1
|
Jiménez-Castillo V, Illescas-Barbosa D, Zenteno E, Ávila-Curiel BX, Castañeda-Patlán MC, Robles-Flores M, De Oca DMM, Pérez-Campos E, Torres-Rivera A, Bouaboud A, Pagesy P, Solórzano-Mata CJ, Issad T. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells. Sci Rep 2022; 12:4464. [PMID: 35296731 PMCID: PMC8927345 DOI: 10.1038/s41598-022-08445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Victoria Jiménez-Castillo
- National Technology of Mexico/IT.Oaxaca, Oaxaca, Mexico
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Daniela Illescas-Barbosa
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Beatriz Xóchitl Ávila-Curiel
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | | | | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Carlos Josué Solórzano-Mata
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| |
Collapse
|
2
|
Shazmeen, Haq I, Rajoka MSR, Asim Shabbir M, Umair M, llah I, Manzoor MF, Nemat A, Abid M, Khan MR, Aadil RM. Role of stilbenes against insulin resistance: A review. Food Sci Nutr 2021; 9:6389-6405. [PMID: 34760269 PMCID: PMC8565239 DOI: 10.1002/fsn3.2553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
Insulin resistance (IR) is a state characterized by the inability of tissues to utilize blood glucose particularly liver, muscle, and adipose tissues resulting in hyperglycemia and hyperinsulinemia. A close relationship exists between IR and the development of type 2 diabetes (T2D). Therefore, therapeutic approaches to treat IR also improve T2D simultaneously. Scientific evidence has highlighted the major role of inflammatory cytokines, reactive oxygen species (ROS), environmental & genetic factors, and auto-immune disorders in the pathophysiology of IR. Among therapeutic remedies, nutraceuticals like polyphenols are being used widely to ameliorate IR due to their safer nature compared to pharmaceutics. Stilbenes are considered important metabolically active polyphenols currently under the limelight of research to cope with IR. In this review, efforts are made to elucidate cellular and subcellular mechanisms influenced by stilbenes including modulating insulin signaling cascade, correcting glucose transport pathways, lowering postprandial glucose levels, and protecting β-cell damage and its effects on the hyperactive immune system and proinflammatory cytokines to attenuate IR. Furthermore, future directions to further the research in stilbenes as a strong candidate against IR are included so that concrete recommendation for their use in humans is made.
Collapse
Affiliation(s)
- Shazmeen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Iahtisham‐Ul Haq
- School of Food and NutritionFaculty of Allied Health SciencesMinhaj UniversityLahorePakistan
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology GroupLaboratory of Animal Food FunctionGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Muhmmad Asim Shabbir
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Umair
- Department of Food Science and EngineeringCollege of Chemistry and EngineeringShenzhen UniversityShenzhenChina
| | - Inam‐u llah
- Department of Food Science and TechnologyThe University of HaripurKhyber‐PakhtunkhwaPakistan
| | - Muhammad Faisal Manzoor
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityFaisalabadPakistan
| | - Arash Nemat
- Department of MicrobiologyKabul University of Medical SciencesKabulAfghanistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesArid Agriculture UniversityRawalpindiPakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
3
|
Joy-Immediato M, Ramirez MJ, Cerda M, Toyama Y, Ravasio A, Kanchanawong P, Bertocchi C. Junctional ER Organization Affects Mechanotransduction at Cadherin-Mediated Adhesions. Front Cell Dev Biol 2021; 9:669086. [PMID: 34222239 PMCID: PMC8247578 DOI: 10.3389/fcell.2021.669086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cadherin-mediated adhesions (also known as adherens junctions) are adhesive complexes that connect neighboring cells in a tissue. While the role of the actin cytoskeleton in withstanding tension at these sites of contact is well documented, little is known about the involvement of microtubules and the associated endoplasmic reticulum (ER) network in cadherin mechanotransduction. Therefore, we investigated how the organization of ER extensions in close proximity of cadherin-mediated adhesions can affect such complexes, and vice versa. Here, we show that the extension of the ER to cadherin-mediated adhesions is tension dependent and appears to be cadherin-type specific. Furthermore, the different structural organization of the ER/microtubule network seems to affect the localization of ER-bound PTP1B at cadherin-mediated adhesions. This phosphatase is involved in the modulation of vinculin, a molecular clutch which enables differential engagement of the cadherin-catenin layer with the actomyosin cytoskeleton in response to tension. This suggests a link between structural organization of the ER/microtubule network around cadherin-specific adhesions, to control the mechanotransduction of adherens junctions by modulation of vinculin conformational state.
Collapse
Affiliation(s)
- Michelle Joy-Immediato
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramirez
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Bai Y, Liu J, Yang L, Zhong L. New insights into serum/extracellular thioredoxin in regulating hepatic insulin receptor activation. Biochim Biophys Acta Gen Subj 2020; 1864:129630. [PMID: 32376199 DOI: 10.1016/j.bbagen.2020.129630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Serum thioredoxin of type-2 diabetic patients is significantly higher than that of healthy people. Pathophysiological significance is unclear. METHODS Effects of serum/extracellular thioredoxin on phosphorylation (activation) of hepatic insulin receptor (IR) were investigated by using methods in biochemistry, cell/molecular biology and mass spectrometry. RESULTS In human serum, thioredoxin and insulin may interact. Their mixture contains a mixed disulfide between insulin B-chain and thioredoxin-Cys73, which limits their activities. In contrast, free form of serum/extracellular thioredoxin is active, and can regulate phosphorylation of insulin receptor β-subunits (IRβ) via direct/indirect mechanisms. The direct mechanism associates with positive regulation. Serum/extracellular thioredoxin increases insulin binding to IR, facilitating insulin-induced phosphorylation of IRβ and downstream AKT. The indirect mechanism is involved in negative regulation. Entry of extracellular thioredoxin into hepatic cells via IR enhances the expression and activity of cellular protein-tyrosine phosphatase 1B (PTP1B), which negatively regulates IRβ phosphorylation. After coordination between these two mechanisms, the positive impact of serum/extracellular thioredoxin overwhelms its negative impact on IRβ phosphorylation, which subsequently accelerates hepatic glucose uptake. In hepatic cells with thioredoxin deficiency, insulin-induced IRβ phosphorylation is decreased, which could be restored by extracellular thioredoxin entry. Moreover, the results from assaying 475 serum samples demonstrate a discriminating value of serum thioredoxin activity in diagnosing type-2 diabetes. CONCLUSION Serum/extracellular thioredoxin plays a critical role in regulating hepatic IRβ phosphorylation. GENERAL SIGNIFICANCE In case of insulin resistance/type-2 diabetes, hepatic IRβ is at low phosphorylation level, thereby the improvement effect of serum/extracellular thioredoxin on insulin-induced IRβ phosphorylation seems particularly important.
