1
|
Ishaq R, Ilyas M, Habiba U, Amin MNU, Saeed S, Raja GK, Shaiq PA, Ahmed ZM. Whole Exome Sequencing Reveals Clustering of Variants of Known Vitiligo Genes in Multiplex Consanguineous Pakistani Families. Genes (Basel) 2023; 14:genes14051118. [PMID: 37239478 DOI: 10.3390/genes14051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Vitiligo is an autoimmune complex pigmentation disease characterized by non-pigmented patches on the surface of the skin that affect approximately 0.5-2% population worldwide. The exact etiology is still unknown; however, vitiligo is hypothesized to be a multifactorial and genetically heterogeneous condition. Therefore, the current study is designed to investigate the anthropometric presentation and genetic spectrum of vitiligo in fifteen consanguineous Pakistani families. The clinical evaluation of participating individuals revealed varying degrees of disease severity, with 23 years as the average age of disease onset. The majority of the affected individuals had non-segmental vitiligo (NSV). Whole exome sequencing analysis revealed clustering of rare variants of known vitiligo-associated genes. For instance, in the affected individuals of family VF-12, we identified three novel rare variants of PTPN22 (c.1108C>A), NRROS (c.197C>T) and HERC2 (c.10969G>A) genes. All three variants replaced evolutionarily conserved amino acid residues in encoded proteins, which are predicted to impact the ionic interactions in the secondary structure. Although various in silico algorithms predicted low effect sizes for these variants individually, the clustering of them in affected individuals increases the polygenic burden of risk alleles. To our knowledge, this is the first study that highlights the complex etiology of vitiligo and genetic heterogeneity in multiplex consanguineous Pakistani families.
Collapse
Affiliation(s)
- Rafaqat Ishaq
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 20742, USA
| | - Muhammad Ilyas
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
- Department of Medical Laboratory Technology, Riphah International University, Malakand Campus, Malakand 23010, Pakistan
| | - Umme Habiba
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Noor Ul Amin
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Sadia Saeed
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Pakeeza Arzoo Shaiq
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zubair M Ahmed
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 20742, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 20742, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 20742, USA
| |
Collapse
|
2
|
Dutta T, Mitra S, Saha A, Ganguly K, Pyne T, Sengupta M. A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based bioinformatics tools. Sci Rep 2022; 12:14543. [PMID: 36008553 PMCID: PMC9411560 DOI: 10.1038/s41598-022-18766-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Vitiligo is a prevalent depigmentation disorder affecting around 1% of the general population. So far, various Genome Wide Association Studies (GWAS) and Candidate Gene Association Studies (CGAS) have identified several single nucleotide variants (SNVs) as a risk factor for vitiligo. Nonetheless, little has been discerned regarding their direct functional significance to the disease pathogenesis. In this study, we did extensive data mining and downstream analysis using several experimentally validated datasets like GTEx Portal and web tools like rSNPBase, RegulomeDB, HaploReg and STRING to prioritize 13 SNVs from a set of 291SNVs that have been previously reported to be associated with vitiligo. We also prioritized their underlying/target genes and tried annotating their functional contribution to vitiligo pathogenesis. Our analysis revealed genes like FGFR10P, SUOX, CDK5RAP1 and RERE that have never been implicated in vitiligo previously to have strong potentials to contribute to the disease pathogenesis. The study is the first of its kind to prioritize and functionally annotate vitiligo-associated GWAS and CGAS SNVs and their underlying/target genes, based on functional data available in the public domain database.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sayantan Mitra
- Department of Genetics, CVM University, Aribas, Aribas Campus, New Vallabh Vidyanagar, Anand, Gujarat, 388121, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Kausik Ganguly
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Tushar Pyne
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
3
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
4
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
5
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Dwivedi M, Laddha NC, Begum R. The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:61-103. [PMID: 35286692 DOI: 10.1007/978-3-030-92616-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitiligo is a hypomelanotic skin disease and considered to be of autoimmune origin due to breaching of immunological self-tolerance, resulting in inappropriate immune responses against melanocytes. The development of vitiligo includes a strong heritable component. Different strategies ranging from linkage studies to genome-wide association studies are used to explore the genetic factors responsible for the disease. Several vitiligo loci containing the respective genes have been identified which contribute to vitiligo and genetic variants for some of the genes are still unknown. These genes include mainly the proteins that play a role in immune regulation and a few other genes important for apoptosis and regulation of melanocyte functions. Despite the available data on genetic variants and risk alleles which influence the biological processes, only few immunological pathways have been found responsible for all ranges of severity and clinical manifestations of vitiligo. However, studies have concluded that vitiligo is of autoimmune origin and manifests due to complex interactions in immune components and their inappropriate response toward melanocytes. The genes involved in the immune regulation and processing the melanocytes antigen and its presentation can serve as effective immune-therapeutics that can target specific immunological pathways involved in vitiligo. This chapter highlights those immune-regulatory genes involved in vitiligo susceptibility and loci identified to date and their implications in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, 394350, Gujarat, India.
| | - Naresh C Laddha
- In Vitro Specialty Lab Pvt. Ltd, 205-210, Golden Triangle, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
7
|
Perry DJ, Peters LD, Lakshmi PS, Zhang L, Han Z, Wasserfall CH, Mathews CE, Atkinson MA, Brusko TM. Overexpression of the PTPN22 Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:849-859. [PMID: 34301848 PMCID: PMC8323970 DOI: 10.4049/jimmunol.2000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Leeana D Peters
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Priya Saikumar Lakshmi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Lin Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Zhao Han
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| |
Collapse
|
8
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Patricia Castro-Sanchez
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra R Teagle
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonja Prade
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Willemsen M, Melief CJM, Bekkenk MW, Luiten RM. Targeting the PD-1/PD-L1 Axis in Human Vitiligo. Front Immunol 2020; 11:579022. [PMID: 33240267 PMCID: PMC7677560 DOI: 10.3389/fimmu.2020.579022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Autoreactive CD8+ T cells play a pivotal role in melanocyte destruction in autoimmune vitiligo. Immunotherapy for melanoma often leads to autoimmune side-effects, among which vitiligo-like depigmentation, indicating that targeting immune checkpoints can break peripheral tolerance against self-antigens in the skin. Therapeutically enhancing immune checkpoint signaling by immune cells or skin cells, making self-reactive T cells anergic, seems a promising therapeutic option for vitiligo. Here, we review the current knowledge on the PD-1/PD-L1 pathway in vitiligo as new therapeutic target for vitiligo therapy.
