1
|
Huang B, Xiao Y, Zhang Y. Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery. THE ISME JOURNAL 2024; 18:wrae111. [PMID: 38896033 PMCID: PMC11227280 DOI: 10.1093/ismejo/wrae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.
Collapse
Affiliation(s)
- Biyan Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong Province, P. R. China
| |
Collapse
|
2
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Dervisi I, Valassakis C, Koletti A, Kouvelis VN, Flemetakis E, Ouzounis CA, Roussis A. Evolutionary Aspects of Selenium Binding Protein (SBP). J Mol Evol 2023:10.1007/s00239-023-10105-4. [PMID: 37039856 DOI: 10.1007/s00239-023-10105-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Selenium-binding proteins represent a ubiquitous protein family and recently SBP1 was described as a new stress response regulator in plants. SBP1 has been characterized as a methanethiol oxidase, however its exact role remains unclear. Moreover, in mammals, it is involved in the regulation of anti-carcinogenic growth and progression as well as reduction/oxidation modulation and detoxification. In this work, we delineate the functional potential of certain motifs of SBP in the context of evolutionary relationships. The phylogenetic profiling approach revealed the absence of SBP in the fungi phylum as well as in most non eukaryotic organisms. The phylogenetic tree also indicates the differentiation and evolution of characteristic SBP motifs. Main evolutionary events concern the CSSC motif for which Acidobacteria, Fungi and Archaea carry modifications. Moreover, the CC motif is harbored by some bacteria and remains conserved in Plants, while modified to CxxC in Animals. Thus, the characteristic sequence motifs of SBPs mainly appeared in Archaea and Bacteria and retained in Animals and Plants. Our results demonstrate the emergence of SBP from bacteria and most likely as a methanethiol oxidase.
Collapse
Affiliation(s)
- Irene Dervisi
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Chrysanthi Valassakis
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Vassilis N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Centre for Research & Technology Hellas, Chemical Process & Energy Resources Institute, 54124, Thessaloníki, Greece
- Biological Computation & Computational Biology Group, AIIA Lab, School of Informatics, Aristotle University of Thessalonica, 57001, Thessaloníki, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
4
|
Hu X, Li C, Li Y, Jin Y, Wei L, Wang X, Xu Y, Hu Z. A Novel Glucose-6-Phosphate Isomerase Exists in Chicken Breast Meat: A Selenium-Containing Enzyme that Should Be Re-recognized Through New Eyes. Protein J 2023:10.1007/s10930-023-10105-9. [PMID: 36964419 DOI: 10.1007/s10930-023-10105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
Glucose-6-phosphate isomerase (GPI) is a highly conserved glycolytic enzyme in nature, and less information was available for GPI from hens. In this study a newly discovered selenocysteine (Sec)-containing GPI in common chicken breast meat was first isolated, purified and identified. Data about LC-MS/MS, FTIR and Se species analyses show that the molecular weight of the enzyme is 62,091 Da and only one Sec is inserted at the 403rd position in the highly conserved primary domain SIS_PGI with sugar conversion function. The enzyme shows excellent activity against hydroxyl radicals as vitamin C (Vc) in vitro. It is deduced that the Sec-containing GPI in the chicken meat may depend on Sec in its molecular structure to resist reactive oxygen species (ROS) stress produced by the accompanying biochemical reactions in cells, to protect its stability and maintain its efficient function that catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate in the critical glycolytic pathway.
Collapse
Affiliation(s)
- Xin Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Chenxi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yanlong Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
6
|
Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. Biomolecules 2022; 12:biom12070917. [PMID: 35883471 PMCID: PMC9312934 DOI: 10.3390/biom12070917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.
Collapse
|
7
|
Copeland PR, Howard MT. Ribosome Fate during Decoding of UGA-Sec Codons. Int J Mol Sci 2021; 22:ijms222413204. [PMID: 34948001 PMCID: PMC8704476 DOI: 10.3390/ijms222413204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Decoding of genetic information into polypeptides occurs during translation, generally following the codon assignment rules of the organism's genetic code. However, recoding signals in certain mRNAs can overwrite the normal rules of translation. An exquisite example of this occurs during translation of selenoprotein mRNAs, wherein UGA codons are reassigned to encode for the 21st proteogenic amino acid, selenocysteine. In this review, we will examine what is known about the mechanisms of UGA recoding and discuss the fate of ribosomes that fail to incorporate selenocysteine.
