1
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Zhang Y, Li Y, Han Z, Huo Q, Ji L, Liu X, Li H, Zhu X, Hao Z. miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis. BMB Rep 2024; 57:375-380. [PMID: 38919016 PMCID: PMC11362139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis. [BMB Reports 2024; 57(8): 375-380].
Collapse
Affiliation(s)
- Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingke Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhisheng Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Qingyang Huo
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Xuejia Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
- Department of Respiratory and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, First Affiliated Hospital, Bengbu Medical University, Bengbu 233004, China
| | - Zhipeng Hao
- Department of Thoracic Surgery of Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Abdel-Bakky MS, Mohammed HA, Mahmoud NI, Amin E, Alsharidah M, Al Rugaie O, Ewees MG. Targeting the PI3K/pAKT/mTOR/NF-κB/FOXO3a signaling pathway for suppressing the development of hepatocellular carcinoma in rats: Role of the natural remedic Suaeda vermiculata forssk. ENVIRONMENTAL TOXICOLOGY 2024; 39:3666-3678. [PMID: 38506534 DOI: 10.1002/tox.24217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| |
Collapse
|
4
|
Saika A, Nagatake T, Kishino S, Kitamura N, Honda T, Hosomi K, Tiwari P, Node E, Kawai S, Kondo S, Ishida K, Kabashima K, Ogawa J, Kunisawa J. The omega-3 postbiotic trans-10- cis-15-octadecadienoic acid attenuates contact hypersensitivity in mice through downregulation of vascular endothelial growth factor A. Front Cell Infect Microbiol 2024; 14:1355679. [PMID: 38841110 PMCID: PMC11151274 DOI: 10.3389/fcimb.2024.1355679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nahoko Kitamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Node
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Soichiro Kawai
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Saki Kondo
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Kei Ishida
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Science, Osaka University, Suita, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
5
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Holkom M, Yang X, Li R, Chen Y, Zhao H, Shang Z. Fibroblast regulates angiogenesis in assembled oral cancer organoid: A possible role of NNMT. Oral Dis 2024. [PMID: 38566601 DOI: 10.1111/odi.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Tumour angiogenesis is affected by various cell types in the tumour microenvironment (TME), including cancer cells and cancer-associated fibroblasts (CAFs). Here, an assembled organoid model was generated to investigate the mechanism by which the TME regulates angiogenesis in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Secretion of vascular endothelial growth factor-A (VEGFA) was analysed to compare the proangiogenic properties of OSCC cells and corresponding CAFs. Cell aggregates consisting of endothelial cells (ECs), CAFs and cancer cells were generated to construct assembled organoids. Nicotinamide N-methyltransferase (NNMT) was pharmacologically or genetically inhibited to block the activation of CAFs. ATAC-seq was employed to test the transcriptional network of fibroblasts overexpressing NNMT. RESULTS Compared with cancer cells, CAFs secreted more VEGFA. Coculture with CAFs more effectively promoted the sprouting of ECs. Blockade of CAF activation via inhibition of NNMT drastically reduced the expression of CD31 in the assembled organoids. Overexpression of NNMT enhanced the transcription of genes related to angiogenesis in fibroblasts. Specifically, NNMT orchestrated the enrichment of the transcription factor JUNB at the promoter of VEGFA. CONCLUSIONS We clarify that stromal NNMT enables the steady reproduction of angiogenesis in assembled oral cancer organoids, providing a novel target for exploiting antiangiogenic therapy.
Collapse
Affiliation(s)
- Mohammed Holkom
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Aliakbarian M, Ferns GA, Shabestari MM, Ahmadzadeh AM, Abdollahzade A, Rahimi H, Khodashahi R, Arjmand MH. Elucidating the Role of Pro-renin Receptors in Pancreatic Ductal Adenocarcinoma Progression: A Novel Therapeutic Target in Cancer Therapy. Curr Cancer Drug Targets 2024; 24:881-889. [PMID: 38279719 DOI: 10.2174/0115680096279288231205105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Pancreatic cancer is a highly aggressive malignancy with a very poor prognosis. The 5- year survival in these patients is very low, and most patients develop drug resistance to current therapies, so additional studies are needed to identify the potential role of new drug targets for the treatment of pancreatic cancer. Recent investigations have been performed regarding the roles of pro-renin receptors (PRR) in the initiation and development of cancers. PRR is a component of the local renin-angiotensin system (RAS). Local tissue RAS has been known in diverse organ systems, including the pancreas. Various investigations have implicated that PRRs are associated with the upregulation of various signaling pathways, like the renin-angiotensin system pathway, PI3K/Akt/mTOR, and the Wnt-signaling pathways, to contribute to pathological conditions, including cancer. In this review, we presented an overview of the role of PRR in the progression of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Biochemistry, Division of Medical, Brighton & Sussex Medical School, Brighton, UK
| | | | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aref Abdollahzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Rahimi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
9
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
10
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
11
|
Hu X, Li M, Zhang Y, Sang K, Zhang Y, Li W, Liu B, Wan L, Du B, Qian J, Meng F, Fu Y, Dai M, Gao G, Ye H. An innovative immunotherapeutic strategy for rheumatoid arthritis: Selectively suppressing angiogenesis and osteoclast differentiation by fully human antibody targeting thymocyte antigen-1. Exp Cell Res 2023; 424:113490. [PMID: 36706943 DOI: 10.1016/j.yexcr.2023.113490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Thymocyte antigen-1 (THY-1)is a potential target for rheumatoid arthritis (RA) treatment, and THY-1 positive fibroblast-like synoviocytes (FLS) are enriched in the synovium of RA patients and participate in angiogenesis to accelerate RA progression. In this study, we screened an antibody targeting THY-1 (THY-1 Ab) and explored its mechanism in alleviating RA progression. THY-1 Ab was screened from ScFv phage antibody library by phage display technology (PDT). THY-1 Ab-treated collagen induced arthritis (CIA) mice had lower degree of arthritis scores. We explore the mechanism of THY-1 Ab in alleviating RA progression. THY-1 Ab can remarkably inhibit the secretion of pro-inflammatory factors and promote the secretion of anti-inflammatory factors. Further experiments showed that THY1 Ab downregulated the expression of JUNB by the hsa_circ_0094342/miRNA-155-5P/SPI1 axis, inhibited RA angiogenesis and osteoclast differentiation, and relieved RA progression. These findings support that THY-1 Ab is a promising therapeutic antibody for RA treatment.