Collapse
Affiliation(s)
- Yun Bai
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China
| | - Jia Liu
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China
| | - Lijuan Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China.
| |
Collapse
|
5
|
Durgannavar T, Kwon SJ, Ghisaidoobe ABT, Rho K, Kim JH, Yoon S, Kang HJ, Chung SJ. Label‐Free Detection of Protein Tyrosine Phosphatase 1B (PTP1B) by Using a Rationally Designed Förster Resonance Energy Transfer (FRET) Probe. Chembiochem 2018; 19:2495-2501. [DOI: 10.1002/cbic.201800529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
| | - Se Jeong Kwon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Kyungmin Rho
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Ju Hwan Kim
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sun‐Young Yoon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyo Jin Kang
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sang J. Chung
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
6
|
Gondoin A, Hampe C, Eudes R, Fayolle C, Pierre-Eugène C, Miteva M, Villoutreix BO, Charnay-Pouget F, Aitken DJ, Issad T, Burnol AF. Identification of insulin-sensitizing molecules acting by disrupting the interaction between the Insulin Receptor and Grb14. Sci Rep 2017; 7:16901. [PMID: 29203791 PMCID: PMC5715071 DOI: 10.1038/s41598-017-17122-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Metabolic diseases are characterized by a decreased action of insulin. During the course of the disease, usual treatments frequently fail and patients are finally submitted to insulinotherapy. There is thus a need for innovative therapeutic strategies to improve insulin action. Growth factor receptor-bound protein 14 (Grb14) is a molecular adapter that specifically binds to the activated insulin receptor (IR) and inhibits its tyrosine kinase activity. Molecules disrupting Grb14-IR binding are therefore potential insulin-sensitizing agents. We used Structure-Based Virtual Ligand Screening to generate a list of 1000 molecules predicted to hinder Grb14-IR binding. Using an acellular bioluminescence resonance energy transfer (BRET) assay, we identified, out of these 1000 molecules, 3 compounds that inhibited Grb14-IR interaction. Their inhibitory effect on insulin-induced Grb14-IR interaction was confirmed in co-immunoprecipitation experiments. The more efficient molecule (C8) was further characterized. C8 increased downstream Ras-Raf and PI3-kinase insulin signaling, as shown by BRET experiments in living cells. Moreover, C8 regulated the expression of insulin target genes in mouse primary hepatocytes. These results indicate that C8, by reducing Grb14-IR interaction, increases insulin signalling. The use of C8 as a lead compound should allow for the development of new molecules of potential therapeutic interest for the treatment of diabetes.
Collapse
Affiliation(s)
- Anaïs Gondoin
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Richard Eudes
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Cyril Fayolle
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Maria Miteva
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Florence Charnay-Pouget
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - David J Aitken
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France. .,INSERM, U1016, Paris, France.
| | - Anne-Françoise Burnol
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France. .,INSERM, U1016, Paris, France.
| |
Collapse
|
7
|
Sorokoumov VN, Shpakov AO. Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yamashita N, Joshi R, Zhang S, Zhang ZY, Kuruvilla R. Phospho-Regulation of Soma-to-Axon Transcytosis of Neurotrophin Receptors. Dev Cell 2017; 42:626-639.e5. [PMID: 28919207 DOI: 10.1016/j.devcel.2017.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
Axonal targeting of signaling receptors is essential for neuronal responses to extracellular cues. Here, we report that retrograde signaling by target-derived nerve growth factor (NGF) is necessary for soma-to-axon transcytosis of TrkA receptors in sympathetic neurons, and we define the molecular underpinnings of this positive feedback regulation that enhances neuronal sensitivity to trophic factors. Activated TrkA receptors are retrogradely transported in signaling endosomes from distal axons to cell bodies, where they are inserted on soma surfaces and promote phosphorylation of resident naive receptors, resulting in their internalization. Endocytosed TrkA receptors are then dephosphorylated by PTP1B, an ER-resident protein tyrosine phosphatase, prior to axonal transport. PTP1B inactivation prevents TrkA exit from soma and causes receptor degradation, suggesting a "gatekeeper" mechanism that ensures targeting of inactive receptors to axons to engage with ligand. In mice, PTP1B deletion reduces axonal TrkA levels and attenuates neuron survival and target innervation under limiting NGF (NGF+/-) conditions.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rajshri Joshi
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Liao SC, Li JX, Yu L, Sun SR. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J Zhejiang Univ Sci B 2017; 18:334-342. [PMID: 28378571 DOI: 10.1631/jzus.b1600184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein tyrosine phosphatase 1B (PTP1B) is an important regulator of metabolism. The relationship between PTP1B and tumors is quite complex. The purpose of this study is to explore the expression pattern and role of PTP1B in breast cancer. The expression of PTP1B was detected in 67 samples of breast cancer tissue by Western blot. Cell growth assay, Transwell migration assay, and Scratch motility assay were used to examine the proliferation and migration of MCF-7 with and without PTP1B. The total levels and phosphorylated levels of signal transduction and activator of transcription 3 (STAT3) and the expression of C-C motif chemokine ligand 5 (CCL5) were also examined by Western blot. PTP1B was overexpressed in over 70% of breast cancer tissues, correlating with patients with estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and human epidermal growth factor receptor 2 (HER2)-positive tumors. The data also showed that both tumor size and lymph node metastasis were significantly higher in patients with a higher level of PTP1B. The proliferation and migration of MCF-7 cells were found to be inhibited after knocking down the gene of PTP1B. Our data also showed that PTP1B could up-regulate the dephosphorylated level of STAT3, which could increase the expression of CCL5. These phenomena indicated that PTP1B may play a crucial role in the development of breast cancer.
