1
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
2
|
Sultana A, Tiash S. Improved DNA delivery using invasive E. coli DH10B in human cells by modified bactofection method. J Control Release 2021; 332:233-244. [PMID: 33561481 DOI: 10.1016/j.jconrel.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/15/2022]
Abstract
E. coli mediated gene delivery faces a major drawback of low efficiency despite of being a safer alternative to viral vectors. This study showed a novel, simple and effective strategy to enhance invasive E. coli DH10B vector's efficiency in human epithelial cells. The bactofection efficiency of invasive E .coli vector was analyzed in nine cell lines. It demonstrated highest (16%) reporter gene (GFP) expression in cervical cells. Methods were employed to further enhance its efficiency by adding transfection reagents (trans-bactofection method) to promote entry into host cells, lysosomotropic reagents for escape from lysosomal degradation or antibiotics to lyse internalized bacteria. Increased bacterial entry, as elucidated from nil to 3% expression in liver cells, was obtained upon complexing bacteria with PULSin. Chloroquine mediated endosomal escape resulted in 7.2 folds increase whereas tetracycline addition to lyse internalized bacteria caused ≈90% of GFP in HeLa. Eventually, the combined effect of these three methods exhibited close to 100% GFP in cervical and remarkable increase of 138 folds in breast cells. This is the first study showing comparative study of vector's gene delivery ability in various epithelial cells of the human body with improving its delivery efficiency. These data demonstrated the potential of developed bactofection method to boost up the efficiency of other bacterial vectors also, which could further be used for effectual therapeutic gene delivery in human cells.
Collapse
Affiliation(s)
- Alviya Sultana
- School of Science, Monash University, Bandar Sunway, Malaysia.
| | - Snigdha Tiash
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
3
|
Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 2018; 128:156-169. [PMID: 29689288 DOI: 10.1016/j.ejpb.2018.04.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
|
4
|
Ozdemir T, Fedorec AJ, Danino T, Barnes CP. Synthetic Biology and Engineered Live Biotherapeutics: Toward Increasing System Complexity. Cell Syst 2018; 7:5-16. [DOI: 10.1016/j.cels.2018.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
5
|
Hao K, Chen XH, Qi XZ, Zhu B, Wang GX, Ling F. Display of GCRV vp7 protein on the surface of Escherichia coli and its immunoprotective effects in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 72:199-209. [PMID: 29102630 DOI: 10.1016/j.fsi.2017.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Infection with Grass carp reovirus (GCRV) is becoming unprecedentedly widespread in grass carp (Ctenopharyngodon idella) aquaculture industry, yet the management of GCRV infection still remains a challenge. Therefore, it is of importance to develop effective means against GCRV. As a delivery system of viral antigens, surface displaying of heterologous proteins on bacteria using anchoring motifs has successfully been implemented in human and veterinary vaccines research. In this study, a novel vaccine (BL21/InpN/vp7) was developed based on surface displaying a major capsid protein (vp7) of GCRV using the anchoring motif of N-terminal unique domain of ice-nucleation protein (InpN) on Escherichia coli BL21 (DE3) vaccine. Then the grass carp were immunized by surface displaying BL21/InpN/vp7 vaccine against GCRV using both intraperitoneal injection and bath immunization and their immune responses were tested. The results revealed that some non-specific immune parameters (acid phosphatase (ACP), alkaline phosphatase (AKP) and total antioxidant capacity (T-AOC)) were strongly increased in grass carp post injection inoculation (vp7 dose ranged from 10 to 20 μg). The specific antibody levels against GCRV and the transcriptional of immune-related genes (TNF-α, IL-1β, MHCI and IgM) were also significantly enhanced in grass carp by injection inoculation (vp7 dose ranged from 5 to 20 μg). On the other hand, only the highest dose of bath vaccination significantly induced the production of specific antibody and up-regulated transcriptions of several immune-related genes (IgM and MHCI) in grass carp. The lower cumulative mortality of grass carp in vaccinated groups after GCRV challenge clearly demonstrated that surface displayed vp7 vaccine could protect fish against GCRV infection. The relative percentage survival (RPS) value in injection vaccinated group (88.89%) was much higher compared to bath group (18.89%), which was in consistent with the production of specific serum antibodies, non-specific immune response and immune related genes expression. To sum up, our results indicated the surface display of heterologous antigenic proteins on E. coli BL21 (DE3) using the anchoring motif of ice-nucleation protein may provide a promising approach to the vaccine development of aquatic animals and suggested its potential to be used as vaccine to fight against GCRV infection.