Collapse
Affiliation(s)
- Paul R. Copeland
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Correspondence: (P.R.C.); (M.T.H.)
| | - Michael T. Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (P.R.C.); (M.T.H.)
| |
Collapse
|
8
|
Chang CH, Wei CC, Ho CT, Liao VHC. N-γ-(L-glutamyl)-L-selenomethionine shows neuroprotective effects against Parkinson's disease associated with SKN-1/Nrf2 and TRXR-1 in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153733. [PMID: 34537465 DOI: 10.1016/j.phymed.2021.153733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/08/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease, yet fundamental treatments for the disease remain sparse. Thus, the search for potentially efficacious compounds from medicinal plants that can be used in the treatment of PD has gained significant interest. PURPOSE In many medicinal plants, selenium is primarily found in an organic form. We investigated the neuroprotective potential of an organic form of selenium, N-γ-(L-glutamyl)-L-selenomethionine (Glu-SeMet) in a Caenorhabditis elegans PD model and its possible molecular mechanisms. METHODS We used a C. elegans pharmacological PD strain (BZ555) that specifically expresses green fluorescent protein (GFP) in dopaminergic neurons and a transgenic PD strain (NL5901) that expresses human α-synuclein (α-syn) in muscle cells to investigate the neuroprotective potential of Glu-SeMet against PD. RESULTS We found that Glu-SeMet significantly ameliorated 6-hydroxydopamine (6-OHDA)-induced dopaminergic neuron damage in the transgenic BZ555 strain, with corresponding improvements in slowing behavior and intracellular ROS levels. In addition, compared with clinical PD drugs (L-DOPA and selegiline), Glu-SeMet demonstrated stronger ameliorated effects on 6-OHDA-induced toxicity. Glu-SeMet also triggered the nuclear translocation of SKN-1/Nrf2 and significantly increased SKN-1, GST-4, and GCS-1 mRNA levels in the BZ555 strain. However, Glu-SeMet did not increase mRNA levels or ameliorate the damage to dopaminergic neurons when the BZ555 strain was subjected to skn-1 RNA interference (RNAi). Glu-SeMet also upregulated the mRNA levels of the selenoprotein TRXR-1 in both the BZ555 and BZ555; skn-1 RNAi strains and significantly decreased α-syn accumulation in the NL5901 strain, although this was not observed in the NL5901; trxr-1 strain. CONCLUSION We found that Glu-SeMet has a neuroprotective effect against PD in a C. elegans PD model and that the anti-PD effects of Glu-SeMet were associated with SKN-1/Nrf2 and TRXR-1. Glu-SeMet may thus have the potential for use in therapeutic applications or supplements to slow the progression of PD.
Collapse
Affiliation(s)
- Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, 65 Dudley Rd., New Brunswick, NJ 08901-8520, United States
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan.
| |
Collapse
|
9
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
10
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
11
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
12
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
13
|
Sebutsoe X, Chimuka L, Tutu H, Cukrowska E. Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. CHEMOSPHERE 2021; 266:128975. [PMID: 33228981 DOI: 10.1016/j.chemosphere.2020.128975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Arsenic and selenium are both carcinogenic and their presence in fresh water has attracted the development of robust and accurate monitoring techniques. A new diffusive gradients in thin-films (DGT) sampler was developed and evaluated for the in situ measurements of arsenic and selenium. The binding layer was made from a mixture of sulphonated and phosphonated cross-linked polyethylenimine (SCPEI and PCPEI, respectively). The optimum ratio of a SCPEI and PCPEI resin mixture was determined. The DGT sampler was calibrated under laboratory conditions to determine the influence of sample turbulence, concentration and pH. The optimised DGT passive sampler was field deployed in a mine impacted dam for 12 days. Binding layer optimisation shows that the polymers had to be mixed in a specific ratio of 80% sulphonated and 20% phosphonated per 0.8 g of the resin mixture, in the loose polymer form. Embedding the resin mixture in agarose gel reduced the uptake of both arsenic and selenium dramatically. At sample pH 3.0 and 5.0, the DGT sampler did not show significant differences in uptake of the two elements during the 15 day deployment. The passive sampler had limited adsorption capacity and was found better suited for dilute solutions, with concentrations below 0.5 mg L-1 of the target metals. This effect was more pronounced when exposed to dam water which had competing cations. Cations may have reduced the capacity by binding to the PEI backbone via the large number of amine groups. Nonetheless, these cations did not show linear uptake.
