1
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Concepts in Oncolytic Adenovirus Therapy. Int J Mol Sci 2021; 22:ijms221910522. [PMID: 34638863 PMCID: PMC8508870 DOI: 10.3390/ijms221910522] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.
Collapse
|
3
|
Farrera-Sal M, de Sostoa J, Nuñez-Manchón E, Moreno R, Fillat C, Bazan-Peregrino M, Alemany R. Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. Int J Mol Sci 2020; 21:E5158. [PMID: 32708234 PMCID: PMC7404292 DOI: 10.3390/ijms21145158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as "arming OAds", has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
- VCN Biosciences S.L., 08174 Sant Cugat, Spain;
| | - Jana de Sostoa
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Estela Nuñez-Manchón
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | - Rafael Moreno
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Cristina Fillat
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | | | - Ramon Alemany
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| |
Collapse
|
4
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
5
|
Abstract
Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D) revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open reading frames for E3 CR1α, CR1β, and CR1γ, similar to that previously observed with genes encoding the three major structural capsid proteins, the penton base, hexon, and fiber.
Collapse
|
6
|
Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther 2013; 20:70-6. [PMID: 23306610 DOI: 10.1038/cgt.2012.95] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recurrent or metastatic cancer in most cases remains an incurable disease, and thus alternative treatment strategies, such as oncolytic virotherapy, are of great interest for clinical application. Oncolytic adenoviruses (Ads) have many advantages as virotherapeutic agents and have been safely employed in the clinics. However, the efficacy of oncolytic Ads is insufficient to eradicate tumors and current clinical applications are restricted to local administration against primary tumors because of immunological obstacles and poor tumor-cell targeting. Thus, alternative viable approaches are needed to establish therapies based on oncolytic Ad that will eliminate both primary and metastatic cancers. To this end, rational design of oncolytic Ads that express immunostimulatory genes has been employed. Even when restricted to local viral delivery, these oncolytic Ad-based immunotherapeutics have been shown to exert systemic antitumor immunity and result in eradication of both primary and metastatic cancers. Moreover, oncolytic Ad-based immunotherapeutics in combination with either dendritic cell-based vaccine or radiotherapy further strengthen the systemic tumor-specific immunity, resulting in complete suppression of both local and distant tumor metastatic growth. This review will focus on the most recent updates in strategies to develop potent oncolytic Ad-based immunotherapeutics for use in cancer gene therapy.
Collapse
Affiliation(s)
- I-K Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
7
|
Svyatchenko VA, Tarasova MV, Netesov SV, Chumakov PM. Oncolytic adenoviruses in anticancer therapy: Current status and prospects. Mol Biol 2012. [DOI: 10.1134/s0026893312040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Oncolytic viruses: the power of directed evolution. Adv Virol 2011; 2012:586389. [PMID: 22312363 PMCID: PMC3265225 DOI: 10.1155/2012/586389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/26/2011] [Indexed: 12/17/2022] Open
Abstract
Attempts at developing oncolytic viruses have been primarily based on rational design. However, this approach has been met with limited success. An alternative approach employs directed evolution as a means of producing highly selective and potent anticancer viruses. In this method, diverse viruses are grown under conditions that maximize diversity and then passaged under conditions meant to mimic those encountered in the human cancer microenvironment. Viruses which evolve to thrive under this selective pressure are isolated and tested to identify those with increased potency (i.e., ability to replicate and spread) and/or an increased therapeutic window (i.e., differentiated replication and spread on tumor versus normal cells), both of which have potential value but the latter of which defines an oncolytic virus. Using ColoAd1, an oncolytic virus derived by this approach as a prototype, we highlight the benefits of directed evolution, discuss methods to “arm” these novel viruses, and introduce techniques for their genetic modulation and control.
Collapse
|
9
|
Increasing the efficacy of oncolytic adenovirus vectors. Viruses 2010; 2:1844-1866. [PMID: 21994711 PMCID: PMC3185754 DOI: 10.3390/v2091844] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 12/13/2022] Open
Abstract
Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review.
Collapse
|
10
|
Arming a replicating adenovirus with osteoprotegerin reduces the tumor burden in a murine model of osteolytic bone metastases of breast cancer. Cancer Gene Ther 2010; 17:893-905. [PMID: 20798695 PMCID: PMC3842170 DOI: 10.1038/cgt.2010.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most patients with advanced breast cancer develop osteolytic bone metastases, which have numerous complications. Because current therapies are not curative, new treatments are needed. Conditionally replicating adenoviruses (CRAds) are anticancer agents designed to infect and lyse tumor cells. However, in spite of their promise as selective cancer therapeutics, replicating adenoviruses have shown limited efficacy in the clinical setting. We hypothesized that a CRAd armed with osteoprotegerin (OPG) would eradicate bone metastases of breast cancer both directly, by oncolysis, and indirectly, by inhibiting osteoclastic bone resorption and thus reducing the tumor burden. We constructed an armed CRAd (Ad5-Δ24-sOPG-Fc-RGD) by replacing viral E3B genes with a fusion of the ligand-binding domains of OPG and the Fc portion of human IgG1. Conditional replication was conferred by a 24-base pair deletion within E1A (Δ24), which prevents the binding of E1A to the retinoblastoma tumor suppressor/cell cycle regulator protein and limits replication in normal cells. Enhanced infection of cells expressing low levels of the primary Ad5 receptor was conferred by incorporating an RGD peptide sequence into the fiber knob to mediate binding to αv integrins. After characterization of the armed CRAd, we demonstrated that infection of breast cancer cells by Ad-Δ24-sOPG-Fc-RGD both killed the infected cells by oncolysis and inhibited the formation of osteoclasts in an in vitro co-culture model. In a murine model of osteolytic bone metastases of breast cancer, the CRAd armed with sOPG-Fc reduced tumor burden in the bone and inhibited osteoclast formation more effectively than an unarmed CRAd.
Collapse
|
11
|
Cherry T, Longo SL, Tovar-Spinoza Z, Post DE. Second-generation HIF-activated oncolytic adenoviruses with improved replication, oncolytic, and antitumor efficacy. Gene Ther 2010; 17:1430-41. [PMID: 20664541 PMCID: PMC2978277 DOI: 10.1038/gt.2010.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is a need to develop more potent oncolytic adenoviruses that exhibit increased anti-tumor activity in patients. The HYPR-Ads are targeted oncolytic adenoviruses that specifically kill tumor cells which express active hypoxia-inducible factor (HIF). While therapeutically efficacious, the HYPR-Ads exhibited attenuated replication and oncolytic activity. To overcome these deficiencies and improve anti-tumor efficacy, we created new HIF-activated oncolytic Ads, HIF-Ad and HIF-Ad-IL4, which have two key changes: (i) a modified HIF-responsive promoter to regulate the E1A replication gene and (ii) insertion of the E3 gene region. The HIF-Ads demonstrated conditional activation of E1A expression under hypoxia. Importantly, the HIF-Ads exhibit hypoxia-dependent replication, oncolytic, and cellular release activities and potent anti-tumor efficacy, all of which are significantly greater than the HYPR-Ads. Notably, HIF-Ad-IL4 treatment led to regressions in tumor size by 70% and extensive tumor infiltration by leukocytes resulting in an anti-tumor efficacy that is up to 6-fold greater than the HYPR-Ads, HIF-Ad, and wild-type adenovirus treatment. These studies demonstrate that treatment with a HIF-activated oncolytic adenovirus leads to a measurable therapeutic response. The novel design of the HIF-Ads represents a significant improvement compared to first-generation oncolytic Ads and has great potential to increase the efficacy of this cancer therapy.