Collapse
Affiliation(s)
- Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Zhou Qi
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Parker WB, Sorscher EJ. Use of E. coli Purine Nucleoside Phosphorylase in the Treatment of Solid Tumors. Curr Pharm Des 2017; 23:CPD-EPUB-86774. [PMID: 29119917 PMCID: PMC6224313 DOI: 10.2174/1381612823666171109101851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The selective expression of non-human genes in tumor tissue to activate non-toxic compounds (Gene Directed Prodrug Enzyme Therapy, GDEPT) is a novel strategy designed for killing tumor cells in patients with little or no systemic toxicity. Numerous non-human genes have been evaluated, but none have yet been successful in the clinic. METHODS Unlike human purine nucleoside phosphorylase (PNP), E. coli PNP accepts adenine containing nucleosides as substrates, and is therefore able to selectively activate non-toxic purine analogs in tumor tissue. Various in vitro and in vivo assays have been utilized to evaluate E. coli PNP as a potential activating enzyme. RESULTS We and others have demonstrated excellent in vitro and in vivo anti-tumor activity with various GDEPT strategies utilizing E. coli PNP to activate purine nucleoside analogs. A phase I clinical trial utilizing recombinant adenoviral vector for delivery of E. coli PNP to solid tumors followed by systemic administration of fludarabine phosphate (NCT01310179; IND# 14271) has recently been completed. In this trial, significant anti-tumor activity was demonstrated with negligible toxicity related to the therapy. The mechanism of cell kill (inhibition of RNA and protein synthesis) is distinct from all currently used anticancer drugs and all experimental compounds under development. The approach has demonstrated excellent ability to kill neighboring tumor cells that do not express E. coli PNP, is active against non-proliferating and proliferating tumors cells (as well as tumor stem cells, stroma), and is therefore very effective against solid tumors with a low growth fraction. CONCLUSION The unique attributes distinguish this approach from other GDEPT strategies and are precisely those required to mediate significant improvements in antitumor therapy.
Collapse
|
7
|
Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: Hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int J Pharm 2017; 529:178-192. [PMID: 28663087 DOI: 10.1016/j.ijpharm.2017.06.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
|
8
|
Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep 2017; 7:5844. [PMID: 28724898 PMCID: PMC5517531 DOI: 10.1038/s41598-017-06367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we demonstrated production of an active recombinant human N-acetylgalactosamine-6-sulfatase (rhGALNS) enzyme in Escherichia coli as a potential therapeutic alternative for mucopolysaccharidosis IVA. However, most of the rhGALNS produced was present as protein aggregates. Here, several methods were investigated to improve production and activity of rhGALNS. These methods involved the use of physiologically-regulated promoters and alternatives to improve protein folding including global stress responses (osmotic shock), overexpression of native chaperones, and enhancement of cytoplasmic disulfide bond formation. Increase of rhGALNS activity was obtained when a promoter regulated under σs was implemented. Additionally, improvements were observed when osmotic shock was applied. Noteworthy, overexpression of chaperones did not have any effect on rhGALNS activity, suggesting that the effect of osmotic shock was probably due to a general stress response and not to the action of an individual chaperone. Finally, it was observed that high concentrations of sucrose in conjunction with the physiological-regulated promoter proUmod significantly increased the rhGALNS production and activity. Together, these results describe advances in the current knowledge on the production of human recombinant enzymes in a prokaryotic system such as E. coli, and could have a significant impact on the development of enzyme replacement therapies for lysosomal storage diseases.