Collapse
Affiliation(s)
- Xolisiwe Sebutsoe
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Luke Chimuka
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Hlanganani Tutu
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewa Cukrowska
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
15
|
Zheng X, Ren B, Li X, Yan H, Xie Q, Liu H, Zhou J, Tian J, Huang K. Selenoprotein F knockout leads to glucose and lipid metabolism disorders in mice. J Biol Inorg Chem 2020; 25:1009-1022. [DOI: 10.1007/s00775-020-01821-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
16
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
18
|
Moroder L, Musiol H. Amino acid chalcogen analogues as tools in peptide and protein research. J Pept Sci 2019; 26:e3232. [DOI: 10.1002/psc.3232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Luis Moroder
- Bioorganic ChemistryMax‐Planck Institute of Biochemistry Martinsried Germany
| | - Hans‐Jürgen Musiol
- Bioorganic ChemistryMax‐Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
19
|
Sumner SE, Markley RL, Kirimanjeswara GS. Role of Selenoproteins in Bacterial Pathogenesis. Biol Trace Elem Res 2019; 192:69-82. [PMID: 31489516 PMCID: PMC6801102 DOI: 10.1007/s12011-019-01877-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.
Collapse
Affiliation(s)
- Sarah E Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel L Markley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Varlamova EG, Maltseva VN. Micronutrient Selenium: Uniqueness and Vital Functions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
New Microbial Lineages Capable of Carbon Fixation and Nutrient Cycling in Deep-Sea Sediments of the Northern South China Sea. Appl Environ Microbiol 2019; 85:AEM.00523-19. [PMID: 31126943 DOI: 10.1128/aem.00523-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Metagenomics of marine sediments has uncovered a broad diversity of new uncultured taxa and provided insights into their metabolic capabilities. Here, we detected microbial lineages from a sediment core near the Jiulong methane reef of the northern South China Sea (at 1,100-m depth). Assembly and binning of the metagenomes resulted in 11 genomes (>85% complete) that represented nine distinct phyla, including candidate phyla TA06 and LCP-89, Lokiarchaeota, Heimdallarchaeota, and a newly described globally distributed phylum (B38). The genome of LCP-89 has pathways for nitrate, selenate, and sulfate reduction, suggesting that they may be involved in mediating these important processes. B38 are able to participate in the cycling of hydrogen and selenocompounds. Many of these uncultured microbes may also be capable of autotrophic CO2 fixation, as exemplified by identification of the Wood-Ljungdahl (W-L) pathway. Genes encoding carbohydrate degradation, W-L pathway, Rnf-dependent energy conservation, and Ni/Fe hydrogenases were detected in the transcriptomes of these novel members. Characterization of these new lineages provides insight to the undescribed branches in the tree of life.IMPORTANCE Sedimentary microorganisms in the South China Sea (SCS) remain largely unknown due to the complexity of sediment communities impacted by continent rifting and extension. Distinct geochemical environments may breed special microbial communities including microbes that are still enigmatic. Functional inference of their metabolisms and transcriptional activity provides insight in the ecological roles and substrate-based interactivity of these uncultured Archaea and Bacteria These microorganisms play different roles in utilizing inorganic carbon and scavenging diverse organic compounds involved in the deep-sea carbon cycle. The genomes recovered here contributed undescribed species to the tree of life and laid the foundation for future study on these novel phyla persisting in marginal sediments of the SCS.