Collapse
Affiliation(s)
- T Cherry
- Department of Neurosurgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
12
|
Toth K, Dhar D, Wold WSM. Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther 2010; 10:353-68. [PMID: 20132057 DOI: 10.1517/14712590903559822] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD Whilst therapies for neoplasies have advanced tremendously in the last few decades, there is still a need for new anti-cancer treatments. One option is genetically-engineered oncolytic adenovirus (Ad) 'vectors'. These kill cancer cells via the viral replication cycle, and amplify the anti-tumor effect by producing progeny virions able to infect neighboring tumor cells. AREAS COVERED IN THIS REVIEW We provide a description of basic Ad biology and summarize the literature for oncolytic Ads from 1996 to the present. WHAT THE READER WILL GAIN An overall view of oncolytic Ads, the merits and drawbacks of the various features of these vectors, and obstacles to further development and future directions for research. TAKE HOME MESSAGE Ads are attractive for gene therapy because they are relatively innocuous, easy to produce in large quantities, genetically stable, and easy to manipulate. A variety of have been constructed and tested, in pre-clinical and clinical experiments. Oncolytic Ads proved to be remarkably safe; no dose-limiting toxicity was observed in any clinical trial, and the maximum tolerated dose was not reached. At present, the major challenge for researchers is to increase the efficacy of the vectors, and to incorporate oncolytic virotherapy into existing treatment protocols.
Collapse
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| | | | | |
Collapse
|
13
|
Shim SH, Lee CT, Hun Hah J, Lee JJ, Park SW, Heo DS, Sung MW. Conditionally replicating adenovirus improves gene replication efficiency and anticancer effect of E1-deleted adenovirus carrying TRAIL in head and neck squamous cell carcinoma. Cancer Sci 2010; 101:482-7. [PMID: 19922505 PMCID: PMC11158897 DOI: 10.1111/j.1349-7006.2009.01409.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To overcome the low efficiency of gene therapy, we combined a conditionally replicating adenovirus (CRAd) and an adenoviral vector with a therapeutic gene. CRAd has an oncolytic activity in cancer cells with abnormal Rb activity and helps the replication of therapeutic genes incorporated in the E1-deleted adenovirus. We investigated the anticancer effect of a combination of CRAd and adenovirus carrying tumor necrosis factor-related apoptosis inducing ligand (ad-TRAIL). We expected to see increased gene expression in cancer cells as well as an antitumor effect. With the combined application of CRAd and ad-luciferase in head and neck cancer cell lines, we observed considerably increased luciferase activity that was 10- to 50-fold greater than with ad-luciferase alone. The combination of CRAd and ad-TRAIL showed significant suppression of growth in cell lines and increased the sub-G(1) portion of cells 30-fold compared to any single treatment. The expression of TRAIL was highly amplified by the combined treatment and was accompanied by expression of molecules related to apoptosis. In a xenograft animal model, mice treated with CRAd and ad-TRAIL showed complete regression of established tumors, whereas mice treated with CRAd or ad-TRAIL alone did not. In conclusion, this combined strategy using CRAd and adenovirus carrying a therapeutic gene increased the gene transfer rate and enhanced antitumor effects. We expect that this combination strategy could be extended to a multitarget cancer gene therapy by combining multiple adenoviruses and CRAd.
Collapse
Affiliation(s)
- Seon-Hui Shim
- Department of Molecular Tumor Biology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
15
|
Bortolanza S, Bunuales M, Alzuguren P, Lamas O, Aldabe R, Prieto J, Hernandez-Alcoceba R. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther 2009; 16:703-12. [PMID: 19229289 DOI: 10.1038/cgt.2009.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A partial deletion of the adenovirus E3 region, comprising the overlapping 6.7K/gp19K genes, has been described for the incorporation of therapeutic genes in 'armed' oncolytic adenoviruses. This deletion allows the insertion of up to 2.5 kb genetic material into the virus and ensures strong expression of transgenes without reducing the replication and cytolytic potency of viruses in vitro. E3-gp19K and 6.7K proteins are involved in avoiding recognition and elimination of infected cells by the host immune system. Therefore, we have studied the effect of this deletion on the replication and transgene expression of the virus in immunocompetent models based on Syrian hamsters. Tumors were established by intrahepatic injection of pancreatic cancer cells with moderate (HaP-T1, HP-1) or low (H2T) permissivity for adenovirus replication. The wild-type human adenovirus 5 (Ad5) or a modified version containing the luciferase gene in the E3-6.7K/gp19K locus (Ad-WTLuc) were injected intratumorally. We found that elimination of Ad-WTLuc was faster than Ad5 in HaP-T1 and HP-1 tumors. In contrast, no differences were observed when the same tumor was established in severely immunocompromised NOD-scid IL2Rgamma(null) mice. In addition, virus-mediated luciferase expression was more stable in these animals. These results suggest that the lack of E3-6.7K/gp19K genes may accelerate the clearance of oncolytic adenoviruses in some immunocompetent tumor models.
Collapse
Affiliation(s)
- S Bortolanza
- Division of Hepatology and Gene Therapy, CIMA, Foundation for Applied Medical Research, School of Medicine, University of Navarra, Pamplona 31008, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Conditionally replicating adenoviruses (CRAds) have many advantages as agents for cancer virotherapy and have been safely used in human clinical trials. However, replicating adenoviruses have been limited in their ability to eliminate tumors by oncolysis. Thus, the efficacy of these agents must be improved. To this end, CRAds have been engineered to express therapeutic transgenes that exert antitumor effects independent of direct viral oncolysis. These transgenes can be expressed under native gene control elements, in which case placement within the genome determines the expression profile, or they can be controlled by exogenous promoters. The therapeutic transgenes used to arm replicating adenoviruses can be broadly classified into three groups. There are those that mediate killing of the infected cell, those that modulate the tumor microenvironment and those with immunomodulatory functions. Overall, the studies to date in animal models have shown that arming a CRAd with a rationally chosen therapeutic transgene can improve its antitumor efficacy over that of an unarmed CRAd. However, a number of obstacles must be overcome before the full potential of armed CRAds can be realized in the human clinical context. Hence, strategies are being developed to permit intravenous delivery to disseminated cancer cells, overcome the immune response and enable in vivo monitoring of the biodistribution and activity of armed CRAds.