Collapse
Affiliation(s)
- Shi-Chong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin-Xin Li
- Department of Teaching Administration, Wuhan University School of Medicine, Wuhan 430071, China
| | - Li Yu
- Intensive Care Unit, the Central Hospital of Wuhan, Wuhan 430014, China
| | - Sheng-Rong Sun
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
10
|
Thiebaut PA, Besnier M, Gomez E, Richard V. Role of protein tyrosine phosphatase 1B in cardiovascular diseases. J Mol Cell Cardiol 2016; 101:50-57. [DOI: 10.1016/j.yjmcc.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
|
11
|
Hsu MF, Pan KT, Chang FY, Khoo KH, Urlaub H, Cheng CF, Chang GD, Haj FG, Meng TC. S-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling. Free Radic Biol Med 2016; 99:199-213. [PMID: 27521458 PMCID: PMC5514559 DOI: 10.1016/j.freeradbiomed.2016.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) exerts its biological function through S-nitrosylation of cellular proteins. Due to the labile nature of this modification under physiological condition, identification of S-nitrosylated residue in enzymes involved in signaling regulation remains technically challenging. The present study investigated whether intrinsic NO produced in endothelium-derived MS-1 cells response to insulin stimulation might target endogenous protein tyrosine phosphatases (PTPs). For this, we have developed an approach using a synthetic reagent that introduces a phenylacetamidyl moiety on S-nitrosylated Cys, followed by detection with anti-phenylacetamidyl Cys (PAC) antibody. Coupling with sequential blocking of free thiols with multiple iodoacetyl-based Cys-reactive chemicals, we employed this PAC-switch method to show that endogenous SHP-2 and PTP1B were S-nitrosylated in MS-1 cells exposed to insulin. The mass spectrometry detected a phenylacetamidyl moiety specifically present on the active-site Cys463 of SHP-2. Focusing on the regulatory role of PTP1B, we showed S-nitrosylation to be the principal Cys reversible redox modification in endothelial insulin signaling. The PAC-switch method in an imaging format illustrated that a pool of S-nitrosylated PTP1B was colocalized with activated insulin receptor to the cell periphery, and that such event was endothelial NO synthase (eNOS)-dependent. Moreover, ectopic expression of the C215S mutant of PTP1B that mimics the active-site Cys215 S-nitrosylated form restored insulin responsiveness in eNOS-ablated cells, which was otherwise insensitive to insulin stimulation. This work not only introduces a new method that explores the role of physiological NO in regulating signal transduction, but also highlights a positive NO effect on promoting insulin responsiveness through S-nitrosylation of PTP1B's active-site Cys215.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Plank Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fan-Yu Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Plank Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ching-Feng Cheng
- Department of Medical Research, Tzu Chi University and Department of Pediatrics, Tzu Chi General Hospital, Hualien, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, USA.
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Abstract
Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.
Collapse
|
13
|
Radha V. Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates. Methods Mol Biol 2016; 1447:243-65. [PMID: 27514810 DOI: 10.1007/978-1-4939-3746-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation of proteins on tyrosine residues is the consequence of coordinated action of tyrosine kinases (TKs), and protein tyrosine phosphatases (PTPs). Together, they regulate intermolecular interactions, subcellular localization, and activity of a variety of proteins. The level of total protein-associated tyrosine phosphorylation in eukaryotic cells is only a small fraction of the total phosphorylation. PTPs, which have high specific activity compared to tyrosine kinases, play an important role in maintaining the tyrosine phosphorylation state of proteins and regulate signal transduction pathways and cellular responses. PTPs depend on specific invariant residues that enable binding to substrates phosphorylated at tyrosine and aid catalytic activity. Identification of PTP substrates has helped understand their role in distinct intracellular signaling pathways. Because of their high specific activity, the interaction between tyrosine phosphatases and their substrates is often very transient in the cellular context, and therefore identification of physiological substrates has been difficult. Single-site mutations in the enzymes stabilize interaction between the enzyme and its targets and have been used extensively to identify substrates. The mutations are either of the catalytic cysteine (Cys) residue or other invariant residues and have been classified as substrate-trapping mutants (STMs). These mutants often serve as dominant negatives that can inactivate effector functions of a specific PTP within cells. Considering their association with human disorders, inhibiting specific PTPs is important therapeutically. Since the catalytic domains are largely conserved, developing small-molecule inhibitors to a particular enzyme has proven difficult and therefore alternate strategies to block functions of individual enzymes are seriously being investigated. We provide a description of methods that will be useful to design strategies of using dominant-negative and substrate-trapping mutants for identifying novel interacting partners and substrates of PTPs.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
14
|
Pagesy P, Fardini Y, Nguyen TT, Lohmann M, Pierre-Eugene C, Tennagels N, Issad T. Effect of insulin analogues on phosphatidyl inositol-3 kinase/Akt signalling in INS-1 rat pancreatic derived β-cells. Arch Physiol Biochem 2016; 122:54-60. [PMID: 26707268 DOI: 10.3109/13813455.2015.1125364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Insulin analogues are largely used for the treatment of diabetic patients, but concerns have been raised about their mitogenic/anti-apoptotic potential. It is therefore important to evaluate these analogues in different cell systems. OBJECTIVE The aim of this work was to establish the pharmacological profiles of insulin analogues towards PI-3 kinase/Akt pathway in INS-1 β-pancreatic cells. METHODS Bioluminescence Resonance Energy Transfer (BRET), in cell western and caspase 3/7 assays, was used to study the effects of ligands. RESULTS Among the five analogues evaluated, only glargine stimulated PI-3 kinase/Akt pathway with higher efficiency than insulin, whereas glargine's metabolite M1 was less efficient. However, glargine did not show higher anti-apoptotic efficiency than insulin. CONCLUSION Glargine was more efficient than insulin for the activation of PI-3 kinase/Akt pathway, but not for the inhibition of caspase 3/7 activity. Moreover, glargine's metabolite M1 displayed lower efficiency than insulin towards PI-3 kinase/Akt activation and caspase 3/7 inhibition.
Collapse
Affiliation(s)
- Patrick Pagesy
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | - Yann Fardini
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | - Tuyet Thu Nguyen
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | | | - Cécile Pierre-Eugene
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | | | - Tarik Issad
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| |
Collapse
|
15
|
Lee D, Kraus A, Prins D, Groenendyk J, Aubry I, Liu WX, Li HD, Julien O, Touret N, Sykes BD, Tremblay ML, Michalak M. UBC9-dependent association between calnexin and protein tyrosine phosphatase 1B (PTP1B) at the endoplasmic reticulum. J Biol Chem 2015; 290:5725-38. [PMID: 25586181 DOI: 10.1074/jbc.m114.635474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.
