMECs at 12 h, the opposite was observed at 48 h. Furthermore, we found that expression of Tnfrsf1a and Tnfrsf1b encoding the TNF receptor super-family member 1a/TNFR1 and 1b/TNFR2, respectively, were constitutively higher in BMVs compared to SCMVs. However, only Tnfrsf1b was induced in SCMECs in response to TNF-α at 24 and 48 h. Conclusions Our results support a role for HOX members in defining the positional identities of MECs in vivo. Our data also suggest that the delayed transcriptional activation upon TNF-α treatment in SCMECs results from the requirement of the TNF-induced expression of Tnfrsf1b. In contrast, its high basal expression in BMECs might be sufficient to confer an immediate and efficient TNF-α response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | - Françoise Jabès
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | | | | | - Anne Bernard
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | | |
Collapse
|
28
|
TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol 2016; 116:1-10. [DOI: 10.1016/j.bcp.2016.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
|
29
|
Hashem RM, Mohamed RH, Abo-El-matty DM. Effect of curcumin on TNFR2 and TRAF2 in unilateral ureteral obstruction in rats. Nutrition 2015; 32:478-85. [PMID: 26732833 DOI: 10.1016/j.nut.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Tumor necrosis factor α (TNF-α) is implicated in the pathophysiology of renal obstruction through its interactions with two TNF-α receptors: TNFR1 and TNFR2. Activation of TNFR1 leads to the recruitment of the adaptor TNFR-associated death domain protein (TRADD), which binds the Ser/Thr kinase receptor-interacting protein (RIP) and TNFR-associated factors 2 (TRAF2). This TRADD-RIP-TRAF complex causes activation of the antiapoptotic pathway and inhibits caspase 8 activation. Meanwhile, activation of TNFR2 leads to depletion of TRAF2 and enhancement of the apoptotic pathway. Curcumin, the major component found in turmeric spice, has been reported to possess a protective role against renal injury elicited by unilateral ureteral obstruction (UUO). The present study aimed mainly to address the cytoprotective role of curcumin-rich diet (5% w/w) on the apoptotic pathway induced by UUO in rats after 30 d of ligation. METHODS The levels of mRNA for TNFR1, TNFR2, RIP, TRAF2, and caspase 8 were measured by reverse transcription-polymerase chain reaction. The levels of TNF-α was determined by ELISA. Kidney sections were exposed to histologic and morphometric studies. RESULTS Administration of curcumin decreased TNF-α, TNFR2, and caspase 8 without affecting TNFR1 levels. The gene expression levels of the antiapoptotic molecules RIP and TRAF2 were increased. CONCLUSIONS The cytoprotective role of curcumin relies on its ability to decrease the TNFR2 mRNA and enhance the antiapoptotic molecules RIP and TRAF2 to decrease the apoptotic pathway via decreasing the caspase 8.