Collapse
Affiliation(s)
- Marcella Willemsen
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Marcel W Bekkenk
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Rosalie M Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
10
|
Spritz RA, Santorico SA. The Genetic Basis of Vitiligo. J Invest Dermatol 2020; 141:265-273. [PMID: 32778407 DOI: 10.1016/j.jid.2020.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Vitiligo is a complex disease in which autoimmune destruction of epidermal melanocytes results in patches of depigmented white skin. Vitiligo has an estimated prevalence of about 0.2-2% in different populations and approximately 0.4% in the European-derived white (EUR) population. The fraction of disease risk attributable to genetic variation, termed heritability, is high, with estimates from family studies in EUR of 0.75-0.83 and from SNP based studies estimated at 0.78. About 70% of genetic risk comes from common genetic variants and about 30% from rare genetic variants. Through candidate gene, genomewide linkage, and genomewide association studies, over 50 vitiligo susceptibility loci have been discovered. These have been combined into a vitiligo polygenic risk score, which has allowed various aspects of vitiligo genetic architecture in the EUR population to be better understood. Vitiligo has thus proved to be a particularly tractable model for investigation of complex disease genetic architecture. Here, we summarize progress to date including dissection of heritability, discovery of vitiligo susceptibility loci through candidate gene, genomewide linkage, and genomewide association studies, relationships to other autoimmune diseases, polygenic architecture of vitiligo risk, vitiligo triggering, and disease onset, and provide suggestions for future directions.
Collapse
Affiliation(s)
- Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Stephanie A Santorico
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Mathematical and Statistical Science, University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
11
|
Huraib GB, Al Harthi F, Arfin M, Aljamal A, Alrawi AS, Al-Asmari A. Association of Functional Polymorphism in Protein Tyrosine Phosphatase Nonreceptor 22 (PTPN22) Gene with Vitiligo. Biomark Insights 2020; 15:1177271920903038. [PMID: 32076368 PMCID: PMC7003175 DOI: 10.1177/1177271920903038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with susceptibility to autoimmune diseases. The functional polymorphism in PTPN22 at 1857 is a strong risk factor for vitiligo susceptibility in Europeans; however, controversy exits in other populations. Present study was aimed to determine whether the PTPN22 C1857T polymorphism confers susceptibility to vitiligo in Saudi Arabians. Genomic DNA was extracted and amplified using tetra primer amplification-refractory mutation system polymerase chain reaction (ARMS-PCR) method. The frequencies of allele T and genotype CT of PTPN22 C1858T polymorphism were significantly higher, whereas those of allele C and genotype CC were lower in patients as compared with controls (P < 0.0001). The genotype TT was absent in both the patients and controls. It is concluded that PTPN22 C1858T polymorphism is strongly associated with vitiligo susceptibility. However, additional studies are warranted using large number of samples from different ethnicities and geographical areas.
Collapse
Affiliation(s)
| | - Fahad Al Harthi
- Department of Dermatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Misbahul Arfin
- Scientific Research Center, Medical Services Department for Armed Forces, Riyadh, Saudi Arabia
| | - Abdulrahman Aljamal
- Department of Dermatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Abdulrahman Al-Asmari
- Scientific Research Center, Medical Services Department for Armed Forces, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Ghorban K, Ezzeddini R, Eslami M, Yousefi B, Sadighi Moghaddam B, Tahoori MT, Dadmanesh M, Salek Farrokhi A. PTPN22 1858 C/T polymorphism is associated with alteration of cytokine profiles as a potential pathogenic mechanism in rheumatoid arthritis. Immunol Lett 2019; 216:106-113. [PMID: 31669381 DOI: 10.1016/j.imlet.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/12/2019] [Accepted: 10/20/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is one of the most common prevalent autoimmune diseases. The 1858 C/T (rs2476601) single nucleotide polymorphism (SNP) within the PTPN22 gene has been associated with susceptibility to inflammatory based diseases in several populations. It is implicated that altered cytokine production has a potential pathogenic role in the development of RA. The aim of this work was to analyze the association of 1858 C/T PTPN22 polymorphism in RA patients with cytokine profiles. MATERIALS AND METHODS This study was performed on 120 RA patients who were referred to the Rheumatology Research Centre, Shariati Hospital (Tehran, Iran), and 120 healthy controls. Genomic DNA was extracted and genotyped for 1858 C/T PTPN22 gene SNP using the PCR-RFLP technique. Serum levels of IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ as well as Anti-CCP and RF was measured by ELISA method. RESULTS Results showed that 1858 C/T PTPN22 SNP significantly (P = 0.007, OR = 2.321, 95% CI = 1.063-5.067) associated with RA. The 1858 T allele frequency was also significantly increased in RA patients in comparison to the controls (P = 0.008, OR = 3.583, 95% CI = 1.3-9.878). Our data demonstrated a significant reduction of IL-4 and IL-10 in PTPN22 1858C/T compared to 1858C/C RA patients. In addition, upregulation of IL-6, IFN-γ, and TNF-α was observed in PTPN22 1858C/T vs. 1858C/C RA patients. DISCUSSION Our findings implicate altered cytokine profiles as a possible pathogenic mechanism by which the 1858 T allele may contribute to the progress of RA.
Collapse
Affiliation(s)
- Khodayar Ghorban
- Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Rana Ezzeddini
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Bizhan Sadighi Moghaddam
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad-Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Budding K, van Setten J, van de Graaf EA, van Rossum OA, Kardol-Hoefnagel T, Kwakkel-van Erp JM, Oudijk EJD, Hack CE, Otten HG. The Autoimmune-Associated Single Nucleotide Polymorphism Within PTPN22 Correlates With Clinical Outcome After Lung Transplantation. Front Immunol 2019; 9:3105. [PMID: 30705675 PMCID: PMC6344400 DOI: 10.3389/fimmu.2018.03105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Obstructive chronic lung allograft dysfunction (BOS) is the major limiting factor for lung transplantation (LTx) outcome. PTPN22 is described as the hallmark autoimmunity gene, and one specific single nucleotide polymorphism (SNP), rs2476601, is associated with multiple autoimmune diseases, impaired T cell regulation, and autoantibody formation. Taking into consideration the contribution of autoimmunity to LTx outcome, we hypothesized that polymorphisms in the PTPN22 gene could be associated with BOS incidence. We selected six SNPs within PTPN22 and analyzed both patient and donor genotypes on BOS development post-LTx. A total of 144 patients and matched donors were included, and individual SNPs and haplotype configurations were analyzed. We found a significant association between patients carrying the heterozygous configuration of rs2476601 and a higher risk for BOS development (p = 0.005, OR: 4.400, 95%CI: 1.563–12.390). Kaplan-Meier analysis showed that heterozygous patients exhibit a lower BOS-free survival compared to patients homozygous for rs2476601 (p = 0.0047). One haplotype, which solely contained the heterozygous risk variant, was associated with BOS development (p = 0.015, OR: 7.029, 95%CI: 1.352–36.543). Our results show that LTx patients heterozygous for rs2476601 are more susceptible for BOS development and indicate a deleterious effect of the autoimmune-related risk factor of PTPN22 in patients on LTx outcome.