Collapse
Affiliation(s)
- Xuanxuan Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meiqi Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kanru Sang
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yejun Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Leyu Wan
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bang Du
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jinheng Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fanxi Meng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanneng Fu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meijuan Dai
- The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guohui Gao
- School of Laboratory Medicine and Life Sciences, WenZhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Laboratory Medicine, Ministry Education, Wenzhou, Zhejiang, 325035, China.
| | - Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
12
|
Panda A, Sabnam K, De S, Dasgupta S. Non-enzymatic glycation of human angiogenin: Effects on enzymatic activity and binding to hRI and DNA. Biochimie 2022; 208:151-159. [PMID: 36592684 DOI: 10.1016/j.biochi.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The effects of non-enzymatic glycation on the structural and functional properties of human angiogenin (hAng) have been investigated with respect to the formation of advanced glycated end products (AGEs), on prolonged treatment with d-Glucose, d-Fructose and d-Ribose at 37 °C. Fluorescence studies show the formation of fluorescent AGEs which exhibit emission maxima at 406 nm and 435 nm. Glycation of hAng with ribose leads to the maximum loss of its functional characteristic properties, as compared to fructose and glucose, along with the formation of higher oligomers. An increase in the incubation time results in the formation of higher oligomers with a concomitant decrease in the ribonucleolytic activity. The increase in the hydrodynamic radii of the glycated samples compared to native hAng is indicative of structural perturbations. The ribonucleolytic activity and the DNA binding ability of glycated hAng has been investigated by an agarose gel-based assay. Glycated hAng was unable to bind with human placental ribonuclease inhibitor (hRI), otherwise known to form one of the strongest protein-protein interaction systems with an affinity in the femtomolar range.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kabira Sabnam
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Zuo YH, Gao WN, Xie YJ, Yang SY, Zhou JT, Liang HH, Fan XX. Tumor PKCδ instigates immune exclusion in EGFR-mutated non-small cell lung cancer. BMC Med 2022; 20:470. [PMID: 36482371 PMCID: PMC9733210 DOI: 10.1186/s12916-022-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.
Collapse
Affiliation(s)
- Yi-Han Zuo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Cardiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Na Gao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jin-Tai Zhou
- TianJin Medical University General Hospital, Tianjin, China
| | - Hai-Hai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
14
|
Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers (Basel) 2022; 14:5099. [PMID: 36291886 PMCID: PMC9600774 DOI: 10.3390/cancers14205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Epithelial Ovarian cancer (OvCa) is the leading cause of death from gynecologic malignancies in the United States, with most patients diagnosed at late stages. High-grade serous cancer (HGSC) is the most common and lethal subtype. Despite aggressive surgical debulking and chemotherapy, recurrence of chemo-resistant disease occurs in ~80% of patients. Thus, developing therapeutics that not only targets OvCa cell survival, but also target their interactions within their unique peritoneal tumor microenvironment (TME) is warranted. Herein, we report therapeutic efficacy of compound C (also known as dorsomorphin) with a novel mechanism of action in OvCa. We found that CC not only inhibited OvCa growth and invasiveness, but also blunted their reciprocal crosstalk with macrophages, and mesothelial cells. Mechanistic studies indicated that compound C exerts its effects on OvCa cells through inhibition of PI3K-AKT-NFκB pathways, whereas in macrophages and mesothelial cells, CC inhibited cancer-cell-induced canonical NFκB activation. We further validated the specificity of the PI3K-AKT-NFκB as targets of compound C by overexpression of constitutively active subunits as well as computational modeling. In addition, real-time monitoring of OvCa cellular bioenergetics revealed that compound C inhibits ATP production, mitochondrial respiration, and non-mitochondrial oxygen consumption. Importantly, compound C significantly decreased tumor burden of OvCa xenografts in nude mice and increased their sensitivity to cisplatin-treatment. Moreover, compound C re-sensitized patient-derived resistant cells to cisplatin. Together, our findings highlight compound C as a potent multi-faceted therapeutic in OvCa.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Abigail Hegarty
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Jemima Adisa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| | - Samuel Lentz
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Freddie Salsbury
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
15
|
Suraya R, Nagano T, Ryanto GRT, Effendi WI, Hazama D, Katsurada N, Yamamoto M, Tachihara M, Emoto N, Nishimura Y, Kobayashi K. Budesonide/glycopyrronium/formoterol fumarate triple therapy prevents pulmonary hypertension in a COPD mouse model via NFκB inactivation. Respir Res 2022; 23:173. [PMID: 35761394 PMCID: PMC9238100 DOI: 10.1186/s12931-022-02081-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a health problem that results in death, commonly due to the development of pulmonary hypertension (PH). Here, by utilizing a mouse model of intratracheal elastase-induced emphysema that presents three different phases of COPD, we sought to observe whether budesonide/glycopyrronium/formoterol fumarate (BGF) triple therapy could prevent COPD-PH in addition to ameliorating COPD progression. METHODS We utilized intratracheal elastase-induced emphysema mouse model and performed experiments in three phases illustrating COPD progression: inflammatory (1 day post-elastase), emphysema (3 weeks post-elastase) and PH (4 weeks post-elastase), while treatments of BGF and controls (vehicle, one-drug, and two-drug combinations) were started in prior to elastase instillation (inflammatory phase), at day 7 (emphysema), or at day 14 (PH phase). Phenotype analyses were performed in each phase. In vitro, A549 cells or isolated mouse lung endothelial cells (MLEC) were treated with TNFα with/without BGF treatment to analyze NFκB signaling and cytokine expression changes. RESULTS We observed significant reductions in the proinflammatory phenotype observed in the lungs and bronchoalveolar lavage fluid (BALF) 1 day after elastase administration in mice treated with BGF compared with that in mice administered elastase alone (BALF neutrophil percentage, p = 0.0011 for PBS/Vehicle vs. PBS/Elastase, p = 0.0161 for PBS/Elastase vs. BGF). In contrast, only BGF treatment significantly ameliorated the elastase-induced emphysematous lung structure and desaturation after three weeks of elastase instillation (mean linear intercept, p = 0.0156 for PBS/Vehicle vs. PBS/Elastase, p = 0.0274 for PBS/Elastase vs. BGF). Furthermore, BGF treatment prevented COPD-PH development, as shown by improvements in the hemodynamic and histological phenotypes four weeks after elastase treatment (right ventricular systolic pressure, p = 0.0062 for PBS/Vehicle vs. PBS/Elastase, p = 0.027 for PBS/Elastase vs. BGF). Molecularly, BGF acts by inhibiting NFκB-p65 phosphorylation and subsequently decreasing the mRNA expression of proinflammatory cytokines in both alveolar epithelial and pulmonary endothelial cells. CONCLUSION Our results collectively showed that BGF treatment could prevent PH in addition to ameliorating COPD progression via the inhibition of inflammatory NFκB signaling.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan.
| | - Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada, Kobe, Japan
| | - Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada, Kobe, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine,, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Japan
| |
Collapse
|
16
|
Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nat Commun 2022; 13:3131. [PMID: 35668082 PMCID: PMC9170695 DOI: 10.1038/s41467-022-30789-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Human pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes. Single-cell analysis of cells undergoing the endothelial-to-hematopoietic transition and comparison with in vivo hemogenic endothelial cells reveal important features of in vitro and in vivo hematopoiesis. We find that JUNB is an essential regulator for hemogenic endothelium specialization and endothelial-to-hematopoietic transition. These studies depict an epigenomic roadmap from human pluripotent stem cells to hematopoietic progenitor cells, which may pave the way to generate hematopoietic progenitor cells with improved developmental potentials.
Collapse
|
17
|
Lai MC, Zhu QQ, Xu J, Zhang WJ. Experimental and clinical evidence suggests that GRPEL2 plays an oncogenic role in HCC development. Am J Cancer Res 2021; 11:4175-4198. [PMID: 34659882 PMCID: PMC8493396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) continues to cause severe burden worldwide. The limited options especially toward HCC with metastasis prompts us to identify novel molecules for either diagnostic/prognostic or therapeutic purposes. GRPEL2 is well defined in maintaining mitochondrial homeostasis, which is critical to multiple biological processes for cancer survival. However, its role in HCC progression was not investigated before. In our analysis using data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset and tissue microarray, higher expression levels of GRPEL2 were obseved in HCC tissues compared to in normal liver tissues, and indicated higher tumor grade, higher tumor stage, and shorter overall survival (OS). Consistent with the results of above analyses, the functional experiments validated that GRPEL2 acted as a tumor-promoting factor in HCC progression. GRPEL2 knockdown suppressed cell growth, migration, and invasion in vitro, as well as inhibited tumor growth in vivo. Moreover, GRPEL2 deficiency also accelerated reactive oxygen species (ROS) production and increased mitochondrial membrane potential (MMP), leading to cell apoptosis. In addition, we found that the cell cycle and NF-κB signaling pathways were responsible for GRPEL2-induced HCC progression, based on the results of Gene Set Enrichment Analysis (GSEA) and subsequent experimental validation. Our study, for the first time, identified the role of GRPEL2 in HCC development and provided a compelling biomarker for targted therapy in HCC treatment.