Collapse
Affiliation(s)
- J J Cody
- Division of Human Gene Therapy, Department of Medicine, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
17
|
Novel immunocompetent murine tumor model for evaluation of conditionally replication-competent (oncolytic) murine adenoviral vectors. J Virol 2009; 83:3450-62. [PMID: 19193803 DOI: 10.1128/jvi.02561-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models. Here, a model is described that allows the effective testing of mouse armed oncolytic adenovirus (MAV) vectors in immunocompetent syngeneic tumor models. These studies demonstrate that the MAV vectors have a high level of cytotoxicity in a wide range of murine tumor cells. The murine oncolytic viruses were successfully armed with murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) by a novel method which resulted in vectors with a high level of tumor-specific transgene expression. The mGM-CSF-armed MAV vectors showed an improved level of antitumor potency and induced a systemic antitumor immune response that was greater than that induced by unarmed parental vectors in immunocompetent syngeneic tumor models. Thus, the oncolytic MAV-1 system described here provides a murine homolog model for the testing of murine armed oncolytic adenovirus vectors in immunocompetent animals. The model allows evaluation of the impact of virus replication and the host immune response on overall virus potency and enables the generation of translational data that will be important for guiding the clinical development of these viruses.
Collapse
|
18
|
Bazan-Peregrino M, Carlisle RC, Hernandez-Alcoceba R, Iggo R, Homicsko K, Fisher KD, Halldén G, Mautner V, Shen Y, Seymour LW. Comparison of molecular strategies for breast cancer virotherapy using oncolytic adenovirus. Hum Gene Ther 2008; 19:873-86. [PMID: 18710328 DOI: 10.1089/hum.2008.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oncolytic viruses are regulated by the tumor phenotype to replicate and lyse cancer cells selectively. To identify optimal strategies for breast cancer we compared five adenoviruses with distinct regulatory mechanisms: Ad-dl922-947 (targets G1-S checkpoint); Ad-Onyx-015 and Ad-Onyx-017 (target p53/mRNA export); Ad-vKH1 (targets Wnt pathway), and AdEHE2F (targets estrogen receptor/G1-S checkpoint/hypoxic signaling). The quantity of virus required to kill 50% of breast cancer cells after 6 days (EC(50), plaque-forming units per cell) was measured. The most potent virus was Ad-dl922-947 (EC(50), 0.01-5.4 in SkBr3, MDA-231, MDA-468, MCF7, and ZR75.1 cells), followed by wild-type (Ad-WT; EC(50), 0.3-5.5) and AdEHE2F (EC(50), 1.4-3.9). Ad-vKH1 (EC(50), 7.2-72.1), Ad-Onyx-017 (EC(50), 8.4-167), and Ad-Onyx-015 (EC(50), 17.7-377) showed less activity. Most viruses showed limited cytotoxicity in normal human cells, including breast epithelium MCF10A (EC(50), >722) and fibroblasts (EC(50), >192) and only moderate cytotoxicity in normal microvascular endothelial cells (HMVECs; EC(50), 42.8-149), except Ad-dl922-947, which was active in HMVECs (EC(50), 1.6). After injection into MDA-231 xenografts, Ad-WT, AdEHE2F, and Ad-dl922-947 showed replication, assessed by hexon staining and quantitative polymerase chain reaction measurement of viral DNA, and significantly inhibited tumor growth, leading to extended survival. After intravenous injection Ad-dl922-947 showed DNA replication (233% of the injected dose was measured in liver after 3 days) whereas AdEHE2F did not. Overall, AdEHE2F showed the best combination of low toxicity in normal cells and high activity in breast cancer in vitro and in vivo, suggesting that molecular targeting using estrogen response elements, hypoxia response elements, and a dysregulated G1-S checkpoint is a promising strategy for virotherapy of breast cancer.
Collapse
Affiliation(s)
- M Bazan-Peregrino
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y, Denny WA, Wilson WR, Patterson AV. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther 2007; 14:953-67. [DOI: 10.1038/sj.cgt.7701088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Robinson M, Ge Y, Ko D, Yendluri S, Laflamme G, Hawkins L, Jooss K. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression. Cancer Gene Ther 2007; 15:9-17. [PMID: 17853920 DOI: 10.1038/sj.cgt.7701093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arming oncolytic adenoviral vectors with anticancer transgenes that can be expressed in a tumor-selective manner may enable the engineering of vectors with increased potency, while retaining their safety profile. Armed oncolytic adenoviral vectors were constructed in which transgene expression has been linked via modified splice acceptor sequences that did not necessitate the deletion of any part of the adenoviral genome. Several oncolytic adenoviral vectors were compared in which the transgene was inserted in place of either the E3 or the L3 region. While all vectors had similar viral growth and cytotoxicity characteristics, the highest level of transgene expression was observed from a vector in which the transgene had been inserted downstream of the L3 23K protease gene, the Ad-23K-GM vector. Notably, no transgene expression occurred with this vector in the absence of DNA replication either in vitro or in vivo. In contrast, viruses in which the transgene was inserted into E3 locations exhibited a low level of transgene expression even in the absence of DNA replication. In summary, by utilizing the L3 region for arming oncolytic viruses, higher levels of tumor-specific transgene expression can be obtained without the need to delete any parts of the viral genome.
Collapse
Affiliation(s)
- M Robinson
- Cell Genesys Inc., South San Francisco, California, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shashkova EV, Spencer JF, Wold WSM, Doronin K. Targeting Interferon-α Increases Antitumor Efficacy and Reduces Hepatotoxicity of E1A-mutated Spread-enhanced Oncolytic Adenovirus. Mol Ther 2007; 15:598-607. [PMID: 17191072 DOI: 10.1038/sj.mt.6300064] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 11/09/2022] Open
Abstract
Novel approaches are needed to improve the antitumor potency and to increase the cancer specificity of oncolytic adenoviruses (Ad). We hypothesized that the combination of interferon-alpha (IFN-alpha) expression with a specific mutation in the e1a gene of Ad could target vector replication to genetic defects in the IFN-alpha pathway resulting in both improved antitumor efficacy and reduced toxicity. The conditionally replicative Ad vector KD3-IFN carries the dl1101/1107 mutation in the e1a gene that eliminates binding of E1A proteins to p300/CBP and pRb. KD3-IFN expresses human IFN-alpha in concurrence with vector replication and overexpresses the adenovirus death protein (ADP; E3-11.6K). The antitumor activity of KD3-IFN was significantly higher than that of a control vector in established human hepatocellular carcinoma tumors in immunodeficient mice and in hamster kidney cancer tumors in immunocompetent Syrian hamsters. The dl1101/1107 mutation rendered Ad replication sensitive to the antiviral effect of IFN-alpha in normal as opposed to cancer cells. These results translated to reduced vector toxicity upon systemic administration to C57BL/6 mice. The combination of Ad oncolysis, ADP overexpression, and IFN-alpha-mediated immunotherapy represents a three-pronged approach for increasing the anticancer efficacy of replicative Ads. Exploiting the dl1101/1107 mutation provides a mechanism for additional selectivity of IFN-alpha-expressing replication-competent Ads.