Collapse
Affiliation(s)
- Kevin Budding
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Oliver A van Rossum
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Kardol-Hoefnagel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Erik-Jan D Oudijk
- Center of Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Departments of Rheumatology and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henderikus G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Carmona FD, Martín J. The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2018; 22:879-891. [PMID: 30251905 DOI: 10.1080/14728222.2018.1526924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION PTPN22 encodes a lymphoid-specific tyrosine phosphatase (LYP) that is a master regulator of the immune response. This gene is a major susceptibility factor for a wide range of autoimmune conditions, including rheumatoid arthritis (RA) for which it represents the strongest non-HLA contributor to disease risk. A missense PTPN22 allele (R620W) affecting the protein-protein interaction of LYP with other relevant players was described as the functional variant of the association. This review will focus on the role of PTPN22 in the pathogenic mechanisms underlying RA predisposition and discuss the possibility of developing LYP-based treatment strategies with a potential application in clinical practice. Areas covered: This review covers the literature showing how PTPN22 is implicated in signalling pathways involved in the autoimmune and autoinflammatory processes underlying RA. Insights obtained from studies aimed at developing novel selective LYP suppressors for treating RA are summarized. Expert opinion: Targeting key risk factors during the early steps of the disease may represent a good strategy to accomplish complete disease remission. As cumulating evidences suggest that PTPN22 R620W is a gain-of-function variant, a growing interest in developing LYP inhibitors has arisen. The potential efficacy and possible application of such compounds are discussed.
Collapse
Affiliation(s)
- F David Carmona
- a Departamento de Genética e Instituto de Biotecnología , Universidad de Granada , Granada , Spain
| | - Javier Martín
- b Instituto de Parasitología y Biomedicina López-Neyra , Consejo Superior de Investigaciones Científicas, IPBLN-CSIC , Granada , Spain
| |
Collapse
|
15
|
The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018; 668:59-72. [DOI: 10.1016/j.gene.2018.05.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/13/2018] [Indexed: 01/21/2023]
|
16
|
Rydzewska M, Góralczyk A, Gościk J, Wawrusiewicz-Kurylonek N, Bossowska A, Krętowski A, Bossowski A. Analysis of chosen polymorphisms rs2476601 a/G - PTPN22, rs1990760 C/T - IFIH1, rs179247 a/G - TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity 2018; 51:183-190. [PMID: 29973096 DOI: 10.1080/08916934.2018.1486824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autoimmune thyroid diseases are multifactorial diseases with a genetic susceptibility and environmental factors. A potential role of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, the interferon-induced helicase domain 1 (IFIH1) gene, the thyroid-stimulating hormone receptor (TSHR) gene polymorphisms on autoimmune thyroid diseases (AITDs) in adults has been established unequivocally, but there is still lack of research articles including group of children. Objective and hypotheses: To estimate the association of polymorphisms of PTPN22, IFIH1 and TSH-R genes with the pre-disposition to Graves' disease (GD) and Hashimoto's thyroiditis (HT) in children. METHODS The study was performed in 142 patients with GD, 57 with HT and 160 healthy volunteers. The three single-nucleotide polymorphisms (SNPs): rs2476601 - PTPN22, rs1990760 - IFIH1 and rs179247 - TSHR were genotyped by TaqMan SNP genotyping assay using the real-time PCR. RESULTS Rs2476601 A alleles were more frequent in patients with GD in comparison to healthy subjects (p = .009 with odds ratio [OR] = 2.13). Rs2476601 A alleles were more frequent in patients with HT in comparison to healthy subjects (p = .008, OR = 2.48). Rs1990760 T alleles were more frequent in male patients with GD in comparison to healthy males (p = .003, OR = 3.00). In case of HT patients, rs1990760 T alleles were also more frequent in males compared to healthy subjects (p = .086, OR =2.47). Rs179247 A alleles were more frequent in patients with GD in comparison to healthy subjects (p = 0.039, OR = 1.51). CONCLUSIONS Rs2476601 A/G, Rs1990760 C/T and Rs179247 A/G polymorphisms could contribute to the development of AITDs in children. The main risk factor for rs2476601 and rs179247 is allele A. In case of rs1990760, the main risk factor is allele T.
Collapse
Affiliation(s)
- Marta Rydzewska
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| | - Aleksandra Góralczyk
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| | - Joanna Gościk
- b Software Department, Faculty of Computer Science , Białystok University of Technology , Białystok , Poland
| | - Natalia Wawrusiewicz-Kurylonek
- c Department of Endocrinology and Diabetes with Internal Medicine , Medical University in Białystok , Białystok , Poland
| | - Anna Bossowska
- d Division of Cardiology , Internal Affairs and Administration Ministry Hospital in Białystok , Białystok , Poland
| | - Adam Krętowski
- c Department of Endocrinology and Diabetes with Internal Medicine , Medical University in Białystok , Białystok , Poland
| | - Artur Bossowski
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| |
Collapse
|
17
|
Rajendiran KS, Rajappa M, Chandrashekar L, Thappa D. Association of PTPN22 gene polymorphism with non-segmental vitiligo in South Indian Tamils. Postepy Dermatol Alergol 2018; 35:280-285. [PMID: 30008646 PMCID: PMC6041708 DOI: 10.5114/ada.2018.76225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/23/2017] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Non-segmental vitiligo (NSV) is a depigmentation skin disease with loss of melanocytes in the skin. AIM To evaluate whether the protein tyrosine phosphatase non-receptor type (PTPN22) single nucleotide polymorphism at +1858C/T had any association with non-segmental vitiligo in South Indian Tamils. MATERIAL AND METHODS Genomic DNA was extracted using the phenol-chloroform method, and PTPN22 +1858C/T polymorphism was assayed by Taqman 5'allele discrimination assay. Protein levels were quantified by ELISA. RESULTS We found that the allelic frequency of variants of PTPN22 (rs2476601) were significantly different between controls and cases showing a vitiligo risk in the South Indian Tamil population. PTPN22 levels were higher in the heterozygous CT genotype in NSV, when compared with that of the major variant CC genotype of rs2476601. CONCLUSIONS This study suggests that the heterozygous CT genotype, of the PTPN22 SNP rs2476601, has a strong risk association with non-segmental vitiligo in South Indian Tamils.
Collapse
Affiliation(s)
- Kalai Selvi Rajendiran
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Medha Rajappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Laxmisha Chandrashekar
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - D.M. Thappa
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
18
|
Abstract
Vitiligo reflects simultaneous contributions of multiple genetic risk factors and environmental triggers. Genomewide association studies have discovered approximately 50 genetic loci contributing to vitiligo risk. At many vitiligo susceptibility loci, the relevant genes and DNA sequence variants are identified. Many encode proteins involved in immune regulation, several play roles in cellular apoptosis, and others regulate functions of melanocytes. Although many of the specific biologic mechanisms need elucidation, it is clear that vitiligo is an autoimmune disease involving a complex relationship between immune system programming and function, aspects of the melanocyte autoimmune target, and dysregulation of the immune response.