Collapse
Affiliation(s)
- Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| | - Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| | - Wen-Jin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| |
Collapse
|
18
|
Wu SC, Kuo PJ, Rau CS, Huang LH, Lin CW, Wu YC, Wu CJ, Tsai CW, Hsieh TM, Liu HT, Huang CY, Hsieh CH. Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation. Int J Mol Sci 2021; 22:8877. [PMID: 34445582 PMCID: PMC8396299 DOI: 10.3390/ijms22168877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan;
| | - Pao-Jen Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Chia-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
19
|
Wutschka J, Kast B, Sator-Schmitt M, Appak-Baskoy S, Hess J, Sinn HP, Angel P, Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis 2021; 38:411-423. [PMID: 34282521 PMCID: PMC8318945 DOI: 10.1007/s10585-021-10108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients.
Collapse
Affiliation(s)
- Juliane Wutschka
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sila Appak-Baskoy
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- iBEST (Institute of Biomedical Engineering, Science and Technology), Toronto, ON, Canada
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Luo C, Xiong S, Huang Y, Deng M, Zhang J, Chen J, Yang R, Ke X. The Novel Non-coding Transcriptional Regulator Gm18840 Drives Cardiomyocyte Apoptosis in Myocardial Infarction Post Ischemia/Reperfusion. Front Cell Dev Biol 2021; 9:615950. [PMID: 34322480 PMCID: PMC8312575 DOI: 10.3389/fcell.2021.615950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ischemia/reperfusion-mediated myocardial infarction (MIRI) is a major pathological factor implicated in the progression of ischemic heart disease, but the key factors dysregulated during MIRI have not been fully elucidated, especially those essential non-coding factors required for cardiovascular development. METHODS A murine MIRI model and RNA sequencing (RNA-seq) were used to identify key lncRNAs after myocardial infarction. qRT-PCR was used to validate expression in cardiac muscle tissues and myocardial cells. The role of Gm18840 in HL-1 cell growth was determined by flow cytometry experiments in vitro. Full-length Gm18840 was identified by using a rapid amplification of cDNA ends (RACE) assay. The subcellular distribution of Gm18840 was examined by nuclear/cytoplasmic RNA fractionation and qRT-PCR. RNA pulldown and RNA immunoprecipitation (RIP)-qPCR assays were performed to identify Gm18840-interacting proteins. Chromatin isolation by RNA purification (ChIRP)-seq (chromatin isolation by RNA purification) was used to identify the genome-wide binding of Gm18840 to chromatin. The regulatory activity of Gm18840 in transcriptional regulation was examined by a luciferase reporter assay and qRT-PCR. RESULTS Gm18840 was upregulated after myocardial infarction in both in vivo and in vitro MIRI models. Gm18840 was 1,471 nt in length and localized in both the cytoplasm and the nucleus of HL-1 cells. Functional studies showed that the knockdown of Gm18840 promoted the apoptosis of HL-1 cells. Gm18840 directly interacts with histones, including H2B, highlighting a potential function in transcriptional regulation. Further ChIRP-seq and RNA-seq analyses showed that Gm18840 is directly bound to the cis-regulatory regions of genes involved in developmental processes, such as Junb, Rras2, and Bcl3. CONCLUSION Gm18840, a novel transcriptional regulator, promoted the apoptosis of myocardial cells via direct transcriptional regulation of essential genes and might serve as a novel therapeutic target for MIRI.
Collapse
Affiliation(s)
- Changjun Luo
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Si Xiong
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Yiteng Huang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jing Zhang
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Jianlin Chen
- Afficiated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Guangxi, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Shenzhen University School of Medicine & Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
21
|
Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. Emerging Role of AP-1 Transcription Factor JunB in Angiogenesis and Vascular Development. Int J Mol Sci 2021; 22:ijms22062804. [PMID: 33802099 PMCID: PMC8000613 DOI: 10.3390/ijms22062804] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Collapse
|
22
|
Fan F, Malvestiti S, Vallet S, Lind J, Garcia-Manteiga JM, Morelli E, Jiang Q, Seckinger A, Hose D, Goldschmidt H, Stadlbauer A, Sun C, Mei H, Pecherstorfer M, Bakiri L, Wagner EF, Tonon G, Sattler M, Hu Y, Tassone P, Jaeger D, Podar K. JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia 2021; 35:3509-3525. [PMID: 34007044 PMCID: PMC8632680 DOI: 10.1038/s41375-021-01271-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.
Collapse
Affiliation(s)
- Fengjuan Fan
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Stefano Malvestiti
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Sonia Vallet
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Judith Lind
- grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Jose Manuel Garcia-Manteiga
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Morelli
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Qinyue Jiang
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anja Seckinger
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Dirk Hose
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Hartmut Goldschmidt
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Stadlbauer
- grid.5330.50000 0001 2107 3311Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany ,grid.459693.4Institute of Medical Radiology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Chunyan Sun
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Pecherstorfer
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria
| | - Latifa Bakiri
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F. Wagner
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Giovanni Tonon
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.18887.3e0000000417581884Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Sattler
- grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Surgery, Brigham and Women’s Hospital, Boston, MA USA
| | - Yu Hu
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pierfrancesco Tassone
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Dirk Jaeger
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Klaus Podar
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
23
|
Fu F, Wang L. Molecular cloning, characterization of JunB in Schizothorax prenanti and its roles in responding to Aeromonas hydrophila infection. Int J Biol Macromol 2020; 164:2788-2794. [DOI: 10.1016/j.ijbiomac.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 01/20/2023]
|
24
|
Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, Wang H. Epigenetic silencing of microRNA-204 by Helicobacter pylori augments the NF-κB signaling pathway in gastric cancer development and progression. Carcinogenesis 2020; 41:430-441. [PMID: 31873718 DOI: 10.1093/carcin/bgz143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori infection induces gastric cancer (GC) development through a progressive cascade; however, the roles of the microRNAs that are involved in the cascade and the underlying mechanisms are still unclear. Here, we found that microRNA-204 was suppressed in gastric mucosal cells in response to H.pylori infection and downregulated in GC tissues due to aberrant methylation of the promoter of its host gene, TRPM3. Helicobacter pylori induced a progressive downregulation of microRNA-204 from superficial gastritis to intestinal metaplasia, with an accompanying increment of the methylated levels of CpG sites in the TRPM3 promoter. With the GC cellular models of AGS, MGC-803 or BGC-823, we found that microRNA-204 suppressed the tumor necrosis factor (TNF)-α-induced activation of NF-κB signaling pathways and, in animal models, inhibited tumor growth and metastasis. The conditional supernatant of microRNA-204 overexpression GC cells led to reduced tube formation of human umbilical vein endothelial cells. A target gene for microRNA-204 was BIRC2, and in GC cells, BIRC2 knockdown recapitulated the biological phenotype of microRNA-204 overexpression. BIRC2 overexpression promoted the metastasis of GC cells and rescued the inhibition activities of microRNA-204 on cell migration and the NF-κB signaling pathway. Moreover, lower microRNA-204 and higher BIRC2 expression levels were associated with a poorer prognosis of GC patients. These results demonstrate that epigenetic silencing of microRNA-204 induced by H.pylori infection augments the NF-κB signaling pathway in H.pylori-induced gastritis and GC, potentially providing novel intervention targets for these diseases. MicroRNA-204 was epigenetically down-regulated by H. pylori infection in gastric mucosal cells. It led to enhanced BIRC2 expression level and BIRC2/TNF-a/NF-kB signaling pathway activities, which promoted angiogenesis and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - He Guo