Collapse
|
22
|
Zhang YA, Nemunaitis J, Samuel SK, Chen P, Shen Y, Tong AW. Antitumor Activity of an Oncolytic Adenovirus-Delivered Oncogene Small Interfering RNA. Cancer Res 2006; 66:9736-43. [PMID: 17018633 DOI: 10.1158/0008-5472.can-06-1617] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite successes in animal models, cancer gene therapy with small interfering RNAs (siRNA) is hindered by the lack of an optimal delivery platform. We examined the applicability of the replication-competent, oncolytic adenovirus, ONYX-411, to deliver a mutant K-ras siRNA transgene to human cancer cells. Proof-of-principle studies showed an additive tumor growth-inhibitory response through siRNA-mediated K-ras knockdown and ONYX-411-mediated cancer cell lysis. A novel construct, termed Internavec (for interfering RNA vector), was generated by cloning a K-ras(v12)-specific siRNA(ras-4) hairpin construct under the control of the human H1 promoter into the deleted E3b region of ONYX-411. Internavec acquired an increase in potency of approximately 10-fold in human cancer cells expressing the relevant K-ras(v12) mutation (H79, H441, and SW480), as defined by a reduction in the effective dose needed to achieve 50% growth inhibition (ED(50)). Internavec remained attenuated in nonmalignant epithelial cells. Daily intratumoral injections of Internavec (five daily injections of 1 x 10(8) plaque-forming units) significantly reduced the growth of s.c. H79 pancreatic cancer xenografts in nu/nu mice by 85.5%, including complete growth suppression in three of five mice. Parental ONYX-411 or ONYX-411-siRNA(GFP) was markedly less effective (47.8% growth reduction, P = 0.03; and 44.1% growth reduction, P = 0.03, respectively). siRNA(ras) transgene activity contributed to cell cycle blockage, increased apoptosis, and marked down-regulation of Ras signaling-related gene expression (AKT2, GSK3 beta, E2F2, and MAP4K5). These findings indicate that Internavec can generate a two-pronged attack on tumor cells through oncogene knockdown and viral oncolysis, resulting in a significantly enhanced antitumor outcome.
Collapse
Affiliation(s)
- Yu-An Zhang
- The Mary Crowley Medical Research Center, Dallas, Texas
| | | | | | | | | | | |
Collapse
|
23
|
Guffey MB, Parker JN, Luckett WS, Gillespie GY, Meleth S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors. Cancer Gene Ther 2006; 14:45-56. [PMID: 16990846 DOI: 10.1038/sj.cgt.7700978] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lack of effective therapy of primary brain tumors has promoted the development of novel experimental approaches utilizing oncolytic viruses combined with gene therapy. Towards this end, we have assessed a conditionally replication-competent, gamma(1)34.5-deleted herpes simplex virus type 1 (HSV-1) expressing cytosine deaminase (CD) for treatment of malignant brain tumors. Our results are summarized as follows: (i) a recombinant HSV (M012) was constructed in which both copies of the gamma(1)34.5 gene were replaced with the bacterial CD gene, under the control of the cellular promoter Egr-1; (ii) M012-infected cells in vitro efficiently convert 5-fluorocytosine (5-FC) to 5-fluorouracil, thereby enhancing cytotoxicity of neighboring, uninfected cells; (iii) both direct and bystander cytotoxicity of murine neuroblastoma and human glioma cell lines after infection with M012 were demonstrated; (iv) direct intracerebral inoculation of A/J mice demonstrated lack of neurotoxicity at doses similar to G207, a gamma(1)34.5-deleted HSV with demonstrated safety in human patient trials and (v) intratumoral injection of M012 into Neuro-2a flank tumors in combination with 5-FC administration significantly reduced tumor growth versus tumors treated with R3659 combined with 5-FC, or treated with M012 alone. Thus, M012 is a promising new oncolytic HSV vector with an enhanced prodrug-mediated, antineoplastic effect that is safe for intracranial administration.
Collapse
Affiliation(s)
- M B Guffey
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294-3410, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kretschmer PJ, Jin F, Chartier C, Hermiston TW. Development of a transposon-based approach for identifying novel transgene insertion sites within the replicating adenovirus. Mol Ther 2006; 12:118-27. [PMID: 15963927 DOI: 10.1016/j.ymthe.2005.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022] Open
Abstract
Therapeutic gene delivery from an oncolytic adenovirus (Ad) is one approach to enhancing the potency of Ad-based virotherapies for cancer. To identify therapeutic transgene insertion sites compatible with the replicating virus, a methodology that broadly scans the viral genome is needed. To address this we modified a transposon (Tn7)-based in vitro transposition system to take advantage of its nonprejudiced scanning ability to identify insertion sites compatible with viral replication. Using this system with a plasmid containing an E3-deleted Ad5, we identified several unique sites for promoter-based expression cassette insertions within the Ad genome. The transposon-based expression cassette is bounded by PmeI restriction endonuclease sites unique to the transposon, making expression cassette substitutions easy to perform. Additional expression cassettes containing different promoters and reporter genes were substituted into two of the newly identified transgene insertion sites. The results suggest that the ease and orientation of expression cassette substitution depend on both the insertion site location and the promoter and gene of the replacement expression cassette. These studies establish the transposon-based system as an efficient approach to scanning the Ad genome and identifying insertion sites compatible with viral replication and represents a powerful tool for the development of armed therapeutic viruses for cancer.
Collapse
Affiliation(s)
- Peter J Kretschmer
- Gene Therapy Research Department, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | | | | | |
Collapse
|
25
|
Le LP, Le HN, Nelson AR, Matthews DA, Yamamoto M, Curiel DT. Core labeling of adenovirus with EGFP. Virology 2006; 351:291-302. [PMID: 16678874 PMCID: PMC1781517 DOI: 10.1016/j.virol.2006.03.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/15/2005] [Accepted: 03/21/2006] [Indexed: 11/27/2022]
Abstract
The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.
Collapse
Affiliation(s)
- Long P Le
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, 901 19th Street South, BMR2-502, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R. Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Ther 2006; 16:1473-83. [PMID: 16390278 DOI: 10.1089/hum.2005.16.1473] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have constructed an oncolytic adenovirus expressing the Escherichia coli nitroreductase gene nfsB from an internal ribosome entry site (IRES) in the adenovirus L5 major late transcript. The virus (Tcf-NTR) has Tcf transcription factor-binding sites in the E1A, E1B, and E4 promoters, which restrict viral replication to cells that have activation of the Wnt signaling pathway. This virus was compared with an E1B-55K-deleted virus expressing nitroreductase (NTR) from a cytomegalovirus (CMV) promoter in the E1B-55K region [CRAd-NTR(PS1217H6)]. Both viruses express NTR in colorectal cancer cell lines and show increased cytopathic effect in the presence of the prodrug CB1954. Unlike the Tcf-NTR virus, the CMV-NTR virus expresses NTR in human lung fibroblasts and sensitizes these normal cells to CB1954. The in vivo activity of the viruses was tested in SW620 xenografts in nude mice by intravenous injection of 1,011 particles of virus followed 1 week later by intraperitoneal injections of CB1954. The CMV-NTR virus produced minimal effects in this model. The median time to form 1,000-mm(3) tumors in mice treated with the Tcf-NTR virus plus CB1954 was increased from 14 to 26 days (p=0.003), but this was due mainly to the direct oncolytic effect of the virus. Combination therapy with 3 x 10(11) particles of Tcf-NTR virus (given intravenously) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) (given orally) significantly improved survival (median, >50 days), and addition of CB1954 to this regimen further delayed tumor growth. These results show that the Tcf-NTR virus is more tumor selective and active than the CMV-NTR virus. At the level of transduction that can be achieved currently with oncolytic viruses given intravenously, drugs such as RAD001, which do not require activation by the virus, produce greater increases in efficacy than prodrugs such as CB1954.