Collapse
|
9
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
10
|
Nguyen VH, Min JJ. Salmonella-Mediated Cancer Therapy: Roles and Potential. Nucl Med Mol Imaging 2016; 51:118-126. [PMID: 28559936 DOI: 10.1007/s13139-016-0415-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 01/21/2023] Open
Abstract
The use of bacteria for cancer therapy, which was proposed many years ago, was not recognized as a potential therapeutic strategy until recently. Technological advances and updated knowledge have enabled the genetic engineering of bacteria for their safe and effective application in the treatment of cancer. The efficacy of radiotherapy depends mainly on tissue oxygen levels, and low oxygen concentrations in necrotic and hypoxic regions are a common cause of treatment failure. In addition, the distribution of a drug is important for the therapeutic effect of chemotherapy, and the poor vasculature in tumors impairs drug delivery, limiting the efficacy of a drug, especially in necrotic and hypoxic regions. Bacteria-mediated cancer therapy (BMCT) relies on facultative anaerobes that can survive in well or poorly oxygenated regions, and it therefore improves the therapeutic efficacy drug distribution throughout the tumor mass. Since the mid-1990s, the number of published bacterial therapy papers has increased rapidly, with a doubling time of 2.5 years in which the use of Salmonella increased significantly. BMCT is being reevaluated to overcome some of the drawbacks of conventional therapies. This review focuses on Salmonella-mediated cancer therapy as the most widely used type of BMCT.2.
Collapse
Affiliation(s)
- Vu Hong Nguyen
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 5 Hak1 dong, Dong-gu, Gwangju, 501-746 Republic of Korea
| |
Collapse
|
11
|
Abstract
Multidrug resistance (MDR) to pharmaceutical active agents is a common clinical problem in patients suffering from cancer. MDR is often mediated by over expression of trans-membrane xenobiotic transport molecules belonging to the superfamily of ATP-binding cassette (ABC)-transporters. This protein family includes the classical MDR-associated transporter ABCB1 (MDR1/P-gp). Inhibition of ABC-transporters by low molecular weight compounds in cancer patients has been extensively investigated in clinical trials, but the results have been disappointing. Thus, in the last decades alternative experimental therapeutic strategies for overcoming MDR were under extensive investigation. These include gene therapeutic approaches applying antisense-, ribozyme-, RNA interference-, and CRISPR/Cas9-based techniques. Various delivery strategies were used to reverse MDR in different tumor models in vitro and in vivo. Results and conclusions of these gene therapeutic studies will be discussed.
Collapse
Affiliation(s)
- Hermann Lage
- Fachbereich Pathologie, Vivantes Klinikum Neukölln, Rudower Allee 48, 12351, Berlin, Germany.
| |
Collapse
|
12
|
Wong S, Slavcev R. Treating cancer with infection: a review on bacterial cancer therapy. Lett Appl Microbiol 2015; 61:107-12. [DOI: 10.1111/lam.12436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- S. Wong
- School of Pharmacy; University of Waterloo; Waterloo ON Canada
| | - R.A. Slavcev
- School of Pharmacy; University of Waterloo; Waterloo ON Canada
| |
Collapse
|
13
|
Chung TC, Jones CH, Gollakota A, Ahmadi MK, Rane S, Zhang G, Pfeifer BA. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E. Mol Pharm 2015; 12:1691-700. [PMID: 25849744 PMCID: PMC9896019 DOI: 10.1021/acs.molpharmaceut.5b00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Collapse
|
14
|
Jones CH, Chen CK, Chen M, Ravikrishnan A, Zhang H, Gollakota A, Chung T, Cheng C, Pfeifer BA. PEGylated cationic polylactides for hybrid biosynthetic gene delivery. Mol Pharm 2015; 12:846-56. [PMID: 25625426 PMCID: PMC9893229 DOI: 10.1021/mp500683c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic vaccination is predicated on the underlying principle that diseases can be prevented by the controlled introduction of genetic material encoding antigenic proteins from pathogenic organisms to elicit the formation of protective immune responses. Driving this process is the choice of carrier that is responsible for navigating the obstacles associated with gene delivery. In this work, we expand upon a novel class of hybrid biosynthetic gene delivery vectors that are composed of a biomaterial outer coating and a bacterial (Escherichia coli) inner core. Specifically, a series of newly developed biodegradable cationic polylactides (CPLAs) and their PEGylated variants were selected to investigate the role of low polydispersity index (PDI), charge density, and PEGylation upon hybrid vector assembly and gene delivery efficacy. Upon assembly, hybrid vectors mediated increased gene delivery beyond that of the individual bacterial vector in isolation, including assays with increasing medium protein content to highlight shielding properties afforded by the PEG-functionalized CPLA component. Furthermore, after extensive characterization of surface deposition of the polymer, results prompted a new model for describing hybrid vector assembly that includes cellular coating and penetration of the CPLA component. In summary, these results provide new options and insight toward the assembly and application of next-generation hybrid biosynthetic gene delivery vectors.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chih-Kuang Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, ROC
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Hanguang Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Akhila Gollakota
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Taichun Chung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Corresponding Author: Phone: 716-645-1198. Fax: 716-645-3822.
| |
Collapse
|
15
|
Hsieh YT, Chen KC, Cheng CM, Cheng TL, Tao MH, Roffler SR. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy. PLoS One 2015; 10:e0118028. [PMID: 25688562 PMCID: PMC4331512 DOI: 10.1371/journal.pone.0118028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022] Open
Abstract
CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.