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Xuming Wu
- Nantong Center for Disease Control and Prevention, Nantong, P.R. China.,Nantong Tumor Hospital, Nantong, P. R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaohua Duan
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Qian Ba
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
25
|
Chang HH, Cheng YC, Tsai WC, Chen Y. PSMB8 inhibition decreases tumor angiogenesis in glioblastoma through vascular endothelial growth factor A reduction. Cancer Sci 2020; 111:4142-4153. [PMID: 32816328 PMCID: PMC7648028 DOI: 10.1111/cas.14625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is a fast‐growing tumor and the most aggressive brain malignancy. Proteasome subunit beta type‐8 (PSMB8) is one of the 17 essential subunits for the complete assembly of the 20S proteasome complex. The aim of the present study was to evaluate the role of PSMB8 expression in GBM progression and angiogenesis. PSMB8 expression in glioblastoma LN229 and U87MG was knocked down by siRNA or inducible shRNA both in vitro and in vivo. After PSMB8 reduction, cell survival, migration, invasion, angiogenesis, and the related signaling cascades were evaluated. An orthotopic mouse tumor model was also provided to examine the angiogenesis within tumors. A GEO profile analysis indicated that high expression of PSMB8 mRNA in GBM patients was correlated with a low survival rate. In immunohistochemistry analysis, PSMB8 expression was higher in high‐grade than in low‐grade brain tumors. The proliferation, migration, and angiogenesis of human GBM cells were decreased by PSMB8 knockdown in vitro. Furthermore, phosphorylated focal adhesion kinase (p‐FAK), p‐paxillin, MMP2, MMP9, and cathepsin B were significantly reduced in LN229 cells. Integrin β1 and β3 were reduced in HUVEC after incubation with LN229‐conditioned medium. In an orthotopic mouse tumor model, inducible knockdown of PSMB8 reduced the expression of vascular endothelial growth factor (VEGF), VEGF receptor, and CD31 as well as the progression of human glioblastoma. In this article, we demonstrated the role of PSMB8 in glioblastoma progression, especially neovascularization in vitro and in vivo. These results may provide a target for the anti–angiogenic effect of PSMB8 in glioblastoma therapy in the future.
Collapse
Affiliation(s)
- Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
26
|
Tian B, Xiao Y, Ma J, Ou W, Wang H, Wu J, Tang J, Zhang B, Liao X, Yang D, Wu Z, Li X, Zhou Y, Su M, Wang W. Parthenolide Inhibits Angiogenesis in Esophageal Squamous Cell Carcinoma Through Suppression of VEGF. Onco Targets Ther 2020; 13:7447-7458. [PMID: 32801767 PMCID: PMC7398702 DOI: 10.2147/ott.s256291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Background Parthenolide (PT), the effective active ingredient of the medicinal plant, feverfew (Tanacetum parthenium), has been used as an anti-inflammatory drug due to its involvement in the inhibition of the NF-кB pathway. Moreover, recent studies have demonstrated the anti-tumor effect of PT in several cancers. However, the effect of PT on esophageal carcinoma remains unclear to date. In this study, we examined the inhibitory effects of PT and its underlying mechanism of action in human esophageal squamous cell carcinoma (ESCC) cells – Eca109 and KYSE-510. Methods The proliferation ability of Eca109 and KYSE-510 treated with PT was detected using the Cell Counting Kit-8 and colony forming assay. The Transwell assay and the wound healing assay were used to analyze the cell invasion and migration ability, respectively. The tube formation assay was used to investigate the effect of PT on tube formation of endothelial cells. The expression level of NF-кB, AP-1 and VEGF was analyzed by Western blot. Results We demonstrated that PT attenuates the proliferation and migration ability of ESCC cells in vitro and also inhibits tumor growth in the mouse xenograft model. In addition, PT exhibited anti-angiogenesis activity by weakening the proliferation, invasion and tube formation of endothelial cells in vitro and reduced microvessel density in the xenograft tumors. Further studies revealed that PT reduced the expression level of NF-кB, AP-1 and VEGF in ESCC cells. Conclusion Collectively, the results of our study demonstrated that PT exerts anti-tumor and anti-angiogenesis effects possibly by inhibiting the NF-кB/AP-1/VEGF signaling pathway on esophageal carcinoma and might serve as a promising therapeutic agent for ESCC.
Collapse
Affiliation(s)
- Bo Tian
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Wei Ou
- Department of Pharmacy, The First People's Hospital of Yue Yang, Yue Yang, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Jie Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Jinming Tang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Baihua Zhang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xiaojuan Liao
- Department of Pharmacy, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Desong Yang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Zhining Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xu Li
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Min Su
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Wenxiang Wang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| |
Collapse
|
27
|
Yang M, Li CJ, Xiao Y, Guo Q, Huang Y, Su T, Luo XH, Jiang TJ. Ophiopogonin D promotes bone regeneration by stimulating CD31 hi EMCN hi vessel formation. Cell Prolif 2020; 53:e12784. [PMID: 32080957 PMCID: PMC7106967 DOI: 10.1111/cpr.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives CD31hiEMCNhi vessels (CD31, also known as PECAM1 [platelet and endothelial cell adhesion molecule 1]; EMCN, endomucin), which are strongly positive for CD31 and endomucin, couple angiogenesis and osteogenesis. However, the role of CD31hiEMCNhi vessels in bone regeneration remains unknown. In the present study, we investigated the role of CD31hiEMCNhi vessels in the process of bone regeneration. Materials and Methods We used endothelial‐specific Krüppel like factor 3 (Klf3) knockout mice and ophiopogonin D treatment to interfere with CD31hiEMCNhi vessel formation. We constructed a bone regeneration model by surgical ablation of the trabecular bone. Immunofluorescence and micro‐computed tomography (CT) were used to detect CD31hiEMCNhi vessels and bone formation. Results CD31hiEMCNhi vessels participate in the process of bone regeneration, such that endothelial‐specific Klf3 knockout mice showed increased CD31hiEMCNhi vessels and osteoprogenitors in the bone regeneration area, and further accelerated bone formation. We also demonstrated that the natural compound, ophiopogonin D, acts as a KLF3 inhibitor to promote vessels formation both in vitro and in vivo. Administration of ophiopogonin D increased the abundance of CD31hiEmcnhi vessels and accelerated bone healing. Conclusions Our findings confirmed the important role of CD31hiEmcnhi vessels in bone regeneration and provided a new target to treat bone fracture or promote bone regeneration.