Collapse
Affiliation(s)
- Alexander N Lukashev
- NCCR Molecular Oncology Program, Swiss Institute for Experimental Cancer Research (ISREC), Epalinges CH-1066, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Sauthoff H, Pipiya T, Chen S, Heitner S, Cheng J, Huang YQ, Rom WN, Hay JG. Modification of the p53 transgene of a replication-competent adenovirus prevents mdm2- and E1b-55kD-mediated degradation of p53. Cancer Gene Ther 2006; 13:686-95. [PMID: 16470212 DOI: 10.1038/sj.cgt.7700936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical efficacy of adenovirus-mediated cancer gene therapy has been limited thus far. To improve its oncolytic effect, a replication-competent adenoviral vector was previously constructed to express high levels of p53 at a late time point in the viral life cycle. p53 expression from this vector improved tumor cell killing and viral spread in vitro. However, p53 function is antagonized by cellular mdm2 and adenoviral E1b-55kD, both of which are known to bind to and inactivate p53. Therefore, a new vector (Adp53W23S) that expresses a modified p53 transgene, which does not bind to E1b-55kd and mdm2, was constructed. The modified p53 protein was demonstrated to have a substantially prolonged half-life, and its localization was predominantly nuclear. Viral replication was unaffected by expression of the modified p53 and cancer cell killing was improved in vitro. However, in a xenograft model, efficacy was not significantly different from control virus. In conclusion, expression of a degradation-resistant p53 transgene late in the life cycle of a replication-competent adenovirus improves p53 stability and cancer cell killing in vitro. However, other factors, such as the adenoviral E1b-19kD and E1a proteins, which oppose p53 function, and limitations to viral spread need to be addressed to further improve in vivo efficacy.
Collapse
Affiliation(s)
- H Sauthoff
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R. Late Expression of Nitroreductase in an Oncolytic Adenovirus Sensitizes Colon Cancer Cells to the Prodrug CB1954. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Jin F, Kretschmer PJ, Hermiston TW. Identification of novel insertion sites in the Ad5 genome that utilize the Ad splicing machinery for therapeutic gene expression. Mol Ther 2005; 12:1052-63. [PMID: 16165398 DOI: 10.1016/j.ymthe.2005.07.696] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/28/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022] Open
Abstract
Therapeutic transgene expression from oncolytic viruses represents one approach to increasing the effectiveness of these agents as cancer therapeutics. In the case of the oncolytic adenovirus (Ad), however, the genomic packaging capacity is constrained. To address this, we explored whether a transposon-based system could identify sites in the viral genome where endogenous Ad promoters could drive transgene expression via splicing and still maintain the replication capacity of the virus. Using GFP as a reporter gene and an E3-deleted Ad genome as a target, we tested three splicing signals. RACE analysis confirmed that gene expression from the GFP-expressing Ads occurs via splicing and traced expression to the Ad major late promoter (MLP). Replacement of the GFP transposon by an equivalent splice acceptor-luciferase expression cassette in the same orientation confirmed that substitute transgenes are also expressed via splicing from the MLP. Interestingly, insertion of the substitute transgene in the opposite orientation also resulted in expression that, in some cases, originated from within the ITR region of the viral genome. In summary, splice acceptor sequences can be used to control transgene expression from endogenous Ad promoters and this represents a genomically economical approach to arming oncolytic Ads.
Collapse
Affiliation(s)
- Fang Jin
- Gene Therapy Research Department, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | | | |
Collapse
|
31
|
Zhu M, Bristol JA, Xie Y, Mina M, Ji H, Forry-Schaudies S, Ennist DL. Linked tumor-selective virus replication and transgene expression from E3-containing oncolytic adenoviruses. J Virol 2005; 79:5455-65. [PMID: 15827160 PMCID: PMC1082742 DOI: 10.1128/jvi.79.9.5455-5465.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/DeltaE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/DeltaE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen transformed) cell pair, GM-CSF was shown to be selectively produced in cells expressing high levels of E2F, indicating that the tumor-selective E2F promoter controlled E1A and GM-CSF expression.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Immunology Program, Oncology Unit, Genetic Therapy, Inc., Bethesda, MD 20817, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.
Collapse
Affiliation(s)
- Eugene Lin
- Mary Crowley Medical Research Center, Dallas, Texas, USA
| | | |
Collapse
|
33
|
Horn GP, Vongpunsawad S, Kornmann E, Fritz B, Dittmer DP, Cattaneo R, Dobbelstein M. Enhanced cytotoxicity without internuclear spread of adenovirus upon cell fusion by measles virus glycoproteins. J Virol 2005; 79:1911-7. [PMID: 15650215 PMCID: PMC544120 DOI: 10.1128/jvi.79.3.1911-1917.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficiency of viruses in cancer therapy is enhanced by proteins that mediate the fusion of infected cells with their neighbors. It was reported that replication-competent adenovirus particles can spread between nuclei within fusion-generated syncytia. To assess this conjecture, we generated fusogenic adenoviruses that express a balanced ratio of the F and H glycoproteins of measles virus. The viruses displayed enhanced cytotoxicity but largely unchanged replication efficiencies compared to a nonfusogenic virus. Most notably, the virus genomes did not spread through fusion-generated multinuclear cells. Hence, adenovirus replication in syncytia remains largely restricted to initially transduced nuclei.
Collapse
Affiliation(s)
- German P Horn
- Institut für Virologie, Klinikum der Philipps, Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Carette JE, Graat HCA, Schagen FHE, Abou El Hassan MAI, Gerritsen WR, van Beusechem VW. Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. J Gene Med 2005; 7:1053-62. [PMID: 15756711 DOI: 10.1002/jgm.754] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oncolytic viruses are promising anticancer agents because they selectively kill cancer cells and multiply within a tumor. Their oncolytic potency might be improved by expressing a therapeutic gene from the virus genome. In this regard, proper kinetics and level of transgene expression are important. In addition, expression of cytotoxic transgene products should be confined to cancer cells. Here, we developed oncolytic adenoviruses that provide transgene expression dependent on viral replication. METHODS We constructed an oncolytic adenovirus that expresses luciferase under regulation of the endogenous major late promoter (MLP) via alternative splicing to an inserted splice-acceptor site analogous to that of the adenovirus serotype 40 long fiber gene. Splicing of the luciferase transcript was studied by RT-PCR analysis. Expression was measured in the presence and absence of the flavonoid apigenin, an inhibitor of viral replication. RESULTS The inserted splice-acceptor site was properly recognized by the adenoviral splicing machinery. Luciferase expression levels were markedly higher than levels obtained with the cytomegalovirus (CMV) promoter, especially at late stages of infection. Inhibiting adenovirus replication reduced luciferase expression levels dramatically by 4 to 5 logs, whereas expression levels with the CMV-luciferase adenovirus were only moderately affected (2 logs). CONCLUSIONS Transgene delivery using the endogenous late gene expression machinery resulted in an expression pattern distinct from expression driven by the conventional CMV promoter. The high expression levels and strict coupling of expression to viral replication should be useful for adequate monitoring of replication and might provide a platform for the design of armed conditionally replicating adenoviruses (CRAds) with enhanced oncolytic potency.