Collapse
Affiliation(s)
- Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 19th Avenue, Room 3100, MS8300, Aurora, CO 80045, USA.
| | - Genevieve H L Andersen
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 19th Avenue, Room 3100, MS8300, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Bahrami T, Soltani S, Moazzami K, Yekaninejad MS, Salmaninejad A, Soltaninejad E, Ziaee V, Rezaei N. Association of PTPN22 Gene Polymorphisms with Susceptibility to Juvenile Idiopathic Arthritis in Iranian Population. Fetal Pediatr Pathol 2017; 36:42-48. [PMID: 27732119 DOI: 10.1080/15513815.2016.1231249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Juvenile idiopathic arthritis (JIA), the most common cause of chronic arthritis in children, is a complex immune-mediated disease with considerable long-term morbidity and mortality. According to previous studies, PTPN22 gene has been associated with JIA in several populations. In the present study, we attempted to determine the association of PTPN22 single nucleotide polymorphisms (SNPs) with susceptibility to JIA in Iranian population. Using the Real-time PCR allelic discrimination method, samples consisting of 55 unrelated patients and 93 healthy controls were genotyped. Using Fisher exact test or Chi-square test, genotypic and allelic frequencies were estimated. The results of our study indicated a significantly decreased association of rs1310182 (OR = 0.59, 95% CI = 0.36 -0.97, p = 0.037) with JIA. This association may indicate a protective role for rs1310182 SNP against JIA. More research would be needed to elucidate the mechanistic role of this association.
Collapse
Affiliation(s)
- Tayyeb Bahrami
- a Genetics Research Center (GRC), Department of Medical Genetics, University of Social Welfare and Rehabilitation Sciences , Tehran , Iran
| | - Samaneh Soltani
- b Molecular Immunology Research Center, Tehran University of Medical Sciences, School of Medicine , Tehran , Iran
| | - Kasra Moazzami
- c Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts , USA.,d Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Boston , Massachusetts , USA
| | - Mir Saeed Yekaninejad
- e Department of Epidemiology and Biostatistics , Tehran University of Medical Sciences School of Medicine , Tehran , Iran
| | - Arash Salmaninejad
- f Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ehsan Soltaninejad
- g Department of Immunology , Birjand University of Medical Sciences , Birjand , Iran
| | - Vahid Ziaee
- h Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran.,i Division of Pediatric Rheumatology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- j Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,k Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,l Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Sheffield , UK
| |
Collapse
|
20
|
General and Specific Genetic Polymorphism of Cytokines-Related Gene in AITD. Mediators Inflamm 2017; 2017:3916395. [PMID: 28133421 PMCID: PMC5241475 DOI: 10.1155/2017/3916395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 01/24/2023] Open
Abstract
Autoimmune thyroid disease (AITD) shows the highest incidence among organ-specific autoimmune diseases and is the most common thyroid disease in humans, including Graves' disease (GD) and Hashimoto's thyroiditis (HT). The susceptibility to autoimmune diseases is affected by increased autoantibody levels, susceptibility gene polymorphisms, environmental factors, and psychological factors, but the pathogenesis remains unclear. Various cytokines and related genes encoding them play important roles in the development and progression of AITD. CD152, an expression product of the CTLA-4 gene, downregulates T cell activation. The A/A genotype polymorphism in the CT60 locus may reduce the production of thyroid autoantibodies. The C1858T polymorphism of the PTNP22 gene reduces the expression of its encoded LYP, which increases the risk of GD and HT. GD is an organ-specific autoimmune disease involving increased secretion of thyroid hormone, whereas HT may be associated with the destruction of thyroid gland tissue and hypothyroidism. These two diseases exhibit similar pathogenesis but opposite trends in the clinical manifestations. In this review, we focus on the structure and function of these cytokines and related genes in AITD, as well as the association of polymorphisms with susceptibility to GD and HT, and attempt to describe their differences in pathogenesis and clinical manifestations.
Collapse
|
21
|
miRNA signatures and transcriptional regulation of their target genes in vitiligo. J Dermatol Sci 2016; 84:50-58. [DOI: 10.1016/j.jdermsci.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/05/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022]
|
22
|
Vitiligo: Pathogenesis, clinical variants and treatment approaches. Autoimmun Rev 2016; 15:335-43. [DOI: 10.1016/j.autrev.2015.12.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 02/08/2023]
|
23
|
Association between a gain-of-function variant of PTPN22 and rejection in liver transplantation. Transplantation 2015; 99:431-7. [PMID: 25073032 DOI: 10.1097/tp.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The protein tyrosine phosphatase nonreceptor 22 gene (PTPN22) encodes a strong T-cell regulator called lymphoid protein tyrosine phosphatase. Previously, PTPN22 was described as a susceptibility gene for autoimmunity because it contains single nucleotide polymorphisms (SNPs) associated with several autoimmune diseases. One SNP (rs2476601; 1858G>A) has emerged as a particularly potent risk factor for autoimmunity. We address the question whether PTPN22 polymorphisms are also associated with acute rejection after liver transplantation. METHODS We investigated the influence of six PTPN22 SNPs on the susceptibility to acute liver allograft rejection. Consequently, we carried out a retrospective study genotyping 345 German liver recipients at six SNP loci, which include rs2488457 (-1123G>C), rs33996649 (788C>T), rs2476601 (1858G>A), rs1310182 (-852A>G), rs1217388 (-2200G>A), rs3789604 (64434T>G). Our study enrolled 165 recipients who did not develop rejection, 123 who showed one rejection episode, and 57 patients who suffered from multiple acute rejections after transplantation. RESULTS The 1858A allele containing genotypes (GA+AA) and the 1858A allele had a significantly higher frequency in the group of patients with multiple rejection episodes (35.1% and 18.4%) compared to rejection-free patients (15.8% and 7.9%; P=0.022 and 0.023). In contrast, we could not detect any association between rejection and the other tested SNPs. Additionally, we identified one haplotype contributing to risk of multiple rejections, however, exhibiting no stronger impact than the 1858A allele alone. CONCLUSION We conclude that the 1858G>A SNP may confer susceptibility to multiple acute liver transplant rejections in the German population.