Collapse
Affiliation(s)
- Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Yanagida K, Engelbrecht E, Niaudet C, Jung B, Gaengel K, Holton K, Swendeman S, Liu CH, Levesque MV, Kuo A, Fu Z, Smith LEH, Betsholtz C, Hla T. Sphingosine 1-Phosphate Receptor Signaling Establishes AP-1 Gradients to Allow for Retinal Endothelial Cell Specialization. Dev Cell 2020; 52:779-793.e7. [PMID: 32059774 DOI: 10.1016/j.devcel.2020.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Transcriptional mechanisms that drive angiogenesis and organotypic vascular endothelial cell specialization are poorly understood. Here, we show that retinal endothelial sphingosine 1-phosphate receptors (S1PRs), which restrain vascular endothelial growth factor (VEGF)-induced angiogenesis, spatially restrict expression of JunB, a member of the activator protein 1 (AP-1) family of transcription factors (TFs). Mechanistically, VEGF induces JunB expression at the sprouting vascular front while S1PR-dependent vascular endothelial (VE)-cadherin assembly suppresses JunB expression in the nascent vascular network, thus creating a gradient of this TF. Endothelial-specific JunB knockout mice showed diminished expression of neurovascular guidance genes and attenuated retinal vascular network progression. In addition, endothelial S1PR signaling is required for normal expression of β-catenin-dependent genes such as TCF/LEF1 and ZIC3 TFs, transporters, and junctional proteins. These results show that S1PR signaling restricts JunB function to the expanding vascular front, thus creating an AP-1 gradient and enabling organotypic endothelial cell specialization of the vascular network.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Colin Niaudet
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Bongnam Jung
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Steven Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Catherine H Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Novum, Huddinge, Sweden
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Luo LH, Rao L, Luo LF, Chen K, Ran RZ, Liu XL. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc Res 2019; 129:103968. [PMID: 31862380 DOI: 10.1016/j.mvr.2019.103968] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The relationship between NF-κB Interacting lncRNA (NKILA) and angiogenesis in breast cancer has never been studied. Our study aimed to investigate effect of NKILA on proliferation, migration, apoptosis, as well as angiogenesis in breast cancer. METHODS NKILA was over-expressed in MDA-MB-231 cells by transfection of pcDNA3.1-NKILA vector. Cell viability, apoptosis and migration were measured by MTT, flow cytometry and wound healing assays, respectively. Angiogenesis of human umbilical vein endothelial cells (HUVEC) was measured using tube formation assay. The expression levels of NKILA, IL-6, VEGFA, VEGFR, apoptosis and epithelial-mesenchymal transition (EMT) and NF-κB/IL-6 signaling-related markers were determined using qRT-PCR or Western blotting. RESULTS Cell viability and migration of MDA-MB-231 cells were significantly inhibited, while cell apoptosis was obviously promoted by overexpression of NKILA. Overexpression of NKILA could also inhibit the phosphorylation of IκBα and the nuclear transposition of p65, as well as induce cell apoptosis-related proteins and inhibit epithelial-mesenchymal transition-related proteins. Cell viability and migration of HUVEC were also significantly inhibited when treated with supernatant of cells overexpressed NKILA or treated with BAY11-7028. Exogenous IL-6 significantly increased the cell viability and migration of HUVEC, and overexpression of NKILA could reverse these effects induced by IL-6. Overexpression of NKILA significantly inhibited the protein levels of IL-6 and VEGFA in supernatant, as well as VEGFR in HUVEC, thus inhibited the angiogenesis of HUVEC. NKILA also reversed the above effects on protein levels of IL-6 and VEGFA in supernatant and angiogenesis induced by exogenous IL-6. CONCLUSION Overexpression of NKILA could inhibit cell proliferation, migration and promote apoptosis of breast cancer cells. It could also inhibit cell proliferation, migration and angiogenesis of HUVEC through inhibiting IL-6 secretion via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Hua Luo
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Le Rao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Liu-Fang Luo
- Department of Pediatrics, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Kun Chen
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Rui-Zhi Ran
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Xian-Ling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
30
|
Li J, Tang F, Li R, Chen Z, Lee SMY, Fu C, Zhang J, Leung GPH. Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo. J Nutr Biochem 2019; 77:108268. [PMID: 31830590 DOI: 10.1016/j.jnutbio.2019.108268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Glycyrrhetinic acid (GA) is a major bioactive compound of licorice. The objective of this study was to investigate the effects of GA on ovarian cancer, particularly those related to angiogenesis and apoptosis, and to elucidate the underlying mechanisms of action. In vitro studies showed that GA significantly inhibited proliferation, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. GA inhibited the phosphorylation of major receptors and enzymes involved in angiogenesis, such as VEGFR2, mTOR, Akt, ERK1/2, MEK1/2, p38 and JNK1/2 in HUVECs. In addition, GA induced apoptosis, loss of mitochondrial membrane potential and cell cycle arrest in G1 phase in A2780 ovarian cancer cells. The proapoptotic effect of GA involved the increased phosphorylation of p38 and JNK1/2; increased cleavage of caspase 3, caspase 9 and PARP; reduced phosphorylation of mTOR, Akt and ERK1/2; and reduced expressions of survivin and cyclin D1. Ex vivo studies showed that GA significantly inhibited microvessel sprouting in rat aortic ring model. In vivo studies showed that GA inhibited the formation of new blood vessels in zebrafish and mouse Matrigel plug. GA also significantly reduced the size of ovarian cancer xenograft tumors in nude mice. Taken together, GA possesses potential antitumor effects, and the underlying mechanisms may involve the inhibition of signaling pathways related to angiogenesis and the activation of apoptotic pathways in cancer cells. Our findings suggest that GA could serve as an effective regimen in the prevention or treatment of cancer.
Collapse
Affiliation(s)
- Jingjing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Zhejie Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Carmicheal J, Patel A, Dalal V, Atri P, Dhaliwal AS, Wittel UA, Malafa MP, Talmon G, Swanson BJ, Singh S, Jain M, Kaur S, Batra SK. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim Biophys Acta Rev Cancer 2019; 1873:188318. [PMID: 31676330 DOI: 10.1016/j.bbcan.2019.188318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incredibly deadly disease with a 5-year survival rate of 9%. The presence of pancreatic cystic lesions (PCLs) confers an increased likelihood of future pancreatic cancer in patients placing them in a high-risk category. Discerning concurrent malignancy and risk of future PCL progression to cancer must be carefully and accurately determined to improve survival outcomes and avoid unnecessary morbidity of pancreatic resection. Unfortunately, current image-based guidelines are inadequate to distinguish benign from malignant lesions. There continues to be a need for accurate molecular and imaging biomarker(s) capable of identifying malignant PCLs and predicting the malignant potential of PCLs to enable risk stratification and effective intervention management. This review provides an update on the current status of biomarkers from pancreatic cystic fluid, pancreatic juice, and seromic molecular analyses and discusses the potential of radiomics for differentiating PCLs harboring cancer from those that do not.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asish Patel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder S Dhaliwal
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Uwe A Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailender Singh
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Sadri D, Farhadi S, Nourmohamadi P. Angiogenesis in odontogenic keratocyst and dentigerous cyst: Evaluation of JunB and VEGF expression. Dent Res J (Isfahan) 2019; 16:327-332. [PMID: 31543939 PMCID: PMC6749858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Nowadays, different clinical behaviors of odontogenic cysts, little information about their biological agents, importance of diagnosis, and early diagnosis of these lesions have encouraged the researchers to conduct new studies. JunB acts as a regulator of vascular endothelial growth factor (VEGF) protein production and affects vessel proliferation and tissue angiogenesis. Hence, this study was conducted to compare angiogenesis through VEGF and JunB expression in odontogenic keratocysts (OKCs) and dentigerous cysts (DCs). MATERIALS AND METHODS A total of 25 paraffin blocks of OKCs and 25 DCs were included in this experimental descriptive cross-sectional study, and immunohistochemical expression of VEGF and JunB was evaluated. Percentage and score of expression were recorded for each sample, and independent t-test, Mann-Whitney U, and Spearman statistical tests were run to analyze the data. The statistical significance level was set at <0.05. RESULTS From 50 studied samples, 39.6% belonged to women and 60.4% belonged to men, with mean age of 34.2 ± 1.7 years. The mean percentages of JunB expression were 52.88 ± 17.35 and 74.6 ± 18.55 for DC and OKC samples, respectively. This expression was significantly higher in OKC than DC, and it had significantly higher scores as well (P = P = 0.0001 and 0.00033, respectively). The means of VEGF were 20.2% ±11.86 and 52.6% ±19.98 in DC and OKC samples, respectively. The mean VEGF expression was significantly higher in OKC than DC (P = 0.045), and it had significantly higher scores, too (P = 0.000). Furthermore, there was a significant correlation between VEGF and JunB expression in the studied samples (rs = 0.3 and P = 0.005). CONCLUSION Based on the results of this study, it seems evaluation of angiogenesis through JunB expression can be helpful in the prediction of more aggressive behavior in pathologic lesions such as OKC.