Collapse
|
22
|
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. J Bacteriol 2019; 201:JB.00614-18. [PMID: 30642986 DOI: 10.1128/jb.00614-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a V max of 23 ± 2.5 μM min-1, and a k cat of 23 ± 2.68 s-1 These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.
Collapse
|
23
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
24
|
The genomics of selenium: Its past, present and future. Biochim Biophys Acta Gen Subj 2018; 1862:2427-2432. [DOI: 10.1016/j.bbagen.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
25
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
26
|
Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj 2018; 1862:2405-2416. [DOI: 10.1016/j.bbagen.2018.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023]
|
27
|
Ralston NV. Effects of soft electrophiles on selenium physiology. Free Radic Biol Med 2018; 127:134-144. [PMID: 30053507 DOI: 10.1016/j.freeradbiomed.2018.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
This review examines the effects of neurotoxic electrophiles on selenium (Se) metabolism. Selenium-dependent enzymes depend on the unique and elite functions of selenocysteine (Sec), the 21st proteinogenic amino acid, to perform their biochemical roles. Humans possess 25 selenoprotein genes, ~ half of which are enzymes (selenoenzymes) required for preventing, controlling, or reversing oxidative damage, while others participate in regulating calcium metabolism, thyroid hormone status, protein folding, cytoskeletal structure, Sec synthesis and Se transport. While selenoproteins are expressed in tissue dependent distributions and levels in all cells of all vertebrates, they are particularly important in brain development, health, and functions. As the most potent intracellular nucleophile, Sec is subject to binding by mercury (Hg) and other electron poor soft neurotoxic electrophiles. Epidemiological and environmental studies of the effects of exposures to methyl-Hg (CH3Hg+), elemental Hg (Hg°), and/or other metallic/organic neurotoxic soft electrophiles need to consider the concomitant effects of all members of this class of toxicants in relation to the Se status of their study populations. The contributions of individual electrophiles' discrete and cooperative rates of Se sequestration need to be evaluated in relation to tissue Se reserves of the exposed populations to identify sensitive subgroups which may be at accentuated risk due to poor Se status. Additional study is required to examine possibilities of inherited, acquired, or degenerative neurological disorders of Se homeostasis that may influence vulnerability to soft electrophile exposures. Investigations of soft electrophile toxicity will be enhanced by considering the concomitant effects of combined exposures on tissue Se-availability in relation to pathological consequences during fetal development or in relation to etiologies of neurological disorders and neurodegenerative diseases. Since selenoenzymes are molecular "targets" of soft electrophiles, concomitant evaluation of aggregate exposures to these toxicants in relation to dietary Se intakes will assist regulatory agencies in their goals of improving and protecting public health.
Collapse
Affiliation(s)
- Nicholas Vc Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
28
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
30
|
Valassakis C, Livanos P, Minopetrou M, Haralampidis K, Roussis A. Promoter analysis and functional implications of the selenium binding protein (SBP) gene family in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:19-29. [PMID: 29574326 DOI: 10.1016/j.jplph.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 05/23/2023]
Abstract
Selenium Βinding Protein (SBP, originally termed SBP56) was identified in mouse liver as a cytosolic protein that could bind radioactive selenium. SBPs are highly conserved proteins present in a wide array of species across all kingdoms and are likely to be involved in selenium metabolism. In Arabidopsis, the selenium binding protein (SBP) gene family comprises three genes (AtSBP1, AtSBP2 and AtSBP3). AtSBP1 and AtSBP2 are clustered in a head-to-tail arrangement on chromosome IV, while AtSBP3 is located on chromosome III. In this work, we studied the promoter activity of the Arabidopsis SBP genes, determined their tissue specificity and showed that they are differentially regulated by sodium selenite and sodium selenate. All three SBP genes are upregulated in response to externally applied selenium compounds and the antioxidant NAC selectively downregulates SBP2. Although the effect on SBP2 levels was the most prominent, in all cases, the concurrent exposure of plants to selenite and the antioxidant supressed the expression of the SBP genes. We provide evidence that (at least) SBP1 expression is tightly linked to detoxification processes related to oxidative stress, since it is downregulated in the presence of NAC in selenium-treated plants. Furthermore, our results suggest that SBP genes may participate in the mechanisms that sense redox imbalance.