Collapse
Affiliation(s)
- Dukgyu Lee
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Allison Kraus
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Daniel Prins
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Jody Groenendyk
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Isabelle Aubry
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Wen-Xin Liu
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Hao-Dong Li
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Olivier Julien
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Nicolas Touret
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Brian D Sykes
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Michel L Tremblay
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marek Michalak
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
16
|
Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One 2014; 9:e112664. [PMID: 25401701 PMCID: PMC4234468 DOI: 10.1371/journal.pone.0112664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/06/2014] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers.
Collapse
|
17
|
Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol 2014; 37:58-65. [PMID: 25263014 DOI: 10.1016/j.semcdb.2014.09.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/19/2023]
Abstract
Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jesse Bakke
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
18
|
Desbuquois B, Authier F. [Involvement of the endosomal compartment in cellular insulin signaling]. Biol Aujourdhui 2014; 208:137-150. [PMID: 25190573 DOI: 10.1051/jbio/2014016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 06/03/2023]
Abstract
The insulin receptor and insulin signaling proteins downstream the receptor reside in different subcellular compartments and undergo redistribution within the cell upon insulin activation. Endocytosis of the insulin-receptor complex, by mediating ligand degradation and receptor dephosphorylation, is generally viewed as a mechanism which attenuates or arrests insulin signal transduction. However, several observations suggest that insulin receptor endocytosis and/or recruitement of insulin signaling proteins to endosomes are also involved in a positive regulation of insulin signaling: (1) upon internalization, the insulin receptor remains transiently phosphorylated and activated; (2) in insulin-stimulated cells or tissues, signaling proteins of the PI3K/Akt and Ras/Raf/Mek/Erk pathways are recruited to endosomes or other intracellular compartments, in which they undergo phosphorylation and/or activation; and (3) depletion or overexpression of proteins involved in the regulation of membrane trafficking and endocytosis interfere with insulin signaling. These observations support a spatial and temporal regulation of insulin signal transduction and reinforce the concept that, as for other membrane signaling receptors, endocytosis and signaling are functionally linked.
Collapse
Affiliation(s)
- Bernard Desbuquois
- Inserm U1016 et CNRS UMR 8104, Institut Cochin, et Université Paris Descartes, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - François Authier
- Service Information Scientifique et Technique (IST) de l'Inserm, Délégation Régionale Inserm Paris V, 2 rue d'Alésia, 75014 Paris, France
| |
Collapse
|
19
|
Gondoin A, Morzyglod L, Desbuquois B, Burnol AF. [Control of insulin signalisation and action by the Grb14 protein]. Biol Aujourdhui 2014; 208:119-36. [PMID: 25190572 DOI: 10.1051/jbio/2014013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/15/2022]
Abstract
The action of insulin on metabolism and cell growth is mediated by a specific receptor tyrosine kinase, which, through phosphorylation of several substrates, triggers the activation of two major signaling pathways, the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the Ras/extracellular signal-regulated kinase (ERK) pathway. Insulin-induced activation of the receptor and downstream signaling is also subjected to a negative feedback control involving several mechanisms, among which the interaction of the insulin receptor and its substrates with inhibitory proteins. After summarizing the major mechanisms underlying the activation and attenuation of insulin signaling, this review focuses on its control by the Grb14 adaptor protein. Grb14 has been identif-ied as an inhibitor of insulin signaling and action, and is involved in insulin resistance associated with type 2 diabetes and obesity. Studies on the molecular mechanism of action of Grb14 have shown that, through interaction with the activated insulin receptor, Grb14 inhibits its catalytic activity and the activation of downstream signaling. However, the consequences of Grb14 gene invalidation are complex and tissue-specific, and some effects of Grb14 on insulin signaling appear to be linked to its interaction with effector proteins downstream the insulin receptor. Pharmacological inhibition of Grb14 should allow to enhance insulin sensitivity and improve energy homeostasis in insulin-resistant states.
Collapse
Affiliation(s)
- Anaïs Gondoin
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lucie Morzyglod
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Bernard Desbuquois
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
20
|
Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. ACTA ACUST UNITED AC 2014; 205:759-69. [PMID: 24958771 PMCID: PMC4068136 DOI: 10.1083/jcb.201401126] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of close apposition between two organelles, often referred to as membrane contact sites (MCSs), mostly form between the endoplasmic reticulum and a second organelle, although contacts between mitochondria and other organelles have also begun to be characterized. Although these contact sites have been noted since cells first began to be visualized with electron microscopy, the functions of most of these domains long remained unclear. The last few years have witnessed a dramatic increase in our understanding of MCSs, revealing the critical roles they play in intracellular signaling, metabolism, the trafficking of metabolites, and organelle inheritance, division, and transport.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Stanford SM, Ahmed V, Barrios AM, Bottini N. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Antioxid Redox Signal 2014; 20:2160-78. [PMID: 24294920 PMCID: PMC3995294 DOI: 10.1089/ars.2013.5731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The protein tyrosine phosphatases (PTPs) are a family of proteins that play critical roles in cellular signaling and influence many aspects of human health and disease. Although a wealth of information has been collected about PTPs since their discovery, many questions regarding their regulation and function still remain. CRITICAL ISSUES Of particular importance are the elucidation of the biological substrates of individual PTPs and understanding of the chemical and biological basis for temporal and spatial resolution of PTP activity within a cell. RECENT ADVANCES Drawing from recent advances in both biology and chemistry, innovative approaches have been developed to study the intracellular biochemistry and physiology of PTPs. We provide a summary of PTP-tailored techniques and approaches, emphasizing methodologies to study PTP activity within a cellular context. We first provide a discussion of methods for identifying PTP substrates, including substrate-trapping mutants and synthetic peptide libraries for substrate selectivity profiling. We next provide an overview of approaches for monitoring intracellular PTP activity, including a discussion of mechanistic-based probes, gel-based assays, substrates that can be used intracellularly, and assays tied to cell growth. Finally, we review approaches used for monitoring PTP oxidation, a key regulatory pathway for these enzymes, discussing the biotin switch method and variants of this approach, along with affinity trapping techniques and probes designed to detect PTP oxidation. FUTURE DIRECTIONS Further development of approaches to investigate the intracellular PTP activity and functions will provide specific insight into their mechanisms of action and control of diverse signaling pathways.