Collapse
|
24
|
Tarlé RG, Nascimento LMD, Mira MT, Castro CCSD. Vitiligo--part 1. An Bras Dermatol 2014; 89:461-70. [PMID: 24937821 PMCID: PMC4056705 DOI: 10.1590/abd1806-4841.20142573] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/25/2013] [Indexed: 12/27/2022] Open
Abstract
Vitiligo is a chronic stigmatizing disease, already known for millennia, which
mainly affects melanocytes from epidermis basal layer, leading to the
development of hypochromic and achromic patches. Its estimated prevalence is
0.5% worldwide. The involvement of genetic factors controlling susceptibility to
vitiligo has been studied over the last decades, and results of previous studies
present vitiligo as a complex, multifactorial and polygenic disease. In this
context, a few genes, including DDR1, XBP1 and NLRP1 have been
consistently and functionally associated with the disease. Notwithstanding,
environmental factors that precipitate or maintain the disease are yet to be
described. The pathogenesis of vitiligo has not been totally clarified until now
and many theories have been proposed. Of these, the autoimmune hypothesis is now
the most cited and studied among experts. Dysfunction in metabolic pathways,
which could lead to production of toxic metabolites causing damage to
melanocytes, has also been investigated. Melanocytes adhesion deficit in
patients with vitiligo is mainly speculated by the appearance of Köebner
phenomenon, recently, new genes and proteins involved in this deficit have been
found.
Collapse
|
25
|
Yarwood A, Huizinga TWJ, Worthington J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford) 2014; 55:199-209. [PMID: 25239882 DOI: 10.1093/rheumatology/keu323] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Indexed: 11/13/2022] Open
Abstract
There is now a general consensus that RA has a spectrum of disease stages that can begin many years before the onset of clinical symptoms. It is widely thought that understanding the complex interplay between genetics and environment, and their role in pathogenesis, is essential in gaining further insight into the mechanisms that drive disease development and progression. More than 100 genetic susceptibility loci have now been identified for RA through studies that have focused on patients with established RA compared with healthy controls. Studying the early preclinical phases of disease will provide valuable insights into the biological events that precede disease and could potentially identify biomarkers to predict disease onset and future therapeutic targets. In this review we will cover recent advances in the knowledge of genetic and environmental risk factors and speculate on how these factors may influence the transition from one stage of disease to another.
Collapse
Affiliation(s)
- Annie Yarwood
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, Stopford Building, University of Manchester, Manchester, UK
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands and
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, Stopford Building, University of Manchester, Manchester, UK, NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Garcia-Melendez ME, Salinas-Santander M, Sanchez-Dominguez C, Gonzalez-Cardenas H, Cerda-Flores RM, Ocampo-Candiani J, Ortiz-López R. Protein tyrosine phosphatase PTPN22 +1858C/T polymorphism is associated with active vitiligo. Exp Ther Med 2014; 8:1433-1437. [PMID: 25289035 PMCID: PMC4186394 DOI: 10.3892/etm.2014.1975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023] Open
Abstract
Vitiligo is characterized by a skin depigmentation disorder resulting from an autoimmune response targeting melanocytes. Within the genetic factors involved in the development of the vitiligo immune response, various genes in the major histocompatibility complex (MHC) and non-MHC loci have been considered to be risk factors. The PTPN22 gene encodes for a lymphoid protein tyrosine phosphatase, a regulator of the activation and development of T-cells. The +1858C/T polymorphism has been associated to autoimmune disease susceptibility in different populations and could be implicated in the onset of vitiligo. To assess the possible association between the presence of PTPN22 +1858C/T and vitiligo, 187 patients with vitiligo and 223 control subjects were analyzed in the study. Genomic DNA was isolated using the salting-out method and samples were subjected to polymerase chain reaction-restriction fragment length polymorphism in order to detect the PTPN22 +1858C/T polymorphism. Causal associations were determined by χ2 test and their respective odds ratio (OR) was assessed in a 2×2 contingency table. The results showed an association between active vitiligo and the allele T load [P=0.0418; OR, 2.5706; 95% confidence interval (CI), 1.0040-6.5816], and active vitiligo-CT genotype (P=0.0389, OR, 2.6548; 95% CI, 1.0191-6.9156). In conclusion, the present data indicates a possible association between the PTPN22 +1858C/T genotype and a significant susceptibility of developing an active form of vitiligo.
Collapse
Affiliation(s)
- Martha Elena Garcia-Melendez
- Dermatology Service, Hospital Universitario 'Dr. José Eleuterio González', Monterrey, CP 64460, Nuevo León, Mexico
| | - Mauricio Salinas-Santander
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico ; Saltillo Unit Faculty of Medicine, Universidad Autónoma de Coahuila, Saltillo CP 25000, Coahuila, Mexico
| | - Celia Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico
| | - Hugo Gonzalez-Cardenas
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico
| | - Ricardo M Cerda-Flores
- Nursery School Faculty, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico
| | - Jorge Ocampo-Candiani
- Dermatology Service, Hospital Universitario 'Dr. José Eleuterio González', Monterrey, CP 64460, Nuevo León, Mexico
| | - Rocío Ortiz-López
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico ; Molecular Biology, Genomics and Sequencing Unit, Center for Research and Development in the Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, CP 64460, Nuevo León, Mexico
| |
Collapse
|
27
|
Schrodi SJ, Mukherjee S, Shan Y, Tromp G, Sninsky JJ, Callear AP, Carter TC, Ye Z, Haines JL, Brilliant MH, Crane PK, Smelser DT, Elston RC, Weeks DE. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet 2014; 5:162. [PMID: 24917882 PMCID: PMC4040440 DOI: 10.3389/fgene.2014.00162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/15/2014] [Indexed: 01/08/2023] Open
Abstract
Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications.
Collapse
Affiliation(s)
- Steven J Schrodi
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Shubhabrata Mukherjee
- Department of Medicine, School of Medicine, University of Washington Seattle, WA, USA
| | - Ying Shan
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh PA, USA
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System Danville, PA, USA
| | - John J Sninsky
- Subsidiary of Quest Diagnostics, Discovery Research, Celera Corporation Alameda, CA, USA
| | - Amy P Callear
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA ; Department of Biological Sciences, University of Pittsburgh Pittsburgh, PA, USA
| | - Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve School of Medicine Cleveland, OH, USA
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Paul K Crane
- Department of Medicine, School of Medicine, University of Washington Seattle, WA, USA
| | - Diane T Smelser
- Sigfried and Janet Weis Center for Research, Geisinger Health System Danville, PA, USA
| | - Robert C Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve School of Medicine Cleveland, OH, USA
| | - Daniel E Weeks
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh PA, USA
| |
Collapse
|
28
|
Spritz RA. Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol 2014; 40:310-8. [PMID: 23668538 DOI: 10.1111/1346-8138.12147] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/08/2023]
Abstract
Vitiligo is a complex disorder in which autoimmune destruction of melanocytes results in white patches of skin and overlying hair. Over the past several years, extensive genetic studies have outlined a biological framework of vitiligo pathobiology that underscores its relationship to other autoimmune diseases. This biological framework offers insight into both vitiligo pathogenesis and perhaps avenues towards more effective approaches to treatment and even disease prevention.