Collapse
Affiliation(s)
- Yuan-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Jones CH, Ravikrishnan A, Chen M, Reddinger R, Kamal Ahmadi M, Rane S, Hakansson AP, Pfeifer BA. Hybrid biosynthetic gene therapy vector development and dual engineering capacity. Proc Natl Acad Sci U S A 2014; 111:12360-5. [PMID: 25114239 PMCID: PMC4151754 DOI: 10.1073/pnas.1411355111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.
Collapse
Affiliation(s)
| | | | - Mingfu Chen
- Departments of Chemical and Biological Engineering and
| | | | | | - Snehal Rane
- Departments of Chemical and Biological Engineering and
| | - Anders P Hakansson
- Microbiology and Immunology, and The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200
| | | |
Collapse
|
17
|
Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. FISH & SHELLFISH IMMUNOLOGY 2014; 39:8-16. [PMID: 24746937 DOI: 10.1016/j.fsi.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/15/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications.
Collapse
Affiliation(s)
- Jimei Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jinmei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
18
|
Chen Q, Lee CW, Sim EUH, Narayanan K. Induction of Protein Expression Within Escherichia coli Vector for Entry into Mammalian Cells. Hum Gene Ther Methods 2014; 25:40-7. [DOI: 10.1089/hgtb.2012.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qingwen Chen
- School of Science, Monash University, Bandar Sunway 46150, Malaysia
| | - Choon-Weng Lee
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak 94300, Malaysia
| | - Kumaran Narayanan
- School of Science, Monash University, Bandar Sunway 46150, Malaysia
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
19
|
Koga H, Izawa I, Araki N, Saya H, Mimori T. Observation of the Intracellular Behavior of RecombinantYersinia pseudotuberculosisInvasin Protein. Microbiol Immunol 2013; 49:297-302. [PMID: 15840954 DOI: 10.1111/j.1348-0421.2005.tb03729.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we observed the intracellular behavior of recombinant invasin, a 103-kDa outer membrane protein of Yersinia pseudotuberculosis. To mimic the in vivo behavior of bacterial invasin, a polyvalent form of invasin was generated by incubation of biotinylated GST-fused invasin C-terminal portion protein (GST-INVS) with avidin. Several experiments confirmed that the recombinant invasin could consistently reproduce the invasin-mediated entry to mammalian epithelial cells. We analyzed the molecular kinetics of polyvalent INVS by western blotting, (125) I-uptake, and immunofluorescent microscopy. The internalized polyvalent INVS was rapidly translocated to the RIPA-insoluble (polymerized-actin enriched) fraction and formed cytoplasmic vesicles, while monovalent invasin did not show such kinetics. From these observations, we concluded that our bacterial-free system is able to analyze the action of invasin for Yersinia pseudotuberculosis entry.
Collapse
Affiliation(s)
- Hisashi Koga
- Department of Tumor Genetics and Biology, Graduate School of Medical Science Kumamoto University, Kumamoto, Japan.
| | | | | | | | | |
Collapse
|
20
|
Jones CH, Rane S, Patt E, Ravikrishnan A, Chen CK, Cheng C, Pfeifer BA. Polymyxin B treatment improves bactofection efficacy and reduces cytotoxicity. Mol Pharm 2013; 10:4301-8. [PMID: 24093973 PMCID: PMC5232419 DOI: 10.1021/mp4003927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improvements to bacterial vectors have resulted in nonviral gene therapy vehicles that are easily prepared and can achieve high levels of transfection efficacy. However, these vectors are plagued by potential cytotoxicity and immunogenicity, prompting means of attenuation to reduce unwanted biological outcomes while maintaining transfection efficiency. In this study, listeriolysin O (LLO) producing Escherichia coli BL21(DE3) strains were pretreated with polymyxin B (PLB), a pore-forming antibiotic, and tested as a delivery vector for gene transfer to a murine RAW264.7 macrophage cell line using a 96-well high-throughput assay. PLB treatment resulted in statistically significant higher levels of gene delivery and lower cytotoxicity. The results suggest a fine balance between bacterial cellular damage, heightened gene and protein release, and increased mammalian cell gene delivery. Overall, the approach presented provides a simple and effective way to enhance bacterial gene delivery while simultaneously reducing unwanted outcomes as a function of using a biological vector.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Snehal Rane
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Emily Patt
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Chih-Kaung Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
21
|
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120-31. [DOI: 10.1016/j.jconrel.2013.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
22
|
Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ. Patterning bacterial communities on epithelial cells. PLoS One 2013; 8:e67165. [PMID: 23785519 PMCID: PMC3681762 DOI: 10.1371/journal.pone.0067165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022] Open
Abstract
Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.