Collapse
Affiliation(s)
- Stephanie M Stanford
- 1 Division of Cellular Biology, La Jolla Institute for Allergy and Immunology , La Jolla, California
| | | | | | | |
Collapse
|
22
|
Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Aymice. Mol Nutr Food Res 2014; 58:1177-89. [DOI: 10.1002/mnfr.201300675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Ayumi Maeda
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Kenji Kai
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Megumi Ishii
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, and Global COE Program; University of Shizuoka; Shizuoka Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| |
Collapse
|
23
|
Delatouche R, Denis I, Grinda M, Bahhaj FE, Baucher E, Collette F, Héroguez V, Grégoire M, Blanquart C, Bertrand P. Design of pH responsive clickable prodrugs applied to histone deacetylase inhibitors: A new strategy for anticancer therapy. Eur J Pharm Biopharm 2013; 85:862-72. [DOI: 10.1016/j.ejpb.2013.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
|
24
|
Böhmer SA, Weibrecht I, Söderberg O, Böhmer FD. Association of the protein-tyrosine phosphatase DEP-1 with its substrate FLT3 visualized by in situ proximity ligation assay. PLoS One 2013; 8:e62871. [PMID: 23650535 PMCID: PMC3641115 DOI: 10.1371/journal.pone.0062871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are important regulators of signal transduction processes. Essential for the functional characterization of PTPs is the identification of their physiological substrates, and an important step towards this goal is the demonstration of a physical interaction. The association of PTPs with their cellular substrates is, however, often transient and difficult to detect with unmodified proteins at endogenous levels. Density-enhanced phosphatase-1 (DEP-1/PTPRJ) is a regulator of hematopoietic cell functions, and a candidate tumor suppressor. However, association of DEP-1 with any of its proposed substrates at endogenous levels has not yet been shown. We have previously obtained functional and biochemical evidence for a direct interaction of DEP-1 with the hematopoietic receptor-tyrosine kinase Fms-like tyrosine kinase-3 (FLT3). In the current study we have used the method of in situ proximity ligation assay (in situ PLA) to validate this interaction at endogenous levels, and to further characterize it. In situ PLA readily detected association of endogenous DEP-1 and FLT3 in the human acute monocytic leukemia cell line THP-1, which was enhanced by FLT3 ligand (FL) stimulation in a time-dependent manner. Association peaked between 10 and 20 min of stimulation and returned to basal levels at 30 min. This time course was similar to the time course of FLT3 autophosphorylation. FLT3 kinase inhibition and DEP-1 oxidation abrogated association. Consistent with a functional role of DEP-1-FLT3 interaction, stable knockdown of DEP-1 in THP-1 cells enhanced FL-induced ERK1/2 activation. These findings support that FLT3 is a bona fide substrate of DEP-1 and that interaction occurs mainly via an enzyme-substrate complex formation triggered by FLT3 ligand stimulation.
Collapse
Affiliation(s)
- Sylvia-Annette Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Irene Weibrecht
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Frank-D. Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
25
|
Siddiqui S, Cong WN, Daimon CM, Martin B, Maudsley S. BRET Biosensor Analysis of Receptor Tyrosine Kinase Functionality. Front Endocrinol (Lausanne) 2013; 4:46. [PMID: 23577003 PMCID: PMC3620488 DOI: 10.3389/fendo.2013.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/26/2013] [Indexed: 01/20/2023] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR) research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK) activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative, and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the RTK superfamily involving: neurotrophic receptors [e.g., tropomyosin-related kinase (Trk) and p75 neurotrophin receptor (p75NTR)]; insulinotropic receptors [e.g., insulin receptor (IR) and insulin-like growth factor receptor (IGFR)] and growth factor receptors [e.g., ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR), the vascular endothelial growth factor receptor (VEGFR) and the c-kit and platelet-derived growth factor receptor (PDGFR)]. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e., leptin receptor (OB-R) and the growth hormone receptor (GHR). It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of HealthBaltimore, MD, USA
| | - Wei-Na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of HealthBaltimore, MD, USA
| | - Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of HealthBaltimore, MD, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of HealthBaltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of HealthBaltimore, MD, USA
- *Correspondence: Stuart Maudsley, Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA. e-mail:
| |
Collapse
|
26
|
Burdisso JE, González Á, Arregui CO. PTP1B promotes focal complex maturation, lamellar persistence and directional migration. J Cell Sci 2013; 126:1820-31. [DOI: 10.1242/jcs.118828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous findings established that ER-bound PTP1B targets peripheral cell-matrix adhesions and regulates positively cell adhesion to fibronectin. Here we show that PTP1B enhances focal complex lifetime at the lamellipodium base, delaying their turnover and facilitating α-actinin incorporation. We demonstrate the presence of catalytic PTP1BD181A-α-actinin complexes at focal complexes. Kymograph analysis reveals that PTP1B contributes to lamellar protrusion persistence and directional cell migration. Pull down and FRET analysis also shows that PTP1B is required for efficient integrin-dependent downregulation of RhoA and upregulation of Rac1 during spreading. A substrate trap strategy revealed that FAK/Src recruitment and Src activity were essential for the generation of PTP1B substrates in adhesions. PTP1B targets the negative regulatory site of Src (phosphotyrosine 529), paxillin and p130Cas at peripheral cell-matrix adhesions. We postulate that PTP1B modulates more than one pathway required for focal complex maturation and membrane protrusion, including α-actinin-mediated cytoskeletal anchorage, integrin-dependent activation of the FAK/Src signaling pathway, and RhoA and Rac1 GTPase activity. By doing so, PTP1B contributes to coordinate adhesion turnover, lamellar stability and directional cell migration.
Collapse
|
27
|
Takada M, Sumi M, Maeda A, Watanabe F, Kamiya T, Ishii T, Nakano M, Akagawa M. Pyrroloquinoline quinone, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves impaired glucose tolerance in diabetic KK-Ay mice. Biochem Biophys Res Commun 2012; 428:315-20. [DOI: 10.1016/j.bbrc.2012.10.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 01/22/2023]
|
28
|
ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 2012; 7:e38948. [PMID: 22701734 PMCID: PMC3372476 DOI: 10.1371/journal.pone.0038948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 05/15/2012] [Indexed: 12/17/2022] Open
Abstract
PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.