Collapse
Affiliation(s)
- Reem M Hashem
- Centre for Skin Science, Faculty of Life Sciences, Bradford, Yorkshire, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Rasha H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Dina M Abo-El-matty
- Biochemistry Department, Faculty of Pharmacy, Suez-Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Cabal-Hierro L, Artime N, Iglesias J, Prado MA, Ugarte-Gil L, Casado P, Fernández-García B, Darnay BG, Lazo PS. A TRAF2 binding independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1. Oncotarget 2014; 5:224-36. [PMID: 24318359 PMCID: PMC3960203 DOI: 10.18632/oncotarget.1492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor Necrosis Factor (TNF) interacts with two receptors known as TNFR1 and TNFR2. TNFR1 activation may result in either cell proliferation or cell death. TNFR2 activates Nuclear Factor-kappaB (NF-kB) and c-Jun N-terminal kinase (JNK) which lead to transcriptional activation of genes related to cell proliferation and survival. This depends on the binding of TNF Receptor Associated Factor 2 (TRAF2) to the receptor. TNFR2 also induces TRAF2 degradation. In this work we have investigated the structural features of TNFR2 responsible for inducing TRAF2 degradation and have studied the biological consequences of this activity. We show that when TNFR1 and TNFR2 are co-expressed, TRAF2 depletion leads to an enhanced TNFR1 cytotoxicity which correlates with the inhibition of NF-kB. NF-kB activation and TRAF2 degradation depend of different regions of the receptor since TNFR2 mutants at amino acids 343-349 fail to induce TRAF2 degradation and have lost their ability to enhance TNFR1-mediated cell death but are still able to activate NF-kB. Moreover, whereas NF-kB activation requires TRAF2 binding to the receptor, TRAF2 degradation appears independent of TRAF2 binding. Thus, TNFR2 mutants unable to bind TRAF2 are still able to induce its degradation and to enhance TNFR1-mediated cytotoxicity. To test further this receptor crosstalk we have developed a system stably expressing in cells carrying only endogenous TNFR1 the chimeric receptor RANK-TNFR2, formed by the extracellular region of RANK (Receptor activator of NF-kB) and the intracellular region of TNFR2.This has made possible to study independently the signals triggered by TNFR1 and TNFR2. In these cells TNFR1 is selectively activated by soluble TNF (sTNF) while RANK-TNFR2 is selectively activated by RANKL. Treatment of these cells with sTNF and RANKL leads to an enhanced cytotoxicity.
Collapse
Affiliation(s)
- Lucía Cabal-Hierro
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumari S, Redouane Y, Lopez-Mosqueda J, Shiraishi R, Romanowska M, Lutzmayer S, Kuiper J, Martinez C, Dikic I, Pasparakis M, Ikeda F. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLife 2014; 3. [PMID: 25443631 PMCID: PMC4225491 DOI: 10.7554/elife.03422] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
Linear Ubiquitin chain Assembly Complex (LUBAC) is an E3 ligase complex that generates linear ubiquitin chains and is important for tumour necrosis factor (TNF) signaling activation. Mice lacking Sharpin, a critical subunit of LUBAC, spontaneously develop inflammatory lesions in the skin and other organs. Here we show that TNF receptor 1 (TNFR1)-associated death domain (TRADD)-dependent TNFR1 signaling in epidermal keratinocytes drives skin inflammation in Sharpin-deficient mice. Epidermis-restricted ablation of Fas-associated protein with death domain (FADD) combined with receptor-interacting protein kinase 3 (RIPK3) deficiency fully prevented skin inflammation, while single RIPK3 deficiency only delayed and partly ameliorated lesion development in Sharpin-deficient mice, showing that inflammation is primarily driven by TRADD- and FADD-dependent keratinocyte apoptosis while necroptosis plays a minor role. At the cellular level, Sharpin deficiency sensitized primary murine keratinocytes, human keratinocytes, and mouse embryonic fibroblasts to TNF-induced apoptosis. Depletion of FADD or TRADD in Sharpin-deficient HaCaT cells suppressed TNF-induced apoptosis, indicating the importance of FADD and TRADD in Sharpin-dependent anti-apoptosis signaling in keratinocytes. DOI:http://dx.doi.org/10.7554/eLife.03422.001 In response to an injury or an infection, areas of the body can become inflamed as the immune system attempts to repair the damage and/or destroy any microbes or toxins that have entered the body. At the level of individual cells inflammation can involve cells being programmed