Collapse
Affiliation(s)
- Mohammed Dwidar
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Brendan M. Leung
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Toshiyuki Yaguchi
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Nagoya Institute of Technology, Biomechanics Laboratory, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Shuichi Takayama
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department Biomedical Engineering and Macromolecular Science & Engineering Program, University of Michigan, Ann Arbor, United States of America
| | - Robert J. Mitchell
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
23
|
Kochut A, Dersch P. Bacterial invasion factors: tools for crossing biological barriers and drug delivery? Eur J Pharm Biopharm 2012. [PMID: 23207324 DOI: 10.1016/j.ejpb.2012.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral route is the preferential route of drug delivery in humans. However, effective delivery through the gastrointestinal tract is often hampered by the low permeability of the intestinal epithelium. One possibility to overcome this problem is the encapsulation of drugs inside nanoparticulate systems, containing targeting moieties with cell invasive properties. The bioinvasive features of the delivery system could be provided by the attachment of bacterial invasion factors, which promote efficient uptake into host cells and mediate rapid transcytosis of the pathogen through the intestinal epithelium. This review gives an overview of bacterial invasion systems. The molecular structure and function of suitable bacterial invasins, their relative values as targeting agents and possible pitfalls of their use are described. The potential of bioinvasive drug delivery systems is mainly presented on the basis of the well-characterized Yersinia invasin protein, which enters M cells to gain access to subepithelial layers of the gastrointestinal tract, but alternative approaches and future prospects for oral drug delivery are also discussed.
Collapse
Affiliation(s)
- Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
24
|
Kittleson JT, Wu GC, Anderson JC. Successes and failures in modular genetic engineering. Curr Opin Chem Biol 2012; 16:329-36. [PMID: 22818777 DOI: 10.1016/j.cbpa.2012.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/15/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022]
Abstract
Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.
Collapse
|
25
|
Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes. Appl Environ Microbiol 2012; 78:5864-71. [PMID: 22706054 DOI: 10.1128/aem.01227-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The probiotic lactic acid bacterium Lactobacillus plantarum is a potential delivery vehicle for mucosal vaccines because of its generally regarded as safe (GRAS) status and ability to persist at the mucosal surfaces of the human intestine. However, the inherent immunogenicity of vaccine antigens is in many cases insufficient to elicit an efficient immune response, implying that additional adjuvants are needed to enhance the antigen immunogenicity. The goal of the present study was to increase the proinflammatory properties of L. plantarum by expressing a long (D1 to D5 [D1-D5]) and a short (D4-D5) version of the extracellular domain of invasin from the human pathogen Yersinia pseudotuberculosis. To display these proteins on the bacterial surface, four different N-terminal anchoring motifs from L. plantarum were used, comprising two different lipoprotein anchors, a transmembrane signal peptide anchor, and a LysM-type anchor. All these anchors mediated surface display of invasin, and several of the engineered strains were potent activators of NF-κB when interacting with monocytes in cell culture. The most distinct NF-κB responses were obtained with constructs in which the complete invasin extracellular domain was fused to a lipoanchor. The proinflammatory L. plantarum strains constructed here represent promising mucosal delivery vehicles for vaccine antigens.