Collapse
|
29
|
Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One 2012; 7:e36633. [PMID: 22655028 PMCID: PMC3360045 DOI: 10.1371/journal.pone.0036633] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/04/2012] [Indexed: 12/17/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B.
Collapse
Affiliation(s)
- Fawaz G. Haj
- Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, United States of America
- Nutrition Department, University of California Davis, Davis, California, United States of America
- * E-mail: (FGH) (FH); (BGN) (BN); (PIB) (PB)
| | - Ola Sabet
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ali Kinkhabwala
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wimmer-Kleikamp
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Vassilis Roukos
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Hong-Mei Han
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Grabenbauer
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Martin Bierbaum
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Claude Antony
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Benjamin G. Neel
- Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, United States of America
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (FGH) (FH); (BGN) (BN); (PIB) (PB)
| | - Philippe I. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail: (FGH) (FH); (BGN) (BN); (PIB) (PB)
| |
Collapse
|
30
|
Kulahin N, Sanni SJ, Slaaby R, Nøhr J, Gammeltoft S, Hansen JL, Jorgensen R. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology. J Recept Signal Transduct Res 2012; 32:57-64. [PMID: 22272819 DOI: 10.3109/10799893.2011.647351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Incretin Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
31
|
Couturier C, Deprez B. Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells. Front Endocrinol (Lausanne) 2012; 3:100. [PMID: 22973258 PMCID: PMC3438444 DOI: 10.3389/fendo.2012.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed "interactome." Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET) technique was primarily developed to allow the dynamic monitoring of protein/protein interactions (PPI) in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of PPI and here is described why and how to set up and optimize a high throughput screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence of substrate concentration, number of cells and medium composition used on the Z' factor, and expected interferences from colored or fluorescent compounds.
Collapse
Affiliation(s)
- Cyril Couturier
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
- *Correspondence: Cyril Couturier, UMR 761, Biostructure and Drug Discovery, Institut Pasteur de Lille, Université Lille 2, 1 rue du Pr Calmette, 59000 Lille, France. e-mail:
| | - Benoit Deprez
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
| |
Collapse
|
32
|
Krucker T, Sandanaraj BS. Optical imaging for the new grammar of drug discovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4651-4665. [PMID: 22006912 DOI: 10.1098/rsta.2011.0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optical technologies used in biomedical research have undergone tremendous development in the last decade and enabled important insight into biochemical, cellular and physiological phenomena at the microscopic and macroscopic level. Historically in drug discovery, to increase throughput in screening, or increase efficiency through automation of image acquisition and analysis in pathology, efforts in imaging were focused on the reengineering of established microscopy solutions. However, with the emergence of the new grammar for drug discovery, other requirements and expectations have created unique opportunities for optical imaging. The new grammar of drug discovery provides rules for translating the wealth of genomic and proteomic information into targeted medicines with a focus on complex interactions of proteins. This paradigm shift requires highly specific and quantitative imaging at the molecular level with tools that can be used in cellular assays, animals and finally translated into patients. The development of fluorescent targeted and activatable 'smart' probes, fluorescent proteins and new reporter gene systems as functional and dynamic markers of molecular events in vitro and in vivo is therefore playing a pivotal role. An enabling optical imaging platform will combine optical hardware refinement with a strong emphasis on creating and validating highly specific chemical and biological tools.
Collapse
Affiliation(s)
- Thomas Krucker
- Global Imaging Group, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | | |
Collapse
|
33
|
Sam68 interacts with IRS1. Biochem Pharmacol 2011; 83:78-87. [PMID: 22005517 DOI: 10.1016/j.bcp.2011.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022]
Abstract
Sam68 (Src associated in mitosis) is a RNA binding protein that links cellular signaling to RNA processing. In previous studies we found that insulin promotes Sam68 relocalization in the cytoplasm allowing Sam68 to associate with p85PI3K, Grb2, GAP and probably the insulin receptor (IR), modulating insulin action positively. In the present work, we wanted to define the role of Sam68 in the first stages of IR signaling. Both BRET and co-immunoprecipitation assays have been used for the study of Sam68 binding to IR, IRS1 and p85-PI3K. BRET saturation experiments indicated, for the first time, that Sam68 associates with IRS1 in basal condition. To map the region of Sam68 implicated in the interaction with IRS1, different Sam68 mutants deleted in the proline-rich domains were used. The deletion of P0, P1 and P2 proline rich domains in N-terminus as well as P4 and P5 in C-terminus of Sam68 increased BRET(50), thus indicating that the affinity of Sam68 for IRS1 is lower when these domains are missing. Moreover, in IR-transfected HEK-293 cells, BRET saturation experiment indicated that insulin increases the affinity between Sam68-Rluc and IRS1-YFP. In conclusion, our data indicate that Sam68 interacts with IRS-1 in basal conditions, and insulin increases the affinity between these two partners.
Collapse
|
34
|
Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T. A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B) reveals full autoactivation of the insulin receptor precursor. J Biol Chem 2011; 286:19373-80. [PMID: 21487008 DOI: 10.1074/jbc.m111.222984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.
Collapse
|
35
|
Putters J, da Silva Almeida AC, van Kerkhof P, van Rossum AGSH, Gracanin A, Strous GJ. Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS One 2011; 6:e14676. [PMID: 21347402 PMCID: PMC3036580 DOI: 10.1371/journal.pone.0014676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/13/2011] [Indexed: 12/04/2022] Open
Abstract
Background Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of certain cytokine receptors is mediated by the ubiquitin ligase SCF(βTrCP). In several instances, Janus kinase (Jak) family members can stabilise their cognate cytokine receptors at the cell surface. Principal Findings In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces down-regulation of the growth hormone receptor by SCF(βTrCP). Using γ2A human fibroblast cells we show that both growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate the importance of cellular concentration on growth hormone receptor function. Both Jak2 and βTrCP bind to neighbouring linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth hormone sensitivity is regulated by the cellular level of non-committed Jak2. Conclusions/Significance As signal transduction of many cytokine receptors depends on Jak2, the study suggests an integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the receptors.