Collapse
Affiliation(s)
- Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
29
|
Akbas H, Dertlioglu SB, Dilmec F, Atay AE. Lack of Association between PTPN22 Gene +1858 C>T Polymorphism and Susceptibility to Generalized Vitiligo in a Turkish Population. Ann Dermatol 2014; 26:88-91. [PMID: 24648691 PMCID: PMC3956800 DOI: 10.5021/ad.2014.26.1.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/03/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitiligo is an autoimmune polygenic disorder characterized by loss of pigmentation due to melanocyte destruction. The PTPN22 gene +1858 C>T single nucleotide polymorphism (rs2476601) has been shown to be associated with various autoimmune disorders. OBJECTIVE The aim of this study was to investigate whether the PTPN22 gene +1858 C>T single nucleotide polymorphism is associated with susceptibility to generalized vitiligo in a Turkish population. METHODS One hundred and seven patients with generalized vitiligo, and one hundred and twelve gender-, age-, and ethnic-matched controls were enrolled in the study. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism. RESULTS The PTPN22 +1858 C>T genotype and allele frequencies of the generalized vitiligo patients did not differ significantly from those of healthy controls. CONCLUSION We found no association between the PTPN22 +1858 C>T gene polymorphism and vitiligo susceptibility in Turkish generalized-vitiligo patients.
Collapse
Affiliation(s)
- Halit Akbas
- Department of Medical Biology, Medical Faculty, University of Harran, Sanliurfa, Turkey
| | | | - Fuat Dilmec
- Department of Medical Biology, Medical Faculty, University of Harran, Sanliurfa, Turkey
| | - Ahmet Engin Atay
- Department of Internal Medicine, Bagcilar Education and Research, İstanbul, Turkey
| |
Collapse
|
30
|
Nagy ZB, Csanád M, Tóth K, Börzsönyi B, Demendi C, Rigó J, Joó JG. Current concepts in the genetic diagnostics of rheumatoid arthritis. Expert Rev Mol Diagn 2014; 10:603-18. [PMID: 20629510 DOI: 10.1586/erm.10.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zsolt B Nagy
- Nagy Gene Diagnostics and Research LTD, 1054 Budapest, Petofi tér 3, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 2013; 32:83-119. [PMID: 24364806 DOI: 10.1146/annurev-immunol-032713-120249] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inheritance of a coding variant of the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is associated with increased susceptibility to autoimmunity and infection. Efforts to elucidate the mechanisms by which the PTPN22-C1858T variant modulates disease risk revealed that PTPN22 performs a signaling function in multiple biochemical pathways and cell types. Capable of both enzymatic activity and adaptor functions, PTPN22 modulates signaling through antigen and innate immune receptors. PTPN22 plays roles in lymphocyte development and activation, establishment of tolerance, and innate immune cell-mediated host defense and immunoregulation. The disease-associated PTPN22-R620W variant protein is likely involved in multiple stages of the pathogenesis of autoimmunity. Establishment of a tolerant B cell repertoire is disrupted by PTPN22-R620W action during immature B cell selection, and PTPN22-R620W alters mature T cell responsiveness. However, after autoimmune attack has initiated tissue injury, PTPN22-R620W may foster inflammation through modulating the balance of myeloid cell-produced cytokines.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037;
| | | |
Collapse
|
32
|
Fousteri G, Liossis SNC, Battaglia M. Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clin Immunol 2013; 149:556-65. [PMID: 24269925 DOI: 10.1016/j.clim.2013.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/07/2023]
Abstract
PTPN22 is a protein tyrosine phosphatase expressed by the majority of cells belonging to the innate and adaptive immune systems. Polymorphisms in PTPN22 are associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and type 1 diabetes. This review discusses the role of PTPN22 in T and B cells, and its function in innate immune cells, such as monocytes, dendritic cells and NK cells. We focus particularly on the complexity that underlies the function of PTPN22 in the biological processes of the immune system; such complexity has led various research groups to produce rather conflicting data.
Collapse
Affiliation(s)
- Georgia Fousteri
- San Raffaele Scientific Institute, Diabetes Research Institute, Via Olgettina 58, Milan, Italy.
| | | | | |
Collapse
|
33
|
Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, Kelly JA, Glenn SB, Guthridge JM, Scofield RH, Kimberly RP, Brown EE, Alarcón GS, Edberg JC, Kim JH, Choi J, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Boackle SA, Freedman BI, Tsao BP, Langefeld CD, Vyse TJ, Jacob CO, Pons-Estel B, Niewold TB, Moser Sivils KL, Merrill JT, Anaya JM, Gilkeson GS, Gaffney PM, Bae SC, Alarcón-Riquelme ME, Harley JB, Criswell LA, James JA, Nath SK. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One 2013; 8:e69404. [PMID: 23950893 PMCID: PMC3737240 DOI: 10.1371/journal.pone.0069404] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7 × 10(-9), OR = 1.40 (95% CI = 1.25-1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67-0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7 × 10(-5), OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
Collapse
Affiliation(s)
- Bahram Namjou
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sharon A. Chung
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kenneth M. Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Stuart B. Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert H. Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth E. Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Graciela S. Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey C. Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jae-Hoon Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Jiyoung Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michelle A. Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Reveille
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Luis M. Vilá
- Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Susan A. Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Barry I. Freedman
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Betty P. Tsao
- Division of Rheumatology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Timothy J. Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London, London, United Kingdom
| | - Chaim O. Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | - Timothy B. Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kathy L. Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joan T. Merrill
- Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, Universidad del Rosario, Bogota, Colombia
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Centro de Genómica e Investigación Oncológica (GENYO) Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | | | - John B. Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Lindsey A. Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
34
|
Long A, Buckner JH. Intersection between genetic polymorphisms and immune deviation in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:285-91. [PMID: 23807601 DOI: 10.1097/med.0b013e32836285b6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Above 60 non-HLA genes have been associated with T1D, many of which are immune-related genes. One challenge following identification of these genes is finding causative connections between risk alleles and disease. Phenotypes linked to T1D-associated genetic variants are beginning to help us better understand the cellular and molecular mechanisms underlying T1D. RECENT FINDINGS The list of immune-related genes with T1D-associated polymorphisms will be reviewed and cellular phenotypes correlating with these variants will be described highlighting recent finding from variants in the PTPN22 gene and genes encoding proteins in theIL-2/IL2R signaling pathway. SUMMARY Building from extensive genome-wide association studies, we are discovering cellular and molecular phenotypes that may help unravel the underlying causes of T1D.