Collapse
Affiliation(s)
- Donia Sadri
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sareh Farhadi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran,Address for correspondence: Dr. Sareh Farhadi, No.:9, 9th Neyestan Street, Pasdaran Street, Tehran, Iran. E-mail:
| | | |
Collapse
|
33
|
Yang M, Guo Q, Peng H, Xiao YZ, Xiao Y, Huang Y, Li CJ, Su T, Zhang YL, Lei MX, Chen HL, Jiang TJ, Luo XH. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J Exp Med 2019; 216:1944-1964. [PMID: 31196982 PMCID: PMC6683986 DOI: 10.1084/jem.20181554] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
The authors report a mutation in the long noncoding RNA Reg1cp that induces osteogenesis via vascular induction in humans. This mutation affects angiogenesis by blocking Klf3’s repressing activity. The Klf3 antagonist Ophiopogonin D could promote CD31hiEmcnhi vessel formation and osteogenesis in osteoporosis mice. High bone mass (HBM) is usually caused by gene mutations, and its mechanism remains unclear. In the present study, we identified a novel mutation in the long noncoding RNA Reg1cp that is associated with HBM. Subsequent analysis in 1,465 Chinese subjects revealed that heterozygous Reg1cp individuals had higher bone density compared with subjects with WT Reg1cp. Mutant Reg1cp increased the formation of the CD31hiEmcnhi endothelium in the bone marrow, which stimulated angiogenesis during osteogenesis. Mechanistically, mutant Reg1cp directly binds to Krüppel-like factor 3 (KLF3) to inhibit its activity. Mice depleted of Klf3 in endothelial cells showed a high abundance of CD31hiEmcnhi vessels and increased bone mass. Notably, we identified a natural compound, Ophiopogonin D, which functions as a KLF3 inhibitor. Administration of Ophiopogonin D increased the abundance of CD31hiEmcnhi vessels and bone formation. Our findings revealed a specific mutation in lncRNA Reg1cp that is involved in the pathogenesis of HBM and provides a new target to treat osteoporosis.
Collapse
Affiliation(s)
- Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yu-Zhong Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yun-Lin Zhang
- Department of Metabolic Endocrinology, The Second People's Hospital of Xiangxiang, Xiangxiang, China
| | - Min-Xiang Lei
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Ling Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Knowles DA, Bouchard G, Plevritis S. Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features. PLoS Comput Biol 2019; 15:e1006743. [PMID: 31136571 PMCID: PMC6555538 DOI: 10.1371/journal.pcbi.1006743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/07/2019] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Drug screening studies typically involve assaying the sensitivity of a range of cancer cell lines across an array of anti-cancer therapeutics. Alongside these sensitivity measurements high dimensional molecular characterizations of the cell lines are typically available, including gene expression, copy number variation and genomic mutations. We propose a sparse multitask regression model which learns discriminative latent characteristics that predict drug sensitivity and are associated with specific molecular features. We use ideas from Bayesian nonparametrics to automatically infer the appropriate number of these latent characteristics. The resulting analysis couples high predictive performance with interpretability since each latent characteristic involves a typically small set of drugs, cell lines and genomic features. Our model uncovers a number of drug-gene sensitivity associations missed by single gene analyses. We functionally validate one such novel association: that increased expression of the cell-cycle regulator C/EBPδ decreases sensitivity to the histone deacetylase (HDAC) inhibitor panobinostat.
Collapse
Affiliation(s)
- David A. Knowles
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gina Bouchard
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Sylvia Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
35
|
Farhadi S, Sadri D, Nourmohamadi P. Angiogenesis in odontogenic keratocyst and dentigerous cyst: Evaluation of JunB and VEGF expression. Dent Res J (Isfahan) 2019. [DOI: 10.4103/1735-3327.266092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Luo AJ, Tan J, He LY, Jiang XZ, Jiang ZQ, Zeng Q, Yao K, Xue J. Suppression of Tescalcin inhibits growth and metastasis in renal cell carcinoma via downregulating NHE1 and NF-kB signaling. Exp Mol Pathol 2018; 107:110-117. [PMID: 30594602 DOI: 10.1016/j.yexmp.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common form of kidney cancer. Recent studies reported that Tescalcin was overexpressed in various tumor types. However, the status of Tescalcin protein expression in RCC and its biological function is uncertain. This study was designed to investigate the expression of Tescalcin in human RCC and its biological function. METHODS shRNA transfection was performed to abrogates the expression of Tescalcin. Quantitative real time PCR and western blotting assays were used to determine mRNA and protein expression levels, respectively. The cell viability was analyzed by MTT and colony formation. Cell flow cytometry was used to assess pHi value and cell apoptosis. Cell invasive and migratory ability was measured with modified Boyden chamber assay. Xenograft model was setup to evaluate tumor growth. RESULTS Tescalcin was overexpressed in RCC tissues compared with matched normal tissues. It was also overexpressed in RCC cell lines relative that of normal cells. Suppression Tescalcin with specific shRNA resulted in the inhibition of cell proliferation, migration, invasion and apoptosis of RCC cells. Additionally, silencing of Tescalcin also caused the inhibition of the tumor growth in nude mice. Mechanistic study showed that Tescalcin regulated cell proliferation, migration and invasion via NHE1/pHi axis as well as AKT/NF-κB signaling pathway. CONCLUSIONS These findings demonstrate that atopic expression of Tescalcin facilitates the survival, migration and invasion of RCC cells via NHE1/pHi axis as well as AKT/ NF-κB signaling pathway, providing new perspectives for the future study of Tescalcin as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Ai-Jing Luo
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Jing Tan
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Le-Ye He
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Xian-Zhen Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Zhi-Qiang Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Qing Zeng
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Kun Yao
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Juan Xue
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
37
|
Martinez MF, Medrano S, Brown RI, Tufan T, Shang S, Bertoncello N, Guessoum O, Adli M, Belyea BC, Sequeira-Lopez MLS, Gomez RA. Super-enhancers maintain renin-expressing cell identity and memory to preserve multi-system homeostasis. J Clin Invest 2018; 128:4787-4803. [PMID: 30130256 PMCID: PMC6205391 DOI: 10.1172/jci121361] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.