Collapse
Affiliation(s)
- Joyce Putters
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana C. da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Peter van Kerkhof
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnes G. S. H. van Rossum
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Ger J. Strous
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. ACTA ACUST UNITED AC 2010; 191:1189-203. [PMID: 21135139 PMCID: PMC3002030 DOI: 10.1083/jcb.201005035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changes in protein tyrosine phosphatase 1B expression affect duration and amplitude of EphA3 phosphorylation and cell surface concentration. Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal fluorescence lifetime imaging microscopy (FLIM) reveals direct interactions between PTP1B and EphA3 before ligand-stimulated receptor internalization and, subsequently, on endosomes. Moreover, overexpression of wild-type (w/t) PTP1B and the [D-A] substrate–trapping mutant decelerate ephrin-induced EphA3 trafficking in a dose-dependent manner, which reveals its role in controlling EphA3 cell surface concentration. Furthermore, we provide evidence that in areas of Eph/ephrin-mediated cell–cell contacts, the EphA3–PTP1B interaction can occur directly at the plasma membrane. Our studies for the first time provide molecular, mechanistic, and functional insights into the role of PTP1B controlling Eph/ephrin-facilitated cellular interactions.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Darbandi-Tehrani K, Hermand P, Carvalho S, Dorgham K, Couvineau A, Lacapère JJ, Combadière C, Deterre P. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. FASEB J 2010; 24:4585-98. [PMID: 20667981 DOI: 10.1096/fj.10-156612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemokine CX3CL1 is expressed as a membrane protein that forms a potent adhesive pair with its unique receptor CX3CR1. This receptor has 3 natural variants, V249-T280 (VT), I249-T280 (IT), and I249-M280 (IM), whose relative frequencies are significantly associated with the incidence of various inflammatory diseases. To assess the adhesive potency of CX3CR1 and the molecular diversity of its variants, we assayed their clustering status and their possible structural differences by fluorescence/bioluminescence resonance energy transfer (FRET or BRET) techniques. FRET assays by flow cytometry showed that the CX3CR1 variants cluster, in comparison with appropriate controls. BRET assays showed low nonspecific signals for VT and IT variants and high specific signals for IM, and thus pointed out a structural difference in this variant. We used molecular modeling to show how natural point mutations of CX3CR1 affect the packing of the 6th and 7th helices of this G-protein coupled receptor. Moreover, we found that the BRET technique is sensitive enough to detect these tiny changes. Consistently with our previous finding that CX3CL1 aggregates, our data here indicate that CX3CR1 clustering may contribute to the adhesiveness of the CX3CL1-CX3CR1 pair and may thus represent a new target for anti-inflammatory therapies.
Collapse
|
38
|
Stuible M, Tremblay ML. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol 2010; 20:672-9. [DOI: 10.1016/j.tcb.2010.08.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 01/26/2023]
|
39
|
Grb14 inhibits FGF receptor signaling through the regulation of PLCγ recruitment and activation. FEBS Lett 2010; 584:4383-8. [DOI: 10.1016/j.febslet.2010.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
|
40
|
Yip SC, Saha S, Chernoff J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010; 35:442-9. [PMID: 20381358 PMCID: PMC2917533 DOI: 10.1016/j.tibs.2010.03.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 01/17/2023]
Abstract
PTP1B, a non-transmembrane protein tyrosine phosphatase that has long been studied as a negative regulator of insulin and leptin signaling, has received renewed attention as an unexpected positive factor in tumorigenesis. Here, we highlight how views of this enzyme have evolved from regarding it as a simple metabolic off-switch to a more complex view of PTP1B as an enzyme that can play both negative and positive roles in diverse signaling pathways. These dual characteristics make PTP1B a particularly attractive therapeutic target for diabetes, obesity, and perhaps breast cancer.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
41
|
Lantz KA, Hart SGE, Planey SL, Roitman MF, Ruiz-White IA, Wolfe HR, McLane MP. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring) 2010; 18:1516-23. [PMID: 20075852 DOI: 10.1038/oby.2009.444] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trodusquemine (MSI-1436) causes rapid and reversible weight loss in genetic models of obesity. To better predict the potential effects of trodusquemine in the clinic, we investigated the effects of trodusquemine treatment in a murine model of diet-induced obesity (DIO). Trodusquemine suppressed appetite, reduced body weight (BW) in a fat-specific manner, and improved plasma insulin and leptin levels in mice. Screening assays revealed that trodusquemine selectively inhibited protein-tyrosine phosphatase 1B (PTP1B), a key enzyme regulating insulin and leptin signaling. Trodusquemine significantly enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) beta and STAT3, direct targets of PTP1B, in HepG2 cells in vitro and/or hypothalamic tissue in vivo. These data establish trodusquemine as an effective central and peripheral PTP1B inhibitor with the potential to elicit noncachectic fat-specific weight loss and improve insulin and leptin levels.
Collapse
Affiliation(s)
- Kristen A Lantz
- Department of Preclinical Research, Genaera Corporation, Plymouth Meeting, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hernández MV, Wehrendt DP, Arregui CO. The protein tyrosine phosphatase PTP1B is required for efficient delivery of N-cadherin to the cell surface. Mol Biol Cell 2010; 21:1387-97. [PMID: 20181825 PMCID: PMC2854096 DOI: 10.1091/mbc.e09-10-0880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This work shows a novel role of PTP1B in the regulation of N-cadherin trafficking. PTP1B is required for the association of p120 to the N-cadherin precursor and this event is crucial for trafficking of the complex through the early stages of the secretory pathway. PTP1B bound to mature N-cadherin promotes the association of β-catenin into the complex, the stable expression of the complex at cell surface, and cadherin-mediated adhesion. Here we show that PTP1B is also required for N-cadherin precursor trafficking through early stages of the secretory pathway. This function does not require association of PTP1B with the precursor. In PTP1B null cells, the N-cadherin precursor showed higher sensitivity to endoglycosidase H than in cells reconstituted with the wild-type enzyme. It also showed slower kinetics of ER-to-Golgi translocation and processing. Trafficking of the viral stomatitis vesicular glycoprotein, VSV-G, however, revealed no differences between PTP1B null and reconstituted cells. N-cadherin precursor complexes contained similar levels of α- and β-catenin regardless of PTP1B expression. In contrast, the associated p120 catenin (p120) was significantly reduced in absence of PTP1B expression. An N-cadherin precursor construct defective in p120 binding, and expressed in PTP1B reconstituted cells, showed higher sensitivity to endoglycosidase H and slower kinetics of processing than the wild-type precursor. Our results suggest that PTP1B promotes the association of p120 to the N-cadherin precursor, facilitating the trafficking of the complex from the ER to the Golgi complex.