to die in one of two ways: apoptosis and necroptosis. Apoptosis is a highly controlled process during which the contents of the cell are safely destroyed in order to prevent damage to surrounding cells. Necroptosis, on the other hand, is not controlled: the cell bursts and releases its contents into the surroundings. Inflammation is activated by a protein called TNF, which is controlled by a complex that includes a protein called Sharpin. Mice that lack the Sharpin protein develop inflammation on the skin and other organs, even in the absence of injury or infection. However, it is not clear how the Sharpin protein controls TNF to prevent inflammation. Kumari et al. have found that inflammation in mice lacking Sharpin depends on TNF interacting with another protein called TRADD. The experiments also show that the inflammation is mainly driven by apoptosis, with necroptosis having only a minor role. Further experiments carried out in mammal cells showed that TRADD and another protein (called FADD) work with Sharpin to prevent apoptosis. At the molecular level, Sharpin is known to induce a special type of protein modification (called linear ubiquitination) with two partner proteins, so the next challenge is to work out exactly how Sharpin uses this process to prevent apoptosis. DOI:http://dx.doi.org/10.7554/eLife.03422.002
Collapse
Affiliation(s)
- Snehlata Kumari
- Institute for Genetics, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Jaime Lopez-Mosqueda
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
| | | | - Malgorzata Romanowska
- Institute for Genetics, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Jan Kuiper
- Institute for Genetics, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology, Vienna, Austria
| |
Collapse
|
32
|
Lam SY, Murphy C, Foley LA, Ross SA, Wang TC, Fleming JV. The human ubiquitin conjugating enzyme UBE2J2 (Ubc6) is a substrate for proteasomal degradation. Biochem Biophys Res Commun 2014; 451:361-6. [DOI: 10.1016/j.bbrc.2014.07.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 11/15/2022]
|
33
|
Su X, Min S, Cao S, Yan H, Zhao Y, Li H, Chai L, Mei S, Yang J, Zhang Y, Zhang Z, Liu F, Sun W, Che Y, Yang R. LRRC19 expressed in the kidney induces TRAF2/6-mediated signals to prevent infection by uropathogenic bacteria. Nat Commun 2014; 5:4434. [PMID: 25026888 DOI: 10.1038/ncomms5434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023] Open
Abstract
The innate immune-dependent bactericidal effects are critical for preventing microbial colonization in the urinary system. However, the mechanisms involved in establishing innate immune responses in kidney are not completely understood. Here we describe the role of a novel member of the LRR (leucine-rich repeat) class of transmembrane proteins, LRRC19 (LRR-containing 19) in eliminating uropathogenic bacteria. LRRC19 is predominantly expressed in human and mouse kidney tubular epithelial cells and LRRC19-deficient mice are more susceptible to uropathogenic Escherichia coli (UPEC) infection than wild-type or TLR4 knockout mice. Recognition of UPEC by LRRC19 induces the production of cytokines, chemokines and antimicrobial substances through TRAF2- and TRAF6-mediated NF-κB and MAPK signalling pathways. Thus, LRRC19 may be a critical pathogen-recognition receptor in kidney mediating the elimination of UPEC infection.
Collapse
Affiliation(s)
- Xiaomin Su
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Siping Min
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Shuisong Cao
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Hui Yan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yining Zhao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hui Li
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Limin Chai
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shiyue Mei
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhujun Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Feifei Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yongzhe Che
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2] Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China
| | - Rongcun Yang
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2] Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China [3] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Therapeutic effects of p75 tumor necrosis factor receptor monoclonal antibody on a rat model of traumatic arthritis. J Surg Res 2014; 186:234-9. [DOI: 10.1016/j.jss.2013.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/22/2022]