Collapse
Affiliation(s)
- Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA.
| | | |
Collapse
|
35
|
He Y, Liu S, Menon A, Stanford S, Oppong E, Gunawan AM, Wu L, Wu DJ, Barrios AM, Bottini N, Cato ACB, Zhang ZY. A potent and selective small-molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases. J Med Chem 2013; 56:4990-5008. [PMID: 23713581 PMCID: PMC3711248 DOI: 10.1021/jm400248c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP. Importantly, compound 8b possesses highly efficacious cellular activity in both T- and mast cells and is capable of blocking anaphylaxis in mice. Discovery of 8b establishes a starting point for the development of clinically useful LYP inhibitors for treating a wide range of autoimmune disorders.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Sijiu Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Ambili Menon
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stephanie Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea M. Gunawan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Dennis J. Wu
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Andrew C. B. Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| |
Collapse
|
36
|
Cheong KA, Kim NH, Noh M, Lee AY. Three new single nucleotide polymorphisms identified by a genome-wide association study in Korean patients with vitiligo. J Korean Med Sci 2013; 28:775-9. [PMID: 23678272 PMCID: PMC3653093 DOI: 10.3346/jkms.2013.28.5.775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/15/2013] [Indexed: 01/18/2023] Open
Abstract
Genetic susceptibility is involved in the pathogenesis of vitiligo. Association studies with a whole genome-based approach instead of a single or a few candidate genes may be useful for discovering new susceptible genes. Although the etiology of non-segmental and segmental types is different, the association between gene polymorphisms and vitiligo has been reported, without defining types or in non-segmental type. Whole genome-based single nucleotide polymorphisms (SNPs) were examined in patients with non-segmental and segmental types of vitiligo using the Affymetrix GeneChip 500K mapping array, and 10 functional classes of significant SNPs were selected. Genotyping and data analysis of selected 10 SNPs was performed using real-time PCR. Genotype and allele frequencies were significantly different between both types of vitiligo and three of the target SNPs, DNAH5 (rs2277046), STRN3 (rs2273171), and KIAA1005 (rs3213758). A stronger association was suggested between the mutation in KIAA1005 (rs3213758) and the segmental type compared to the non-segmental type of vitiligo. DNAH5 (rs2277046), STRN3 (rs2273171), and KIAA1005 (rs3213758) may be new vitiligo-related SNPs in Korean patients, either non-segmental or segmental type.
Collapse
Affiliation(s)
- Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Minsoo Noh
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
37
|
Jabrocka-Hybel A, Skalniak A, Piątkowski J, Pach D, Hubalewska-Dydejczyk A. How Far Are We from Understanding the Genetic Basis of Hashimoto's Thyroiditis? Int Rev Immunol 2013; 32:337-54. [DOI: 10.3109/08830185.2012.755175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Song GG, Kim JH, Lee YH. The CTLA-4 +49 A/G, CT60 A/G and PTPN22 1858 C/T polymorphisms and susceptibility to vitiligo: a meta-analysis. Mol Biol Rep 2012; 40:2985-93. [DOI: 10.1007/s11033-012-2370-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
|
39
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
40
|
Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun 2012; 13:641-52. [DOI: 10.1038/gene.2012.46] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Pradhan VD, Dalvi H, Parsannavar D, Rajadhyaksha A, Patwardhan M, Ghosh K. Study of PTPN22 1858C/T polymorphism in rheumatoid arthritis patients from Western India. INDIAN JOURNAL OF RHEUMATOLOGY 2012. [DOI: 10.1016/j.injr.2012.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
42
|
Clinical Characteristics and PTPN22 1858C/T Variant Analysis in Jordanian Arab Vitiligo Patients. Mol Diagn Ther 2012; 14:179-84. [DOI: 10.1007/bf03256371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Cao Y, Yang J, Colby K, Hogan SL, Hu Y, Jennette CE, Berg EA, Zhang Y, Jennette JC, Falk RJ, Preston GA. High basal activity of the PTPN22 gain-of-function variant blunts leukocyte responsiveness negatively affecting IL-10 production in ANCA vasculitis. PLoS One 2012; 7:e42783. [PMID: 22880107 PMCID: PMC3411839 DOI: 10.1371/journal.pone.0042783] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/11/2012] [Indexed: 11/18/2022] Open
Abstract
Consequences of expression of the protein tyrosine phosphatase nonreceptor 22 (PTPN22) gain-of-function variant were evaluated in leukocytes from patients with anti-neutrophil cytoplasmic autoantibody (ANCA) disease. The frequency of the gain-of-function allele within the Caucasian patient cohort was 22% (OR 1.45), compared to general American Caucasian population (16.5%, p = 0.03). Examination of the basal phosphatase activity of PTPN22 gain-of-function protein indicated persistently elevated activity in un-stimulated peripheral leukocytes, while basal activity was undetectable in leukocytes from patients without the gain-of-function variant. To examine consequences of persistently high PTPN22 activity, the activation status of ERK and p38 MAPK were analyzed. While moderate levels of activated ERK were observed in controls, it was undetectable in leukocytes expressing PTPN22 gain-of-function protein and instead p38MAPK was up-regulated. IL-10 transcription, reliant on the ERK pathway, was negatively affected. Over the course of disease, patients expressing variant PTPN22 did not show a spike in IL-10 transcription as they entered remission in contrast to controls, implying that environmentally triggered signals were blunted. Sustained activity of PTPN22, due to the gain-of-function mutation, acts as a dominant negative regulator of ERK activity leading to blunted cellular responsiveness to environmental stimuli and expression of protective cytokines.
Collapse
Affiliation(s)
- Yali Cao
- Division of Nephrology and Hypertension, UNC Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Poojary S. Vitiligo and associated autoimmune disorders: a retrospective hospital-based study in Mumbai, India. Allergol Immunopathol (Madr) 2011; 39:356-61. [PMID: 21474231 DOI: 10.1016/j.aller.2010.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is a hospital based study focusing on epidemiological aspects of vitiligo and association with autoimmune disorders. There are few studies elucidating the association of autoimmune disorders with vitiligo in the Indian population. Our study is a small attempt in this direction. AIM To study epidemiological parameters of vitiligo and to study coexistence of autoimmune disorders. MATERIALS AND METHODS Records of 33,252 new patients attending the dermatology outpatient department from June 2002 to June 2008 were analysed for the presence of vitiligo and details of important epidemiological variables, and associated autoimmune disorders of these patients were collected and analysed. RESULTS Total number of vitiligo patients was 204. Proportion of vitiligo patients was 0.61%. Male:female proportion was almost equal. Family history of vitiligo was seen in 3.43% of cases. Associated autoimmune disorders were seen in 2.94% cases and were mainly skin associated autoimmune diseases (morphoea, alopecia areata, discoid lupus erythematosus, and pemphigus erythematosus) except for one case of Grave's disease. CONCLUSION Association of vitiligo with other autoimmune diseases emphasizes autoimmune aetiology of vitiligo. This study also emphasizes the need to actively look for, and if necessary, investigate patients with vitiligo for other autoimmune diseases.