Collapse
Affiliation(s)
- Mariana V Hernández
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH), Universidad de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | | | | |
Collapse
|
43
|
Blanquart C, Karouri SE, Issad T. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem Biophys Res Commun 2010; 392:83-8. [DOI: 10.1016/j.bbrc.2009.12.176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/26/2009] [Indexed: 12/18/2022]
|
44
|
Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen. Biochem Biophys Res Commun 2009; 387:748-53. [DOI: 10.1016/j.bbrc.2009.07.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022]
|
45
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|
46
|
Bustanji Y, Taha MO, Al-Masri IM, Mohammad MK. Docking simulations and in vitro assay unveil potent inhibitory action of papaverine against protein tyrosine phosphatase 1B. Biol Pharm Bull 2009; 32:640-645. [PMID: 19336898 DOI: 10.1248/bpb.32.640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The structural similarity between papaverine and berberine, a known inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B), prompted us to investigate the potential of papaverine as h-PTP 1B inhibitor. The investigation included simulated docking experiments to fit papaverine into the binding pocket of h-PTP 1B. Papaverine was found to readily dock within the binding pocket of h-PTP 1B in a low energy orientation via an optimal set of attractive interactions. Experimentally, papaverine illustrated potent in vitro inhibitory effect against recombinant h-PTP 1B (IC(50)=1.20 microM). In vivo, papaverine significantly decreased fasting blood glucose level of Balb/c mice. Our findings should encourage screening of other natural alkaloids for possible anti-h-PTP 1B activities.
Collapse
|
47
|
Fuentes F, Arregui CO. Microtubule and cell contact dependency of ER-bound PTP1B localization in growth cones. Mol Biol Cell 2009; 20:1878-89. [PMID: 19158394 DOI: 10.1091/mbc.e08-07-0675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity.
Collapse
Affiliation(s)
- Federico Fuentes
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
48
|
Rajala RVS, Wiskur B, Tanito M, Callegan M, Rajala A. Diabetes reduces autophosphorylation of retinal insulin receptor and increases protein-tyrosine phosphatase-1B activity. Invest Ophthalmol Vis Sci 2008; 50:1033-40. [PMID: 19029027 DOI: 10.1167/iovs.08-2851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Protein-tyrosine phosphatase-1B (PTP1B) has been implicated in the negative regulation of insulin signaling. The expression, activity, and functional role of PTP1B in the retina are unknown. In this study, the authors examined the relationship between the retinal insulin receptor (IR) and PTP1B in normal and diabetic mouse retinas. METHODS IR and PTP1B localization was examined by immunohistochemistry. The activation of IR was analyzed using specific antibodies against phosphotyrosine. PTP1B activity was determined in anti-PTP1B immunoprecipitates. Glutathione-S-transferase fusion proteins containing wild-type and catalytically inactive mutant PTP1B was used to study the interaction between IR and PTP1B. Anti-IR immunoprecipitates and the cytoplasmic domain of purified IR were incubated in the presence of ATP, and the autophosphorylation of IR with antiphosphotyrosine antibody was analyzed. RESULTS Immunohistochemical analysis of PTP1B shows that it is predominantly expressed in nonphotoreceptor layers of the retina, though it is clearly expressed in the inner segments of the rod photoreceptors. The IR is predominately expressed in rod inner segments. Biochemical analysis of rod outer segments indicates the presence of IR and PTP1B. Retinal IR exhibits a high level of basal autophosphorylation, and this autophosphorylation is reduced in diabetic mouse retinas. In vitro, PTP1B is able to dephosphorylate the autophosphorylated IR. Substrate mutant-trap results indicate a stable interaction between IR and PTP1B. Further, PTP1B activity was increased in diabetic mouse retinas. CONCLUSIONS These studies indicate that diabetes reduces the autophosphorylation of retinal IR and increased PTP1B activity. Further, PTP1B regulates the state of IR phosphorylation in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | |
Collapse
|
49
|
Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG. Berberine potently inhibits protein tyrosine phosphatase 1B: Investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 2008; 21:163-71. [PMID: 16789430 DOI: 10.1080/14756360500533026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Berberine was investigated as an inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B) in an attempt to explain its anti-hyperglycemic activitiy. The investigation included simulated docking experiments to fit berberine within the binding pocket of h-PTP 1B. Berberine was found to readily fit within the binding pocket of h-PTP 1B in a low energy orientation characterized with optimal electrostatic attractive interactions bridging the isoquinolinium positively charged nitrogen atom of berberine and the negatively charged acidic residue of ASP 48 of h-PTP 1B. Experimentally, berberine was found to potently competitively inhibit recombinant h-PTP 1B in vitro (Ki value = 91.3 nM). Our findings strongly suggest that h-PTP 1B inhibition is at least one of the reasons for the reported anti-hyperglycemic activities of berberine.
Collapse
Affiliation(s)
- Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | | | | | |
Collapse
|
50
|
Hermand P, Pincet F, Carvalho S, Ansanay H, Trinquet E, Daoudi M, Combadière C, Deterre P. Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain. J Biol Chem 2008; 283:30225-34. [PMID: 18725411 DOI: 10.1074/jbc.m802638200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In its native form, the chemokine CX3CL1 is a firmly adhesive molecule promoting leukocyte adhesion and migration and hence involved, along with its unique receptor CX3CR1, in various inflammatory processes. Here we investigated the role of molecular aggregation in the CX3CL1 adhesiveness. Assays of bioluminescence resonance energy transfer (BRET) and homogeneous time-resolved fluorescence (HTRF) in transfected cell lines and in primary cells showed specific signals indicative of CX3CL1 clustering. Truncation experiments showed that the transmembrane domain played a central role in this aggregation. A chimera with mutations of the 12 central transmembrane domain residues had significantly reduced BRET signals and characteristics of a non-clustering molecule. This mutant was weakly adhesive according to flow and dual pipette adhesion assays and was less glycosylated than CX3CL1, although, as we demonstrated, loss of glycosylation did not affect the CX3CL1 adhesive potency. We postulate that cell surfaces express CX3CL1 as a constitutive oligomer and that this oligomerization is essential for its adhesive potency. Inhibition of CX3CL1 self-assembly could limit the recruitment of CX3CR1-positive cells and may be a new pathway for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Patricia Hermand
- Laboratoire d'Immunologie Cellulaire, INSERM UMR-S 543, Université Pierre et Marie Curie-Paris 06, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|