Collapse
Affiliation(s)
- Chrysanthi Valassakis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece
| | - Pantelis Livanos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece
| | - Martha Minopetrou
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece
| | - Kosmas Haralampidis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece
| | - Andreas Roussis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| |
Collapse
|
31
|
Trace Elements and Healthcare: A Bioinformatics Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1005:63-98. [PMID: 28916929 DOI: 10.1007/978-981-10-5717-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Collapse
|
32
|
Fu X, Söll D, Sevostyanova A. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli. RNA Biol 2018; 15:461-470. [PMID: 29447106 DOI: 10.1080/15476286.2018.1440876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
Collapse
Affiliation(s)
- Xian Fu
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Dieter Söll
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA
| | - Anastasia Sevostyanova
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
33
|
Abstract
Expression of selenoproteins necessitates a process of decoding of a UGA codon from termination of translation to insertion of selenocysteine. The mechanisms of this process pose major challenges with regards to recombinant selenoprotein production in E. coli, which however can be overcome especially if the Sec residue is located close to the C-terminal end, as is the case for several naturally found selenoproteins. This chapter summarizes a method to achieve such a production.
Collapse
|
34
|
Mariotti M. SECISearch3 and Seblastian: In-Silico Tools to Predict SECIS Elements and Selenoproteins. Methods Mol Biol 2018; 1661:3-16. [PMID: 28917033 DOI: 10.1007/978-1-4939-7258-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The computational identification of selenoprotein genes is complicated by the dual meaning of the UGA codon as stop and selenocysteine. SECIS elements are RNA structures essential for selenocysteine incorporation, which have been used as markers for selenoprotein genes in many bioinformatics studies. The most widely used tool for eukaryotic SECIS finding has been recently improved to its third generation, SECISearch3. This program is also a component of Seblastian, a pipeline for the identification of selenoprotein genes that employs SECIS finding as the first step. This chapter constitutes a practical guide to use SECISearch3 and Seblastian, which can be run via webservers at http://seblastian.crg.eu / or http://gladyshevlab.org/SelenoproteinPredictionServer/ .
Collapse
Affiliation(s)
- Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.
| |
Collapse
|
35
|
Jiang Y, Zhang Y, Banks C, Heaven S, Longhurst P. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design. WATER RESEARCH 2017; 125:458-465. [PMID: 28898703 DOI: 10.1016/j.watres.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 05/28/2023]
Abstract
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 26-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation.
Collapse
Affiliation(s)
- Ying Jiang
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Yue Zhang
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sonia Heaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip Longhurst
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
36
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
37
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
38
|
Chang CH, Ho CT, Liao VHC. N-γ-(L-Glutamyl)-L-selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 2017; 61. [PMID: 28133928 DOI: 10.1002/mnfr.201600954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
SCOPE Selenium is an essential trace nutrient for human health. This study investigates the organic form of selenium, N-γ-(L-Glutamyl)-L-selenomethionine (Glu-SeMet), for its effects on aging indicators and stress resistance. The role of the selenoprotein TRXR-1 was also evaluated in Caenorhabditis elegans. METHODS AND RESULTS Glu-SeMet-treated wild-type N2 worms showed increased survival upon oxidative and thermal stress challenges. However, Glu-SeMet treatment did not extend the lifespan of wild-type N2 C. elegans under normal conditions (p = 0.128 for 0.01 μM and p = 0.799 for 10 μM Glu-SeMet). Under stress conditions, Glu-SeMet significantly increased the survival of wild-type N2 C. elegans, but the phenomenon was absent from trxr-1 null mutant worms. Furthermore, Glu-SeMet treatments significantly ameliorated aging indicators, including body bends, pumping rate, defecation duration, and lipofuscin accumulation in wild-type N2 nematodes. Nevertheless, the ameliorative effects by Glu-SeMet were absent in the trxr-1 null mutant worms. CONCLUSION The findings indicate that enhanced stress resistance and improved aging indicators by Glu-SeMet in C. elegans are mediated by the selenoprotein TRXR-1. Glu-SeMet has potential for improving health and also provides new insights into selenium's regulatory mechanisms in intact organisms.