Collapse
Affiliation(s)
- Jan E Carette
- Division of Gene Therapy, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 2004; 15:1022-33. [PMID: 15610603 DOI: 10.1089/hum.2004.15.1022] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Michael J McConnell
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
36
|
Zhan J, Gao Y, Wang W, Shen A, Aspelund A, Young M, Laquerre S, Post L, Shen Y. Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther 2004; 12:19-25. [PMID: 15514685 DOI: 10.1038/sj.cgt.7700730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this report, we describe a vector system that specifically delivers transgene products to tumors following intravenous (i.v.) administration. The Escherichia coli cytosine deaminase (CD) gene was placed in the E3B region of the tumor-selective, replication-competent adenovirus ONYX-411, under the control of endogenous viral late gene regulatory elements. Thus, CD expression was directly coupled to the tumor-selective replication of the viral vector. In vitro, CD was expressed efficiently in various human cancer cell lines tested but not in cultured normal human cells, including human hepatocytes. Following i.v. administration into nude mice carrying human tumor xenografts, robust CD activity was detected only in tumors but not in liver or other normal tissues. Levels of CD activity in the tumors increased progressively following i.v. virus administration, correlating closely with virus replication in vivo. Subsequent administration of 5-fluorocytosine (5-FC) demonstrated a trend to improve the antitumor efficacy of these viruses in a mouse xenograft model, presumably due to the intratumoral conversion of 5-FC to the chemotherapeutic drug 5-fluorouracil. We show that the combination of a highly selective oncolytic virus, ONYX-411, with the strategic use of the viral E3B region for transgene insertion provides a powerful platform that allows for tumor-specific, persistent and robust transgene expression after i.v. administration. This technology provides an opportunity to enhance greatly both safety and efficacy of cancer gene therapy.
Collapse
Affiliation(s)
- Jinghui Zhan
- Onyx Pharmaceuticals Inc., Richmond, California 94806, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee CT, Park KH, Yanagisawa K, Adachi Y, Ohm JE, Nadaf S, Dikov MM, Curiel DT, Carbone DP. Combination Therapy with Conditionally Replicating Adenovirus and Replication Defective Adenovirus. Cancer Res 2004; 64:6660-5. [PMID: 15374981 DOI: 10.1158/0008-5472.can-04-1200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low gene transfer rate is the most substantial hurdle in the practical application of gene therapy. One strategy to improve transfer efficiency is the use of a conditionally replicating adenovirus (CRAD) that can selectively replicate in tumor cells. We hypothesized that conventional E1-deleted adenoviruses (ad) can become replication-competent when cotransduced with a CRAD to selectively supply E1 in trans in tumors. The resulting selective production of large numbers of the E1-deleted ad within the tumor mass will increase the transduction efficiency. We used a CRAD (Delta24RGD) that produces a mutant E1 without the ability to bind retinoblastoma but retaining viral replication competence in cancer cells with a defective pRb/p16. Ad-lacZ, adenovirus-luciferase (ad-luc), and adenovirus insulin-like growth factor-1R/dominant-negative (ad-IGF-1R/dn; 482, 950) are E1-deleted replication-defective adenoviruses. The combination of CRAD and ad-lacZ increased the transduction efficiency of lacZ to 100% from 15% observed with ad-lacZ alone. Transfer of media of CRAD and ad-lacZ cotransduced cells induced the transfer of lacZ (media transferable bystander effect). Combination of CRAD and ad-IGF-1R/dn increased the production of truncated IGF-1R or soluble IGF-1R > 10 times compared with transduction with ad-IGF-1R/dn alone. Combined intratumoral injection of CRAD and ad-luc increased the luciferase expression about 70 times compared with ad-luc alone without substantial systemic spread. Combined intratumoral injection of CRAD and ad-IGF-1R/482 induced stronger growth suppression of established lung cancer xenografts than single injections. The combination of CRAD and E1-deleted ad induced tumor-specific replication of CRAD and E1-deleted ad and increased the transduction rate and therapeutic efficacy of these viruses in model tumors.
Collapse
Affiliation(s)
- Choon-Taek Lee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37322-6838, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen MJ, Green NK, Reynolds GM, Flavell JR, Mautner V, Kerr DJ, Young LS, Searle PF. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Ther 2004; 11:1126-36. [PMID: 15164095 DOI: 10.1038/sj.gt.3302271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses that replicate selectively in cancer cells constitute an exciting new class of anticancer agent. The conditionally replicating adenovirus (CRAd) dl1520, which lacks the E1B-55K gene, has elicited significant clinical responses in humans when used in combination with chemotherapy. A convergent development has been to use replication-defective viruses to express prodrug-activating enzymes in cancer cells. This can sensitize the cancer to prodrug, but depends upon achieving sufficient level, distribution and specificity of enzyme expression within the tumour. In this study, we have expressed the prodrug-activating enzyme nitroreductase (NTR) in the context of an E1B-55K-deleted adenovirus, CRAd-NTR(PS1217H6). We show that CRAd-NTR(PS1217H6) retains oncolytic growth properties, and expresses substantially more NTR than a comparable, replication-defective adenovirus. The combination of viral oncolysis and NTR expression results in significantly greater sensitization of SW480 and WiDr colorectal cancer cells to the prodrug CB1954 in vitro. In vivo, CRAd-NTR(PS1217H6) was shown to replicate in subcutaneous SW480 tumour xenografts in immunodeficient mice, resulting in more NTR expression and greater sensitization to CB1954 than with replication-defective virus. Combination therapy of CRAd-NTR(PS1217H6) with CB1954 reduced tumour growth from 13.5- to 2.8-fold over 5 weeks, and extended median survival from 42 to 81 days, compared with no treatment.
Collapse
Affiliation(s)
- M-J Chen
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fuerer C, Iggo R. 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther 2004; 11:142-51. [PMID: 14712298 DOI: 10.1038/sj.gt.3302148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical studies with oncolytic adenoviruses have shown that existing viruses are safe but lack efficacy. To selectively increase the toxicity of oncolytic adenoviruses targeting colon tumours, we have inserted the yeast cytosine deaminase gene (yCD) after the fibre gene in the major late transcript. yCD was expressed using either an internal ribosome entry site (IRES) or by alternative splicing of a new exon analogous to the Ad41 long fibre exon. The IRES-CD virus gave higher yCD expression on Western blots. Both approaches result in yCD expression restricted to the period after viral DNA replication. Viral burst size was reduced by less than approximately 10-fold by 5-fluorocytosine (5-FC), showing that expression of yCD as a late gene is compatible with virus replication. Cytopathic effect assays in colon cancer cell lines showed that both yCD viruses have approximately 10-fold increased toxicity in the presence of the prodrug 5-FC, which is converted to 5-fluorouracil (5-FU) by yCD. Toxicity was higher following addition of 5-FC immediately after infection. The largest gain in toxicity was seen in HT29 colon cancer cells, which are the least permissive colon cancer cells for the parental virus, indicating that the new 5-FC/yCD viruses may have broader applications for colon cancer therapy than their predecessors.