|
35
|
Xia P, Qi Y. Cellular inhibitor of apoptosis protein-1 and survival of beta cells undergoing endoplasmic reticulum stress. VITAMINS AND HORMONES 2014; 95:269-98. [PMID: 24559922 DOI: 10.1016/b978-0-12-800174-5.00011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pancreatic beta cells rely heavily on the endoplasmic reticulum (ER) to process folding and posttranslational modification of a large amount of insulin and many other proteins and are therefore vulnerable to ER stress. The role of the ER is thus crucial in the regulation of beta cell function and survival through the unfolded protein response (UPR) pathways. However, the UPR can either allow cells to survive by adapting to stress or kill cells through apoptosis in a context-dependent manner. How cell fate is determined following UPR activation remains enigmatic. In this review, we discuss the molecular mechanisms linking ER stress to beta cell survival or apoptosis. Specifically, we focus on the role of the cellular inhibitor of apoptosis protein-1 and propose a new model for understanding survival of beta cells undergoing ER stress.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute, Sydney, Australia; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Yanfei Qi
- Signal Transduction Program, Centenary Institute, Sydney, Australia
| |
Collapse
|
36
|
Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis. J Cancer Res Clin Oncol 2013; 140:189-97. [DOI: 10.1007/s00432-013-1571-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022]
|
37
|
Ruspi G, Schmidt EM, McCann F, Feldmann M, Williams RO, Stoop AA, Dean JLE. TNFR2 increases the sensitivity of ligand-induced activation of the p38 MAPK and NF-κB pathways and signals TRAF2 protein degradation in macrophages. Cell Signal 2013; 26:683-90. [PMID: 24378531 DOI: 10.1016/j.cellsig.2013.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 12/23/2022]
Abstract
Tumour necrosis factor (p55 or p60) receptor (TNFR) 1 is the major receptor that activates pro-inflammatory signalling and induces gene expression in response to TNF. Consensus is lacking for the function of (p75 or p80) TNFR2 but experiments in mice have suggested neuro-, cardio- and osteo-protective and anti-inflammatory roles. It has been shown in various cell types to be specifically required for the induction of TNFR-associated factor-2 (TRAF2) degradation and activation of the alternative nuclear factor (NF)-kappaB pathway, and to contribute to the activation of mitogen-activated protein kinases (MAPK) and the classical NF-kappaB pathway. We have investigated the signalling functions of TNFR2 in primary human and murine macrophages. We find that in these cells TNF induces TRAF2 degradation, and this is blocked in TNFR2(-/-) macrophages. TRAF2 has been previously reported to be required for TNF-induced activation of p38 MAPK. However, TRAF2 degradation does not inhibit TNF-induced tolerance of p38 MAPK activation. Neither TNF, nor lipopolysaccharide treatment, induced activation of the alternative NF-kappaB pathway in macrophages. Activation by TNF of the p38 MAPK and NF-kappaB pathways was blocked in TNFR1(-/-) macrophages. In contrast, although TNFR2(-/-) macrophages displayed robust p38 MAPK activation and IkappaBα degradation at high concentrations of TNF, at lower doses the concentration dependence of signalling was weakened by an order of magnitude. Our results suggest that, in addition to inducing TRAF2 protein degradation, TNFR2 also plays a crucial auxiliary role to TNFR1 in sensitising macrophages for the ligand-induced activation of the p38 MAPK and classical NF-kappaB pro-inflammatory signalling pathways.
Collapse
Affiliation(s)
- Gerhard Ruspi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Emily M Schmidt
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Fiona McCann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - A Allart Stoop
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge CB4 0WG, United Kingdom
| | - Jonathan L E Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
38
|
Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFα production. Biochem J 2013; 456:163-72. [DOI: 10.1042/bj20130755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protein kinase MK2 phosphorylates the endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 under various stress conditions and during the innate immune response in macrophages. Although its apparent enzyme activity stays unaltered, Ube2j1 contributes to MK2-dependent biosynthesis of tumour necrosis factor α.