Collapse
Affiliation(s)
- Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Cheng Q, Arnér ESJ. Selenocysteine Insertion at a Predefined UAG Codon in a Release Factor 1 (RF1)-depleted Escherichia coli Host Strain Bypasses Species Barriers in Recombinant Selenoprotein Translation. J Biol Chem 2017; 292:5476-5487. [PMID: 28193838 DOI: 10.1074/jbc.m117.776310] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Selenoproteins contain the amino acid selenocysteine (Sec), co-translationally inserted at a predefined UGA opal codon by means of Sec-specific translation machineries. In Escherichia coli, this process is dependent upon binding of the Sec-dedicated elongation factor SelB to a Sec insertion sequence (SECIS) element in the selenoprotein-encoding mRNA and competes with UGA-directed translational termination. Here, we found that Sec can also be efficiently incorporated at a predefined UAG amber codon, thereby competing with RF1 rather than RF2. Subsequently, utilizing the RF1-depleted E. coli strain C321.ΔA, we could produce mammalian selenoprotein thioredoxin reductases with unsurpassed purity and yield. We also found that a SECIS element was no longer absolutely required in such a system. Human glutathione peroxidase 1 could thereby also be produced, and we could confirm a previously proposed catalytic tetrad in this selenoprotein. We believe that the versatility of this new UAG-directed production methodology should enable many further studies of diverse selenoproteins.
Collapse
Affiliation(s)
- Qing Cheng
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elias S J Arnér
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
40
|
Santesmasses D, Mariotti M, Guigó R. Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput Biol 2017; 13:e1005383. [PMID: 28192430 PMCID: PMC5330540 DOI: 10.1371/journal.pcbi.1005383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNASec) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNASec is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNASec, due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNASec structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNASec predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNASec genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNASec, led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat. Most proteins are made of twenty amino acids. However, there is a small group of proteins that incorporate a 21st amino acid, Selenocysteine (Sec). These proteins are called selenoproteins and are present in some, but not all, species from the three domains of life. Sec is inserted in selenoproteins in response to the UGA codon, normally a stop codon. A Sec specific tRNA (tRNASec), which only exists in the organisms that synthesize selenoproteins recognizes the UGA codon. tRNASec is not only indispensable for Sec incorporation into selenoproteins, but also for Sec synthesis, since Sec is synthesized on its own tRNA. The structure of tRNASec differs from that of canonical tRNAs, and general tRNA detection methods fail to accurately predict it. We developed Secmarker, a tRNASec specific identification tool based on the characteristic structural features of the tRNASec. Our benchmark shows that Secmarker produces nearly flawless tRNASec predictions. We used Secmarker to scan all currently available genome sequences. The analysis of the highly accurate predictions obtained revealed new insights into the biology of tRNASec.
Collapse
Affiliation(s)
- Didac Santesmasses
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- * E-mail: (DS); (MM)
| | - Marco Mariotti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (DS); (MM)
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
41
|
Mariotti M, Lobanov AV, Manta B, Santesmasses D, Bofill A, Guigó R, Gabaldón T, Gladyshev VN. Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Mol Biol Evol 2016; 33:2441-53. [PMID: 27413050 PMCID: PMC4989117 DOI: 10.1093/molbev/msw122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selenocysteine (Sec) is the 21st amino acid in the genetic code, inserted in response to UGA codons with the help of RNA structures, the SEC Insertion Sequence (SECIS) elements. The three domains of life feature distinct strategies for Sec insertion in proteins and its utilization. While bacteria and archaea possess similar sets of selenoproteins, Sec biosynthesis is more similar among archaea and eukaryotes. However, SECIS elements are completely different in the three domains of life. Here, we analyze the archaeon Lokiarchaeota that resolves the relationships among Sec insertion systems. This organism has selenoproteins representing five protein families, three of which have multiple Sec residues. Remarkably, these archaeal selenoprotein genes possess conserved RNA structures that strongly resemble the eukaryotic SECIS element, including key eukaryotic protein-binding sites. These structures also share similarity with the SECIS element in archaeal selenoprotein VhuD, suggesting a relation of direct descent. These results identify Lokiarchaeota as an intermediate form between the archaeal and eukaryotic Sec-encoding systems and clarify the evolution of the Sec insertion system.