Collapse
Affiliation(s)
- C Fuerer
- Oncogene Group, NCCR Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | |
Collapse
|
40
|
Rivera AA, Wang M, Suzuki K, Uil TG, Krasnykh V, Curiel DT, Nettelbeck DM. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo. Virology 2004; 320:121-34. [PMID: 15003868 DOI: 10.1016/j.virol.2003.11.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 11/18/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdDeltaE1AIL), the early gene E2B (AdDeltaE2BIL), or the late fiber gene (AdDeltafiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdDeltaE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdDeltaE1AIL) to six (AdDeltafiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdDeltaE2BIL, AdDeltafiberIL, and AdTL. AdDeltafiberIL and the parental virus, Ad5-Delta24, resulted in similar cytotoxicity, but AdDeltaE2BIL and AdDeltaE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdDeltaE2BIL and AdDeltafiberIL, but substantial for AdDeltaE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression.
Collapse
Affiliation(s)
- Angel A Rivera
- Division of Human Gene Therapy, Department of Medicine, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The potential use of adenoviruses in therapy against cancer has evoked a rapidly moving field of research. Unlike conventional gene therapy vectors, oncolytic adenoviruses retain the ability to replicate. However, replication is restricted as much as possible to tumor cells, with the aim of eliminating these cells through viral cytotoxicity. The two key issues are to improve the efficiency of virus replication and cell killing while ensuring the specificity of these activities for tumor cells. Wild-type adenoviruses as such may already be usable for cancer therapy. Strategies to further improve efficiency and specificity include the partial or complete removal of viral genes. The idea is that functions carried out by the corresponding gene products are not required for replication in tumor cells, but are needed in normal cells. Accordingly, the removal of genes encoding E1B-55 kDa or E1B-19 kDa, or the mutation of E1A may improve the selective killing of tumor cells. On the other hand, the overexpression of the adenovirus death protein (ADP) may enhance viral spread and oncolytic efficiency. Other strategies to improve the specific oncolytic activity of replicating adenoviruses have been pursued. For instance, some promoters are active specifically in tumor cells, and these promoters were introduced into the viral genome, to regulate essential viral genes. Moreover, replicating viruses were engineered to express toxic proteins or drug converters. A number of these viruses have been tested successfully using tumor xenografts in nude mice as a model system. An oncolytic adenovirus lacking the E1B-55 kDa gene product, termed dl1520 or ONYX015, was injected into squamous cell carcinomas of head and neck in phase II clinical trials, and the results were encouraging when chemotherapy was applied in parallel. In the future, further progress might be achieved on the level of virus constructs, but also by refining and adjusting simultaneous conventional therapies, and by standardizing the assessment of the clinical outcome. Recent progress has been made towards the use of replicating virus constructs in cancer therapy. The goal of these developments is to remove cancerous cells from patients with the help of viruses that selectively replicate in these cells. These viruses are generally termed oncolytic viruses. Some convenient properties of adenovirus make this virus particularly useful for this purpose. It infects a large number of human cell types, especially epithelial cells, which give rise to the vast majority of human malignancies. It can be grown easily and to high titers, and the creation of virus recombinants is well established. Finally, a large body of basic research has already been carried out on this virus, facilitating its manipulation. Various approaches to use adenovirus as a cancer drug have been reviewed (Alemany et al. 1999a, 2000; Curiel 2000; Galanis et al. 2001b; Gromeier 2001; Heise and Kirn 2000; Kirn 2000a; Kirn et al. 2001; Kirn and McCormick 1996; Smith and Chiocca 2000; Sunamura 2000; Wells 2000; Wodarz 2001). The aim of this chapter is to provide an integrated overview of these strategies.
Collapse
Affiliation(s)
- M Dobbelstein
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Str. 17, 35037 Marburg, Germany.
| |
Collapse
|
42
|
Ahmed A, Jevremovic D, Suzuki K, Kottke T, Thompson J, Emery S, Harrington K, Bateman A, Vile R. Intratumoral expression of a fusogenic membrane glycoprotein enhances the efficacy of replicating adenovirus therapy. Gene Ther 2003; 10:1663-71. [PMID: 12923565 DOI: 10.1038/sj.gt.3302064] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe here a novel strategy to enhance the in vivo efficacy of replicating adenovirus therapy, using coinjection of plasmid DNA encoding a fusogenic viral glycoprotein. The combination of fusogenic membrane glycoprotein (FMG)-induced tumor cell fusion and infection with replicating adenovirus effectively treats even large established tumors at doses of plasmid DNA and virus that alone are ineffective. Adenoviral infection appears to increase the transduction of the tumor cells to a modest degree thereby boosting the FMG-mediated component of the therapy. Simultaneously, syncytial formation enhances the therapeutic effects of viral infection by increasing spread of adenoviral particles through the tumor cell population and by increasing titer of virus released from the tumor cells. This effect is due probably to release of intracellular viral particles upon tumor cell death and also to increased levels of E1A protein within syncytia, whose increased metabolic rate is associated with enhanced levels of protein expression. Cotransduction of tumor cells with replicating adenovirus and FMG-expressing vectors could either be combined within single replicating vectors or could be used in strategies using separate administration of two components, both at lower doses than required for either therapy alone.
Collapse
Affiliation(s)
- A Ahmed
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fu X, Meng F, Tao L, Jin A, Zhang X. A strict-late viral promoter is a strong tumor-specific promoter in the context of an oncolytic herpes simplex virus. Gene Ther 2003; 10:1458-64. [PMID: 12900760 DOI: 10.1038/sj.gt.3302029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Confinement of transgene expression to target cells is highly desirable in gene therapy. Current strategies of transcriptional targeting to tumors usually rely on tissue-specific promoters to control gene expression. However, such promoters generally have much lower activity than the constitutive viral promoters. We have explored an alternative approach, using a strict-late viral promoter (UL38p) in the context of an oncolytic herpes simplex virus (HSV) for tumor-selective gene expression. As with many DNA viruses, the genomic transcription of HSV is a tightly regulated molecular cascade in which early and late phases of gene expression are separated by viral DNA replication. In particular, some of the late transcripts are categorized as strict-late, whose expression depends rigorously on the initiation of viral DNA replication. Our in vitro and in vivo characterization showed that in normal nondividing cells, where the oncolytic HSV has limited ability to replicate, the UL38p has minimal activity. However, in tumor or cycling cells where the virus can fully replicate, transgene expression from UL38p was almost as high as from the cytomegalovirus immediate-early promoter. These results suggest that delivery of therapeutic genes driven by UL38p through an oncolytic HSV may be an effective approach to gene therapy for malignant diseases.