Collapse
Affiliation(s)
| | | | | | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Omar Guessoum
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| | - Mazhar Adli
- Child Health Research Center
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | - R. Ariel Gomez
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| |
Collapse
|
38
|
Long-Term Effects of In Vivo Genome Editing in the Mouse Retina Using Campylobacter jejuni Cas9 Expressed via Adeno-Associated Virus. Mol Ther 2018; 27:130-136. [PMID: 30470629 DOI: 10.1016/j.ymthe.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Genome editing with CRISPR systems provides an unprecedented opportunity to modulate cellular responses in pathological conditions by inactivating undruggable targets, such as transcription factors. Previously, we demonstrated that the smallest Cas9 ortholog characterized to date, from Campylobacter jejuni (CjCas9) targeted to Hif1a and delivered in an adeno-associated virus (AAV) vector, effectively suppressed pathological choroidal neovascularization in the mouse retina. Before implementation of CjCas9 as an in vivo therapeutic modality, it is essential to investigate the long-term effects of target gene disruption via AAV-mediated delivery of CjCas9 in vivo. In this study, histologic and electroretinographic analyses demonstrated that CjCas9 targeted to Hif1a did not induce any definite toxicity in the retina, although the target gene was mutated with a frequency ranging from 45% to 79% in retinal or retinal pigment epithelial cells. Importantly, at 14 months after injection, no indels were detected at potential off-target sites identified using Digenome-seq and Cas-OFFinder, suggesting that long-term expression of CjCas9 does not aggravate off-target effects. Taken together, our results show that intravitreal injection of AAV encoding CjCas9 targeted to Hif1a effectively induced and maintained mutations in retinal tissues for more than 1 year and did not affect retinal histologic integrity or functions.
Collapse
|
39
|
Yao F, Zhang L, Jiang G, Liu M, Liang G, Yuan Q. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor-κB and vascular endothelial growth factor. Oncol Lett 2018; 16:4471-4479. [PMID: 30214582 PMCID: PMC6126190 DOI: 10.3892/ol.2018.9213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Osthole has been demonstrated to have antitumor activity. Previous studies by our group indicated that osthole effectively inhibited tumor growth in hepatocellular carcinoma (HCC) through the induction of apoptosis and enhancement of antitumor immune responses in mice. The importance of angiogenesis in the proliferation, invasion and metastasis of tumor cells in HCC is well established. The present study aimed to investigate the effects of osthole on angiogenesis in an orthotopic mouse model of HCC. Orthotopic HCC in mice was established, and osthole at 61, 122 and 244 mg/kg was administered intraperitoneally once daily to the tumor-bearing mice for 14 consecutive days. Immunohistochemistry was performed to analyze the microvessel density (MVD) of tissues, and the level of vascular endothelial growth factor (VEGF) was measured by ELISA. The protein levels of nuclear factor-κB (NF-κB) p65 and IκB-α were also detected by western blotting. MVD was positively correlated with tumor weight in the orthotopic mouse model of HCC. Osthole administration significantly decreased MVD in tumor and adjacent tissues, and inhibited tumor growth. Furthermore, osthole downregulated the expression of VEGF and NF-κB p65, and upregulated IκB-α expression in tumor and adjacent tissues. To the best of our knowledge, the results of the present study demonstrated for the first time that osthole inhibits angiogenesis in an orthotopic mouse model of HCC, which may be one of the mechanisms underlying the anti-HCC activity of osthole, which in turn may be mediated by the NF-κB/VEGF signaling pathway. Therefore, osthole, a potential angiogenesis inhibitor and immune system enhancer, may be a promising lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Fei Yao
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Lurong Zhang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guorong Jiang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Min Liu
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Guoqiang Liang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Qin Yuan
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
40
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
41
|
Transcriptional downregulation of microRNA-19a by ROS production and NF-κB deactivation governs resistance to oxidative stress-initiated apoptosis. Oncotarget 2017; 8:70967-70981. [PMID: 29050336 PMCID: PMC5642611 DOI: 10.18632/oncotarget.20235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
Cell apoptosis is one of the main pathological alterations during oxidative stress (OS) injury. Previously, we corroborated that nuclear factor-κB (NF-κB) transactivation confers apoptosis resistance against OS in mammalian cells, yet the underlying mechanisms remain enigmatic. Here we report that microRNA-19a (miR-19a) transcriptionally regulated by reactive oxygen species (ROS) production and NF-κB deactivation prevents OS-initiated cell apoptosis through cylindromatosis (CYLD) repression. CYLD contributes to OS-initiated cell apoptosis, for which NF-κB deactivation is essential. MiR-19a directly represses CYLD via targeting 3′ UTR of CYLD, thereby antagonizing OS-initiated apoptosis. CYLD repression by miR-19a restores the IKKβ phosphorylation, RelA disassociation from IκBα, IκBα polyubiquitination and degradation, RelA recruitment at VEGF gene promoter as well as VEGF secretion in the context of OS. Either pharmacological deactivation of NF-κB or genetic upregulation of CYLD compromises the apoptosis-resistant phenotypes of miR-19a. Furthermore, miR-19a is transcriptionally downregulated upon OS in two distinct processes that require ROS production and NF-κB deactivation. VEGF potentiates the ability of miR-19a to activate NF-κB and render apoptosis resistance. Our findings underscore a putative mechanism whereby CYLD repression-mediated and NF-κB transactivation-dependent miR-19a regulatory feedback loop prevents cell apoptosis in response to OS microenvironment.
Collapse
|
42
|
Tang H, Zhang J, Cao S, Yan B, Fang H, Zhang H, Guo W, Zhang S. Inhibition of Endoplasmic Reticulum Stress Alleviates Lung Injury Induced by Brain Death. Inflammation 2017; 40:1664-1671. [PMID: 28752363 DOI: 10.1007/s10753-017-0606-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brain death (BD) can induce inflammation and injury of organs. Endoplasmic reticulum (ER) stress is associated with a variety of diseases. However, little is known about how ER stress is implicated in brain death (BD)-induced lung injury. In this study, a stable BD rat model was constructed to investigate the role of ER stress on BD-induced lung injury. H&E staining demonstrated that BD can induce lung injury in rats. The results of Western blot and immunohistochemistry showed that apoptosis was observed in the lung tissues of BD rats. And the level of GRP78, p-PERK, p-eIF2α, CHOP, and Caspase-12 was highly expressed in BD rats compared with the control group. Inhibition of ER stress with salubrinal reduced the BD-induced lung inflammation. Moreover, BD-induced increase of NF-κB activity was lowered by inhibition of ER stress. These results suggested that inhibition of ER stress alleviates BD-induced lung inflammation by regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Hongbo Fang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China.