Collapse
|
45
|
Anis SK, Abdel Ghany EA, Mostafa NO, Ali AA. The role of PTPN22 gene polymorphism in childhood immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 2011; 22:521-5. [DOI: 10.1097/mbc.0b013e328347b064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: A comprehensive overview. J Am Acad Dermatol 2011; 65:473-491. [DOI: 10.1016/j.jaad.2010.11.061] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/23/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022]
|
47
|
Recent progress in the genetics of generalized vitiligo. J Genet Genomics 2011; 38:271-8. [PMID: 21777851 DOI: 10.1016/j.jgg.2011.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/18/2011] [Accepted: 05/23/2011] [Indexed: 11/23/2022]
Abstract
Vitiligo is an acquired disease characterized principally by patchy depigmentation of skin and overlying hair. Generalized vitiligo (GV), the predominant form of the disorder, results from autoimmune loss of melanocytes from affected regions. GV is a "complex trait", inherited in a non-Mendelian polygenic, multifactorial manner. GV is epidemiologically associated with other autoimmune diseases, both in GV patients and in their close relatives, suggesting that shared genes underlie susceptibility to this group of diseases. Early candidate gene association studies yielded a few successes, such as PTPN22, but most such reports now appear to be false-positives. Subsequent genomewide linkage studies identified NLRP1 and XBP1, apparent true GV susceptibility genes involved in immune regulation, and recent genome-wide association studies (GWAS) of GV in Caucasian and Chinese populations have yielded a large number of additional validated GV susceptibility genes. Together, these genes highlight biological systems and pathways that reach from the immune cells to the melanocyte, and provide insights into both disease pathogenesis and potential new targets for both treatment and even prevention of GV and other autoimmune diseases in genetically susceptible individuals.
Collapse
|
48
|
A CD40 and an NCOA5 gene polymorphism confer susceptibility to psoriasis in a Southern European population: a case-control study. Hum Immunol 2011; 72:761-5. [PMID: 21645569 DOI: 10.1016/j.humimm.2011.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 05/13/2011] [Indexed: 11/20/2022]
Abstract
Recent genome-wide association studies of many complex diseases have successfully identified novel susceptibility loci, with many of them shared by multiple disease-associated pathways. The genes CD40 and nuclear receptor coactivator 5 (NCOA5), located in a 400-kb region surrounding CD40, have been reported to be associated with increased risk for rheumatoid arthritis and other autoimmune diseases. We hypothesized that those genes may also have a role in psoriasis (PS), an autoimmune, chronic inflammatory skin disease. In a case-control study, 198 patients with PS and 400 controls were genotyped for 2 single nucleotide polymorphisms (SNPs) of the CD40 and NCOA5 genes located on chromosome 20q.12-q13.12. Here, we demonstrate for the first time the association of both SNPs with susceptibility to PS, thus suggesting a putative key role of both genes in multiple autoimmune diseases. Alleles G and C of the CD40 rs4810485 and NCOA5 rs2903908 SNPs, respectively, were more common in individuals with PS than in controls (p = 0.03, odds ratio [OR] = 1.42, 95% confidence interval [95% CI] 1.05-1.95 and p = 0.000 003, OR = 1.93, 95% CI 1.47-2.55, respectively). The identification of shared genetic susceptibility loci may provide insight into our understanding of the pathophysiology of autoimmune diseases.
Collapse
|
49
|
Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 2011; 585:3689-98. [PMID: 21515266 DOI: 10.1016/j.febslet.2011.04.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
The PTPN22 locus is one of the strongest risk factors outside of the major histocompatability complex that associates with autoimmune diseases. PTPN22 encodes lymphoid protein tyrosine phosphatase (Lyp) which is expressed exclusively in immune cells. A single base change in the coding region of this gene resulting in an arginine to tryptophan amino acid substitution within a polyproline binding motif associates with type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosis, Hashimotos thyroiditis, Graves disease, Addison's disease, Myasthenia Gravis, vitiligo, systemic sclerosis juvenile idiopathic arthritis and psoriatic arthritis. Here, we review the current understanding of the PTPN22 locus from a genetic, geographical, biochemical and functional perspective.
Collapse
Affiliation(s)
- Garth L Burn
- Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Disease, King's College School of Medicine, King's College London, UK.
| | | | | | | | | |
Collapse
|
50
|
Eliopoulos E, Zervou MI, Andreou A, Dimopoulou K, Cosmidis N, Voloudakis G, Mysirlaki H, Vazgiourakis V, Sidiropoulos P, Niewold TB, Boumpas DT, Goulielmos GN. Association of the PTPN22 R620W polymorphism with increased risk for SLE in the genetically homogeneous population of Crete. Lupus 2011; 20:501-6. [PMID: 21543514 PMCID: PMC3312778 DOI: 10.1177/0961203310392423] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases affect approximately 5% of the population, but much work remains to define the genetic risk factors and pathogenic mechanisms underlying these conditions. There is accumulating evidence that common genetic factors might predispose to multiple autoimmune disorders. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are complex autoimmune disorders with multiple susceptibility genes. The functional R620W (C1858T) polymorphism of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, a member of the PTPs that negatively regulate T-cell activation, has been recently associated with susceptibility to various autoimmune diseases. The aim of this study was to assess whether the C1858T polymorphism of PTPN22 also confers increased risk for SLE and RA in the genetically homogeneous population of Crete. It was found that the minor T allele of the PTPN22 C1858T SNP was more common in SLE patients than in control individuals (odds ratio [OR] = 1.91, 95% confidence interval [CI] = 1.11 to 3.9, p = 0.017). No significant difference was observed in the frequency of this allele when RA patients were compared with controls (OR = 1.14, 95% CI = 0.65 to 1.9, p = 0.64). Although the PTPN22 1858 T allele is found at decreased frequency in Southern Europe, including Crete, an association was found between this allele and SLE in the population studied.
Collapse
Affiliation(s)
- E Eliopoulos
- Laboratory of Genetics, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | - MI Zervou
- Department of Internal Medicine, Medical School of Crete, University of Crete, Heraklion, Greece
| | - A Andreou
- Laboratory of Genetics, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | - K Dimopoulou
- Laboratory of Genetics, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | - N Cosmidis
- Laboratory of Genetics, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | - G Voloudakis
- Laboratory of Molecular Medicine and Human Genetics, Medical School of Crete, University of Crete, Heraklion, Greece
| | - H Mysirlaki
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | - V Vazgiourakis
- Laboratory of Molecular Medicine and Human Genetics, Medical School of Crete, University of Crete, Heraklion, Greece
| | - P Sidiropoulos
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | - TB Niewold
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, USA
| | - DT Boumpas
- Laboratory of Molecular Medicine and Human Genetics, Medical School of Crete, University of Crete, Heraklion, Greece
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | - GN Goulielmos
- Laboratory of Molecular Medicine and Human Genetics, Medical School of Crete, University of Crete, Heraklion, Greece
| |
Collapse
|