Collapse
Affiliation(s)
- X Fu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
45
|
Bauzon M, Castro D, Karr M, Hawkins LK, Hermiston TW. Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther 2003; 7:526-34. [PMID: 12727116 DOI: 10.1016/s1525-0016(03)00023-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have developed a novel therapeutic gene delivery system for oncolytic adenoviruses that takes advantage of the endogenous gene expression machinery (promoters, splicing, polyadenylation signals) of the E3 transcription unit for gene delivery. In this work, we use two sites in the E3 region (6.7 K/gp19K and ADP sites) to demonstrate that (1) multiple therapeutic genes (MCP-3, TNFalpha) can be expressed from a single replicating Ad, (2) timing of expression of these therapeutic genes mimics that of the E3 region genes they replaced, (3) expression of the remaining genes in the complex E3 transcription unit is maintained, and (4) the multigene-expressing virus retains replication competence and ability to induce classical adenovirus cytopathic effects that parallel those of the parental adenovirus (ONYX-320). This system conserves the DNA packaging capacity of the size-constrained viral genome for therapeutic genes and can potentially be used to link therapeutic transgene expression to tumor-restricted viral replication. Potential clinical implications are discussed.
Collapse
Affiliation(s)
- Maxine Bauzon
- Onyx Pharmaceuticals, 3031 Research Drive, Richmond, California 94806, USA
| | | | | | | | | |
Collapse
|
46
|
Hermiston TW, Kuhn I. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9:1022-35. [PMID: 12522441 DOI: 10.1038/sj.cgt.7700542] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are attractive therapeutics for cancer because they selectively amplify, through replication and spread, the input dose of virus in the target tumor. To date, clinical trials have demonstrated marked safety but have not realized their theoretical efficacy potential. In this review, we consider the potential of armed therapeutic viruses, whose lytic potential is enhanced by genetically engineered therapeutic transgene expression from the virus, as potential vehicles to increase the potency of these agents. Several classes of therapeutic genes are outlined, and potential synergies and hurdles to their delivery from replicating viruses are discussed.
Collapse
|
47
|
Sauthoff H, Pipiya T, Heitner S, Chen S, Norman RG, Rom WN, Hay JG. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 2002; 13:1859-71. [PMID: 12396618 DOI: 10.1089/104303402760372954] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene transfer of p53 induces cell death in most cancer cells, and replication-defective adenoviral vectors expressing p53 are being evaluated in clinical trials. However, low transduction efficiency limits the efficacy of replication-defective vector systems for cancer therapy. The use of replication-competent vectors for gene delivery may have several advantages, holding the potential to multiply and spread the therapeutic agent after infection of only a few cells. However, expression of a transgene may adversely affect viral replication. We have constructed a replicating adenoviral vector (Adp53rc) that expresses high levels of p53 at a late time point in the viral life cycle and also contains a deletion of the adenoviral death protein (ADP). Adp53rc-infected cancer cells demonstrated high levels of p53 expression in parallel with the late expression pattern of the adenoviral fiber protein. p53 expression late in the viral life cycle did not impair effective virus propagation. Survival of several lung cancer cell lines was significantly diminished after infection with Adp53rc, compared with an identical p53-negative control virus. p53 expression also improved virus release and spread. Interestingly, p53 was more cytotoxic than the ADP in cancer cells but less cytotoxic than the ADP in normal cells. In conclusion, late expression of p53 from a replicating virus improves tumor cell killing and viral spread without impairing viral replication. In addition, in combination with a deletion of the ADP, specificity of tumor cell killing is improved.
Collapse
Affiliation(s)
- Harald Sauthoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Vaccinology has experienced a dramatic resurgence recently, as traditional methodologies of using attenuated live pathogens or inactivated whole pathogens have been either ineffective or are not an acceptable risk for several disease targets, including HIV and Hepatitis C. Gene-based vaccines can stimulate potent humoral and cellular immune responses, and viral vectors might be an efficient strategy for both delivery of antigen-encoding genes, as well as facilitating and enhancing antigen presentation. Vectors derived from diverse viruses with distinct tropism and gene expression strategies have been developed, and are being evaluated in preclinical and clinical vaccine studies. Virus-based vaccines represent a promising approach for vaccines against infectious and malignant disease.
Collapse
Affiliation(s)
- John M Polo
- Chiron Corporation, Immunology and Infectious Diseases, 4560 Horton St, Emeryville, CA 94608, USA.
| | | |
Collapse
|
49
|
Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M, Hermiston T, Giedlin M, McCormick F, Fattaey A. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1:325-37. [PMID: 12086848 DOI: 10.1016/s1535-6108(02)00060-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have engineered a human adenovirus, ONYX-411, that selectively replicates in human tumor cells, but not normal cells, depending upon the status of their retinoblastoma tumor suppressor protein (pRB) pathway. Early and late viral gene expression as well as DNA replication were significantly reduced in a functional pRB-pathway-dependent manner, resulting in a restricted replication profile similar to that of nonreplicating adenoviruses in normal cells both in vitro and in vivo. In contrast, the viral life cycle and tumor cell killing activity of ONYX-411 was comparable to that of wild-type adenovirus following infection of human tumor cells in vitro as well as after systemic administration in tumor-bearing animals.
Collapse
MESH Headings
- Adenovirus E1A Proteins/genetics
- Adenovirus E1A Proteins/metabolism
- Adenoviruses, Human/genetics
- Adenoviruses, Human/pathogenicity
- Animals
- Antineoplastic Agents
- Cell Cycle/genetics
- Cell Cycle Proteins
- DNA Replication
- DNA, Viral/genetics
- DNA-Binding Proteins
- Defective Viruses
- E2F Transcription Factors
- Fibroblasts/physiology
- Gene Expression Regulation, Viral/genetics
- Genetic Vectors/genetics
- Humans
- Mice
- Mice, Knockout
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Promoter Regions, Genetic
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Survival Rate
- Transcription Factors/genetics
- Transplantation, Heterologous
- Tumor Cells, Cultured/pathology
- Virus Replication/genetics
Collapse
Affiliation(s)
- Leisa Johnson
- Onyx Pharmaceuticals, Richmond, California 94806, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hawkins LK, Hermiston TW. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region. Gene Ther 2001; 8:1132-41. [PMID: 11509943 DOI: 10.1038/sj.gt.3301508] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Accepted: 05/22/2001] [Indexed: 11/08/2022]
Abstract
Genetically modified replication-selective human adenoviruses are currently undergoing testing in the clinical setting as anticancer agents. Coupling the lytic function of these viruses with virus-mediated transgene delivery represents a powerful extension of this treatment. We have designed a unique system for gene delivery from the replicating virus. It takes advantage of the endogenous gene expression control sequences (promoter, splicing, polyadenylation signals) to efficiently and predictably deliver transgenes from the non-essential E3 transcription unit while still maintaining the expression of the remaining E3 genes in the multi-gene transcription unit. In this article, we engineered restriction enzyme sites into the virus genome selectively to delete the ADP gene and replace it with the therapeutic transgenes CD and TNFalpha. We demonstrate that: (1) transgene expression from this region mirrors the substituted ADP gene; (2) the loss of ADP in these viruses results in infected cells with extended viability and protein synthesis when compared with a wild-type Ad5 infected cell; and (3) expression of surrounding E3 genes can be maintained in such a system. The potential advantages of delivering transgenes from the ADP region of the replicating adenovirus are discussed.
Collapse
Affiliation(s)
- L K Hawkins
- Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA
| | | |
Collapse
|