Collapse
Affiliation(s)
- Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Bruno Manta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Didac Santesmasses
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andreu Bofill
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Liu W, Yao H, Zhao W, Shi Y, Zhang Z, Xu S. Selenoprotein W was Correlated with the Protective Effect of Selenium on Chicken Myocardial Cells from Oxidative Damage. Biol Trace Elem Res 2016; 171:419-426. [PMID: 26463750 DOI: 10.1007/s12011-015-0529-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Abstract
Selenium (Se) mainly performs its function through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, plays important roles in the normal function of the heart. To investigate the possible relationship between Se and SelW for the regulation of oxidative damage in chicken embryo myocardial cells, we treated myocardial cells with Se and H2O2. Then, the levels of lactate dehydrogenase (LDH) and 3,4-methylenedioxyamphetamine in the culture media, levels of SelW, inflammatory genes NF-κB, tumor necrosis factor (TNF)-α, p53, and the cell cycle were analyzed. Furthermore, the correlation between SelW and the levels of these factors was determined. The results indicated that Se treatment increased the expression of SelW (P < 0.05) and caused a downregulation of p53, NF-κB, and TNF-α (P < 0.05). In contrast, H2O2 increased the expression of p53, NF-κB, TNF-α, and LDH (P < 0.05) and induced early cell apoptosis, which was alleviated by treatment with Se. In addition, SelW had a positive correlation with the levels of inflammatory genes investigated. Taken together, our findings suggested that SelW is sensitive to Se levels and oxidative stress, and may play a role in the protective function of Se against oxidative damage and inflammation in chicken myocardial cells.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuguang Shi
- The Scientific Research Center, Ministry of Education, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
43
|
Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci Rep 2016; 6:22571. [PMID: 26936660 PMCID: PMC4776257 DOI: 10.1038/srep22571] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections.
Collapse
|
44
|
Dai J, Liu H, Zhou J, Huang K. Selenoprotein R Protects Human Lens Epithelial Cells against D-Galactose-Induced Apoptosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress. Int J Mol Sci 2016; 17:231. [PMID: 26875981 PMCID: PMC4783963 DOI: 10.3390/ijms17020231] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Selenium is an essential micronutrient for humans. Much of selenium's beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells.
Collapse
Affiliation(s)
- Jie Dai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan 430074, China.
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan 430074, China.
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan 430074, China.
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan 430074, China.
| |
Collapse
|
45
|
Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME JOURNAL 2016; 10:2048-59. [PMID: 26800233 PMCID: PMC5029168 DOI: 10.1038/ismej.2015.246] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/28/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
Selenium (Se) is an important micronutrient for many organisms, which is required for the biosynthesis of selenocysteine, selenouridine and Se-containing cofactor. Several key genes involved in different Se utilization traits have been characterized; however, systematic studies on the evolution and ecological niches of Se utilization are very limited. Here, we analyzed more than 5200 sequenced organisms to examine the occurrence patterns of all Se traits in bacteria. A global species map of all Se utilization pathways has been generated, which demonstrates the most detailed understanding of Se utilization in bacteria so far. In addition, the selenophosphate synthetase gene, which is used to define the overall Se utilization, was also detected in some organisms that do not have any of the known Se traits, implying the presence of a novel Se form in this domain. Phylogenetic analyses of components of different Se utilization traits revealed new horizontal gene transfer events for each of them. Moreover, by characterizing the selenoproteomes of all organisms, we found a new selenoprotein-rich phylum and additional selenoprotein-rich species. Finally, the relationship between ecological environments and Se utilization was investigated and further verified by metagenomic analysis of environmental samples, which indicates new macroevolutionary trends of each Se utilization trait in bacteria. Our data provide insights into the general features of Se utilization in bacteria and should be useful for a further understanding of the evolutionary dynamics of Se utilization in nature.