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, No.1, East Jian She Road, Zhengzhou, Henan Province, 450052, China.
| |
Collapse
|
43
|
Shafiee A, Patel J, Wong HY, Donovan P, Hutmacher DW, Fisk NM, Khosrotehrani K. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling. FASEB J 2016; 31:610-624. [PMID: 28045376 DOI: 10.1096/fj.201600937] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
The prospect of using endothelial progenitors is currently hampered by their low engraftment upon transplantation. We report that mesenchymal stem/stromal cells (MSCs), independent of source and age, improve the engraftment of endothelial colony forming cells (ECFCs). MSC coculture altered ECFC appearance to an elongated mesenchymal morphology with reduced proliferation. ECFC primed via MSC contact had reduced self-renewal potential, but improved capacity to form tube structures in vitro and engraftment in vivo Primed ECFCs displayed major differences in transcriptome compared to ECFCs never exposed to MSCs, affecting genes involved in the cell cycle, up-regulating of genes influencing mesenchymal transition, adhesion, extracellular matrix. Inhibition of NOTCH signaling, a potential upstream regulator of mesenchymal transition, in large part modulated this gene expression pattern and functionally reversed the mesenchymal morphology of ECFCs. The collective results showed that primed ECFCs survive better and undergo a mesenchymal transition that is dependent on NOTCH signaling, resulting in significantly increased vasculogenic potential.-Shafiee, A., Patel, J., Wong, H. Y., Donovan, P., Hutmacher, D. W., Fisk, N. M., Khosrotehrani, K. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling.
Collapse
Affiliation(s)
- Abbas Shafiee
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jatin Patel
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Ho Yi Wong
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Prudence Donovan
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas M Fisk
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia.,Centre for Advanced Prenatal Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia; .,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
44
|
Cao W, Hu C, Wu L, Xu L, Jiang W. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci 2016; 132:131-137. [PMID: 27707649 DOI: 10.1016/j.jphs.2016.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/07/2016] [Accepted: 09/04/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to explore the anti-tumor effect and therapeutic potential of rosmarinic acid (RA) in the treatment of hepatocellular carcinoma (HCC). RA at 75, 150 and 300 mg/kg was given to H22 tumor-bearing mice by intragastric administration once daily for 10 consecutive days. Levels of inflammatory and angiogenic factors, including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) were measured by enzyme linked immunosorbent assays (ELISA). Protein levels of phosphorylated NF-κB p65 and p65 were detected by western blot. mRNA level of NF-κB p65 was analyzed by qRT-PCR. The results showed that RA could effectively suppress tumor growth with fewer toxic effects by regulating the secretion of cytokines associated with inflammation and angiogenesis, and suppressing the expression of NF-κB p65 in the xenograft microenvironment. Our findings unveil the possible anti-tumor mechanisms of RA and support RA as a potential drug for the treatment of HCC.
Collapse
Affiliation(s)
- Wen Cao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chao Hu
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lingling Wu
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liba Xu
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weizhe Jiang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
45
|
Börnigen D, Tyekucheva S, Wang X, Rider JR, Lee GS, Mucci LA, Sweeney C, Huttenhower C. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Comput Biol 2016; 12:e1004820. [PMID: 27078000 PMCID: PMC4831844 DOI: 10.1371/journal.pcbi.1004820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies. In molecular research in cancer it remains challenging to uncover biomolecular mechanisms in cancer-related pathways from high-throughput genomic data, including the Nuclear-factor-kappa-B (NFκB) pathway. Despite close scrutiny and a deep understanding of many of the NFκB pathway members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. In this study, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for 8 genes in this pathway and new mechanistic interactions between these genes and 10 known pathway members. We combined 651 gene expression datasets with 1.4M interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in 112 interactions in the fully reconstructed NFκB pathway. This method is generalizable, and this new information about the NFκB pathway will allow us to further understand prostate cancer.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Xiaodong Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Gwo-Shu Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
46
|
Hyakusoku H, Sano D, Takahashi H, Hatano T, Isono Y, Shimada S, Ito Y, Myers JN, Oridate N. JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:6. [PMID: 26754630 PMCID: PMC4709939 DOI: 10.1186/s13046-016-0284-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023]
Abstract
Background While treatment failure in cases of head and neck squamous cell carcinoma (HNSCC) frequently takes the form of locoregional recurrences and distant metastasis, our understanding of the mechanisms of metastasis in HNSCC is limited. We initially performed the upstream and key nodes analysis together with whole gene microarray analysis characterized by distant metastatic potential in vivo with HNSCC cell lines and identified JunB, a member of the activator protein-1 (AP-1) family, as a key molecule in the regulation of the pathways related to distant metastasis in HNSCC. We have therefore tested the hypothesis that JunB plays a crucial role in distant metastasis in HNSCC. Methods To study the role of JunB on metastatic potential of HNSCC, small interfering RNA (siRNA)-mediated knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (cas9) system (CRISPR/Cas9)-mediated knockout of JunB in HNSCC cells were established and the abilities of cell invasion and migration in vitro were examined. The efficacy of knockout of JunB was also examined using an experimental lung metastatic mouse model of HNSCC. In addition, to study if the role of JunB in HNSCC cell migration and invasiveness is related to epithelial-to-mesenchymal transition (EMT), cell morphology and expression of mesenchymal or epithelial marker on siRNA mediated JunB knockdown in HNSCC cells were examined with or without TGF-β stimulation. Results siRNA knockdown and sgRNA knockout of JunB in metastatic HNSCC cells significantly suppressed both cell invasion and migration in vitro. In addition, the knockout of JunB in metastatic HNSCC cells significantly repressed the incidence of lung metastases and prolonged the survival in vivo. However, we did not observe any change in cell morphology with the down-regulation of mesenchymal markers and up-regulation of epithelial markers in response to siRNA-mediated JunB knockdown in HNSCC cells. Conclusion These results suggested that JunB could play an important role in promoting cell invasion, migration and distant metastasis in HNSCC via pathways other than EMT and that the down-regulation of JunB may become an effective strategy for patients with invasive HNSCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0284-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Hyakusoku
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Daisuke Sano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Hideaki Takahashi
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takashi Hatano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yasuhiro Isono
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Shoko Shimada
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yusuke Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | - Nobuhiko Oridate
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
47
|
Differentially expressed gene profiles in the serum before and after the ultrasound-guided ethanol sclerotherapy in patients with ovarian endometriomas. Clin Biochem 2015; 48:1131-7. [DOI: 10.1016/j.clinbiochem.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/19/2023]
|
48
|
Kiesow K, Bennewitz K, Miranda LG, Stoll SJ, Hartenstein B, Angel P, Kroll J, Schorpp-Kistner M. Junb controls lymphatic vascular development in zebrafish via miR-182. Sci Rep 2015; 5:15007. [PMID: 26458334 PMCID: PMC4602192 DOI: 10.1038/srep15007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/15/2015] [Indexed: 02/02/2023] Open
Abstract
JUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB target. Loss-of-function studies by morpholino-mediated knockdown and the CRISPR/Cas9 technology identify a novel function for both JUNB and its target miR-182 in lymphatic vascular development in zebrafish. Furthermore, we show that miR-182 attenuates foxo1 expression indicating that strictly balanced Foxo1 levels are required for proper lymphatic vascular development in zebrafish. In conclusion, our findings uncover with the Junb/miR-182/Foxo1 regulatory axis a novel key player in governing lymphatic vascular morphogenesis in zebrafish.
Collapse
Affiliation(s)
- Kristin Kiesow
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Laura Gutierrez Miranda
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Sandra J Stoll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Bettina Hartenstein
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| |
Collapse
|
49
|
Cookson VJ, Waite SL, Heath PR, Hurd PJ, Gandhi SV, Chapman NR. Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells. Mol Hum Reprod 2015; 21:865-83. [DOI: 10.1093/molehr/gav051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022] Open
|
50
|
Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1399-406. [DOI: 10.1016/j.nano.2015.03.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|