Collapse
|
39
|
Taubitz A, Schwarz M, Eltrich N, Lindenmeyer MT, Vielhauer V. Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice. PLoS One 2013; 8:e68167. [PMID: 23869211 PMCID: PMC3711912 DOI: 10.1371/journal.pone.0068167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/30/2013] [Indexed: 12/29/2022] Open
Abstract
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Gene Expression Profiling
- Kidney/metabolism
- Kidney/pathology
- Leukocytes/metabolism
- Leukocytes/pathology
- Leukocytes/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Oligonucleotide Array Sequence Analysis
- Real-Time Polymerase Chain Reaction
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Transforming Growth Factors/pharmacology
Collapse
Affiliation(s)
- Anela Taubitz
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Schwarz
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nuru Eltrich
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Volker Vielhauer
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
40
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
41
|
Nakajima S, Kato H, Gu L, Takahashi S, Johno H, Umezawa K, Kitamura M. Pleiotropic Potential of Dehydroxymethylepoxyquinomicin for NF-κB Suppression via Reactive Oxygen Species and Unfolded Protein Response. THE JOURNAL OF IMMUNOLOGY 2013; 190:6559-69. [DOI: 10.4049/jimmunol.1300155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-α pathway to PCSK9-mediated LDLR degradation pathway. Molecules 2012; 17:12086-101. [PMID: 23085658 PMCID: PMC6268524 DOI: 10.3390/molecules171012086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/17/2022] Open
Abstract
Recent genetic studies have shown that PCSK9, one of the key genes in cholesterol metabolism, plays a critical role by controlling the level of low-density lipoprotein receptor. However, how PCSK9 mediates LDLR degradation is still unknown. By combining a shotgun proteomic method and differential analysis of natural occurring mutations of the PCSK9 gene, we found that an E3 ubiquitin ligase c-IAP1 binds and processes PCSK9 protein. One of the ‘gain-of-function’ mutations, S127R, is defective with respect to binding to c-IAP1, and thus has defective autocatalytic activity. Knockdown of c-IAP1 impairs PCSK9 processing and autocatalytic cleavage. In c-IAP1 null mouse embryonic fibroblasts (MEFs), there is a dramatic decrease in secreted mature PCSK9 protein accompanied by a significant increase in LDLR protein levels compared with matched wild-type MEF cells. c-IAP1 also acts as an E3 ligase for ubiquitination of PCSK9. Ubiquitin containing only lysine-27 mediated PCSK9 ubiquitination by c-IAP1. Given K27-linked polyubiquitination promotes lysosomal localization, the finding indicates the c-IAP1 acts on both secretion of PCSK9 and its lysosomal localization. The novel pathway described here will open new avenues for exploring novel disease treatments.
Collapse
|
43
|
Fiandalo M, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 2012; 34:165-175. [PMID: 23070001 PMCID: PMC3721730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".
Collapse
|
44
|
IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol 2012; 32:4756-68. [PMID: 23007157 DOI: 10.1128/mcb.00468-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-κB transcription factors are central regulators of inflammation and when dysregulated contribute to malignant transformation. IκB kinase ε (IKKε; IKKi, encoded by IKBKE) is a breast oncogene that is amplified in 30% of breast cancers and drives transformation in an NF-κB-dependent manner. Here we demonstrate that IKKε interacts with and phosphorylates tumor necrosis factor receptor-associated factor 2 (TRAF2) at Ser11 in vitro and in vivo. This activity promotes Lys63-linked TRAF2 ubiquitination and NF-κB activation and is essential for IKKε transformation. Breast cancer cells that depend on IKKε expression for survival are also dependent on TRAF2. This work defines TRAF2 phosphorylation to be one key effector of IKKε-induced mammary epithelial cell transformation.