Collapse
|
46
|
Knockdown of 15-kDa selenoprotein (Sep15) increases hLE cells' susceptibility to tunicamycin-induced apoptosis. J Biol Inorg Chem 2015; 20:1307-17. [PMID: 26531105 DOI: 10.1007/s00775-015-1309-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
In this work, we investigated the effect of Sep15 gene knockdown on apoptosis in human lens epithelial (hLE) cells, trying to understand the relevance of Sep15 to cataract formation in the Sep15 knockout (KO) mice. The results showed that sole knockdown of Sep15 by RNA interference did not result in apoptosis; however, reduction of Sep15 expression aggravated tunicamycin (Tm)-induced cell apoptosis and caspases activation. Furthermore, Tm-induced mitochondrial dysfunction was also exacerbated under the Sep15 knockdown condition by measurement of mitochondrial membrane potential decrease and human cytochrome c release into cytosol. Interestingly, the knockdown of Sep15 exacerbated Tm-induced oxidative stress while endoplasmic reticulum (ER) stress was not correspondingly elevated. These results suggest that the protective role of Sep15 against Tm-induced apoptosis in hLE cells is operated via inhibiting oxidative stress rather than regulating Tm-induced ER stress, and the protective role becomes dependent on Sep15 only in acute stress condition.
Collapse
|
47
|
Abstract
SIGNIFICANCE Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal. RECENT ADVANCES In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners. CRITICAL ISSUES After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes. FUTURE DIRECTIONS The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| | - Laurent Chavatte
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| |
Collapse
|
48
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
49
|
Cravedi P, Mori G, Fischer F, Percudani R. Evolution of the Selenoproteome in Helicobacter pylori and Epsilonproteobacteria. Genome Biol Evol 2015; 7:2692-704. [PMID: 26342139 PMCID: PMC4607533 DOI: 10.1093/gbe/evv177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2015] [Indexed: 12/14/2022] Open
Abstract
By competing for the acquisition of essential nutrients, Helicobacter pylori has the unique ability to persist in the human stomach, also causing nutritional insufficiencies in the host. Although the H. pylori genome apparently encodes selenocysteine synthase (SelA, HP1513), a key pyridoxal phosphate (PLP)-dependent enzyme for the incorporation of selenium into bacterial proteins, nothing is known about the use of this essential element in protein synthesis by this pathogen. We analyzed the evolution of the complete machinery for incorporation of selenium into proteins and the selenoproteome of several H. pylori strains and related Epsilonproteobacteria. Our searches identified the presence of selenoproteins-including the previously unknown DUF466 family-in various Epsilonproteobacteria, but not in H. pylori. We found that a complete system for selenocysteine incorporation was present in the Helicobacteriaceae ancestor and has been recently lost before the split of Helicobacter acinonychis and H. pylori. Our results indicate that H. pylori, at variance with other gastric and enterohepatic Helicobacter, does not use selenocysteine in protein synthesis and does not use selenium for tRNA wobble base modification. However, selA has survived as a functional gene, having lost the domain for the binding of selenocysteine tRNA, but maintaining the ability to bind the PLP cofactor. The evolutionary modifications described for the SelA protein of H. pylori find parallels in other bacterial and archaeal species, suggesting that an alternative enzymatic function is hidden in many proteins annotated as selenocysteinyl-tRNA synthase.
Collapse
Affiliation(s)
| | - Giulia Mori
- Department of Life Sciences, University of Parma, Italy
| | - Frédéric Fischer
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, Institut Pasteur, ERL CNRS 3526, Paris, France
| | | |
Collapse
|
50
|
Kotini SB, Peske F, Rodnina MV. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res 2015; 43:6426-38. [PMID: 26040702 PMCID: PMC4513850 DOI: 10.1093/nar/gkv558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons.
Collapse
Affiliation(s)
- Suresh Babu Kotini
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|