Collapse
|
45
|
Zhang W, Shi Q, Xu X, Chen H, Lin W, Zhang F, Zeng X, Zhang X, Ba D, He W. Aberrant CD40-induced NF-κB activation in human lupus B lymphocytes. PLoS One 2012; 7:e41644. [PMID: 22952582 PMCID: PMC3428310 DOI: 10.1371/journal.pone.0041644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Auto-reactive B lymphocytes and its abnormal CD40 signaling play important roles in the pathogenesis of systemic lupus erythematosus (SLE). In this study, we analyzed CD40 expression and CD40/CD154 induced activation of NF-κB signaling pathway in B cells from SLE patients. B cells from healthy volunteers and tonsilar B cells from chronic tonsillitis were used as negative and positive controls. Results showed CD40-induced NF-κB signaling was constitutively activated in B cells from active lupus patients, including decreased CD40 in raft portion, increased phosphorylation and degradation of IκBα, phosphorylation of P65, as well as increased nuclear translocation of P65, P50, c-Rel, which could be blocked by anti-CD154. CD154 stimulation could induce further phosphorylation and degradation of IκBα, as well as phosphorylation of P65 and nuclear translocation of P65. In addition, CD40-induced kinase activities in B cells from lupus patients mimicked that of tonsil B cells, in that IKKα/β were more activated compared to normal B cells. CD40-induced NF-κB activity was blocked by both IκB phosphorylation and proteosome degradation inhibitors in both lupus and normal B cells. All together, our findings revealed that canonical NF-κB signaling is constitutively activated in active lupus and is mediated by CD154/CD40. CD40 induced NF-κB activation is different in human lupus B lymphocytes compared with normal B cells.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Qun Shi
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaotian Xu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Wei Lin
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- * E-mail:
| | - Denian Ba
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| |
Collapse
|
46
|
Jang KW, Lee KH, Kim SH, Jin T, Choi EY, Jeon HJ, Kim E, Han YS, Chung JH. Ubiquitin ligase CHIP induces TRAF2 proteasomal degradation and NF-κB inactivation to regulate breast cancer cell invasion. J Cell Biochem 2012; 112:3612-20. [PMID: 21793045 DOI: 10.1002/jcb.23292] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcriptional factor nuclear factor-kappaB (NF-κB) plays a crucial role in human breast cancer cell invasion and metastasis. The carboxyl terminus of Hsc70-interacting protein (CHIP) is a U-box-type ubiquitin ligase that induces ubiquitination and proteasomal degradation of its substrate proteins. In this study, we investigated the role of CHIP in the NF-κB pathway in the invasion of MDA-MB-231 cells, a highly aggressive breast cancer cell line. We showed that overexpression of CHIP significantly inhibits the invasion of the MDA-MB-231 cells. The overexpression of CHIP suppressed expression of urokinase plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 cells. Moreover, CHIP strongly inhibited the nuclear localization and the transcriptional activity of NF-κB. The activation of the IkappaB kinase complex (IKK) was also blocked by CHIP overexpression. Importantly, CHIP overexpression resulted in a significant decrease in the level of TNF receptor-associated factor 2 (TRAF2), an upstream key player in the NF-κB pathway. However, the level of TRAF2 was restored after treatment with a proteasome inhibitor, MG-132. Moreover, CHIP overexpression promoted the ubiquitination of TRAF2. We also found cell invasion significantly decreased in cells transfected with TRAF2 small interfering RNA (siRNA). In contrast, when CHIP expression was suppressed by siRNA in poorly invasive MCF-7 cells, cell invasion significantly increased in conjunction with enhanced NF-κB activation and TRAF2 levels. Taken together, these results suggest that CHIP regulates NF-κB-mediated cell invasion via the down-regulation of TRAF2.
Collapse
Affiliation(s)
- Kang Won Jang
- Graduate Program in Science for Aging & Yonsei Research Institute of Aging Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Varfolomeev E, Goncharov T, Maecker H, Zobel K, Kömüves LG, Deshayes K, Vucic D. Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by members of the TNF family of receptors. Sci Signal 2012; 5:ra22. [PMID: 22434933 DOI: 10.1126/scisignal.2001878] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor (TNF) family members are essential for the development and proper functioning of the immune system. TNF receptor (TNFR) signaling is mediated through the assembly of protein signaling complexes that activate the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in a ubiquitin-dependent manner. The cellular inhibitor of apoptosis (c-IAP) proteins c-IAP1 and c-IAP2 are E3 ubiquitin ligases that are recruited to TNFR signaling complexes through their constitutive association with the adaptor protein TNFR-associated factor 2 (TRAF2). We demonstrated that c-IAP1 and c-IAP2 were required for canonical activation of NF-κB and MAPK by members of the TNFR family. c-IAPs were required for the recruitment of inhibitor of κB kinase β (IKKβ), the IKK regulatory subunit NF-κB essential modulator (NEMO), and RBCK1/Hoil1-interacting protein (HOIP) to TNFR signaling complexes and the induction of gene expression by TNF family members. In contrast, TNFRs that stimulated the noncanonical NF-κB pathway triggered translocation of c-IAPs, TRAF2, and TRAF3 from the cytosol to membrane fractions, which led to their proteasomal and lysosomal degradation. Finally, we established that signaling by B cell-activating factor receptor 3 induced the cytosolic depletion of TRAF3, which enabled noncanonical NF-κB activation. These results define c-IAP proteins as critical regulators of the activation of NF-κB and MAPK signaling pathways by members of the TNFR superfamily.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J 2012; 441:979-86. [PMID: 22029577 DOI: 10.1042/bj20111358] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TRAF [TNF (tumour necrosis factor)-receptor-associated factor] 2 and 6 are essential adaptor proteins for the NF-κB (nuclear factor κB) signalling pathway, which play important roles in inflammation and immune response. Polyubiquitination of TRAF2 and TRAF6 is critical to their activities and functions in TNFα- and IL (interleukin)-1β-induced NF-κB activation. However, the regulation of TRAF2 and TRAF6 by deubiquitination remains incompletely understood. In the present study, we identified USP (ubiquitin-specific protease) 4 as a novel deubiquitinase targeting TRAF2 and TRAF6 for deubiquitination. We found that USP4 specifically interacts with TRAF2 and TRAF6, but not TRAF3. Moreover, USP4 associates with TRAF6 both in vitro and in vivo, independent of its deubiquitinase activity. The USP domain is responsible for USP4 to interact with TRAF6. Ectopic expression of USP4 inhibits the TRAF2- and TRAF6-stimulated NF-κB reporter gene and negatively regulates the TNFα-induced IκBα (inhibitor of NF-κBα) degradation and NF-κB activation. Knockdown of USP4 significantly increased TNFα-induced cytokine expression. Furthermore, we found that USP4 deubiquitinates both TRAF2 and TRAF6 in vivo and in vitro in a deubiquitinase activity-dependent manner. Importantly, the results of the present study showed that USP4 is a negative regulator of TNFα- and IL-1β-induced cancer cell migration. Taken together, the present study provides a novel insight into the regulation of the NF-κB signalling pathway and uncovers a previously unknown function of USP4 in cancer.
Collapse
|
49
|
Feltham R, Khan N, Silke J. IAPS and ubiquitylation. IUBMB Life 2012; 64:411-8. [DOI: 10.1002/iub.565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 11/11/2022]
|
50
|
Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal 2012; 24:1297-305. [PMID: 22374304 DOI: 10.1016/j.cellsig.2012.02.006] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF) is a key mediator in the inflammatory response which is implicated in the onset of a number of diseases. Research on TNF led to the characterization of the largest family of cytokines known until now, the TNF superfamily, which exert their biological effects through the interaction with transmembrane receptors of the TNFR superfamily. TNF itself exerts its biological effects interacting with two different receptors: TNFR1 and TNFR2. TNFR1 presents a death domain on its intracellular region. In contrast to TNFR1, TNFR2 does not have a death domain. Activation of TNFR1 implies the consecutive formation of two different TNF receptor signalling complexes. Complex I controls the expression of antiapoptotic proteins that prevent the triggering of cell death processes, whereas Complex II triggers cell death processes. TNFR2 only signals for antiapoptotic reactions. However, recent evidence indicates that TNFR2 also signals to induce TRAF2 degradation. TRAF2 is a key mediator in signal transduction of both TNFR1 and TNFR2. Thus, this novel signalling pathway has two important implications: on one hand, it represents an auto regulatory loop for TNFR2; on the other hand, when this signal is triggered TNFR1 activity is modified so that antiapoptotic pathways are inhibited and apoptotic reactions are enhanced.
Collapse
Affiliation(s)
- Lucía Cabal-Hierro
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33071 Oviedo, Spain
| | | |
Collapse
|