Collapse
|
26
|
Gupta VK, Radhakrishnan G, Harms J, Splitter G. Invasive Escherichia coli vaccines expressing Brucella melitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B. melitensis. Vaccine 2012; 30:4017-22. [PMID: 22546330 DOI: 10.1016/j.vaccine.2012.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022]
Abstract
Because of the serious economic and medical consequences of brucellosis, efforts are to prevent infection of domestic animals through vaccines. Many disadvantages are associated with the current Brucella melitensis Rev.1 vaccine prompting development of alternative vaccines and delivery. Escherichia coli (DH5α) was engineered to express a plasmid containing the inv gene from Yersinia pseudotuberculosis and the hly gene from Listeria monocytogenes. These recombinant invasive E. coli expressing B. melitensis outer membrane proteins (Omp31 or 16) or the periplasmic protein BP26 were evaluated for protection of mice against virulent B. melitensis. Importantly, these invasive E. coli vaccines induced significant protection against B. melitensis challenged mice. Invasive E. coli may be an ideal vaccine platform with natural adjuvant properties for application against B. melitensis since the E. coli delivery system is non-pathogenic and can deliver antigens to antigen-presenting cells promoting cellular immune responses.
Collapse
Affiliation(s)
- V K Gupta
- Central Institute for Research On Goats, Makhdoom, PO Farah, Mathura 281 122, India.
| | | | | | | |
Collapse
|
27
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
28
|
Elliott N, Lee T, You L, Yuan F. Proliferation behavior of E. coli in a three-dimensional in vitro tumor model. Integr Biol (Camb) 2011; 3:696-705. [PMID: 21556399 DOI: 10.1039/c0ib00137f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in genetic engineering of non-pathogenic Escherichia coli (E. coli) have made this organism an attractive candidate for gene delivery vehicle. However, proliferation and transport behaviors of E. coli in three-dimensional (3D) tumor environment are still unclear. To this end, we developed a novel microfluidics-based tumor model that permitted direct in situ visualization of E. coli in a 3D environment with densely packed tumor cells (B16.F10 or EMT6). The E. coli was engineered to co-express two proteins invasin and mCherry (inv(+)) so that they had the ability to enter mammalian cells and could be visualized via fluorescence microscopy. E. coli expressing mCherry alone (inv(-)) was used as the control counterpart. The inv(-) bacteria proliferated to a higher extent than inv(+) bacteria in both the 3D tumor model and a 2D monolayer culture model. Meanwhile, the proliferation appeared to be tumor cell type dependent since bacteria did not proliferate as well in the EMT6 model compared to the B16.F10 model. These differences in bacterial proliferation were likely to be caused by inhibitors secreted by tumor cells, as suggested by our data from the bacterial-tumor cell monolayer co-culture experiment. The bacterial proliferation provided a driving force for E. coli spreading in the 3D interstitial space of tumors. These findings are useful for researchers to develop novel strategies for improvement of bacteria-mediated oncolysis or gene delivery in cancer treatment.
Collapse
Affiliation(s)
- Nelita Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
29
|
Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun 2011; 79:2608-18. [PMID: 21536797 DOI: 10.1128/iai.01219-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The use of a recombinant bacterial vector vaccine is an attractive vaccination strategy to induce an immune response to a carried protective antigen. The superiorities of live bacterial vectors include mimicry of a natural infection, intrinsic adjuvant properties, and the potential for administration by mucosal routes. Escherichia coli is a simple and efficient vector system for production of exogenous proteins. In addition, many strains are nonpathogenic and avirulent, making it a good candidate for use in recombinant vaccine design. In this study, we screened 23 different iron-regulated promoters in an E. coli BL21(DE3) vector and found one, P(viuB), with characteristics suitable for our use. We fused P(viuB) with lysis gene E, establishing an in vivo inducible lysis circuit. The resulting in vivo lysis circuit was introduced into a strain also carrying an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible P(T7)-controlled protein synthesis circuit, forming a novel E. coli-based protein delivery system. The recombinant E. coli produced a large amount of antigen in vitro and could deliver the antigen into zebrafish after vaccination via injection. The strain subsequently lysed in response to the iron-limiting signal in vivo, implementing antigen release and biological containment. The gapA gene, encoding the protective antigen GAPDH (glyceraldehyde-3-phosphate dehydrogenase) from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the E. coli-based protein delivery system, and the resultant recombinant vector vaccine was evaluated in turbot (Scophtalmus maximus). Over 80% of the vaccinated fish survived challenge with A. hydrophila LSA34, suggesting that the E. coli-based antigen delivery system has great potential in bacterial vector vaccine applications.
Collapse
|
30
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Research Spotlight: Delivery of therapeutic RNA molecules to cancer cells by bacteria. Ther Deliv 2011; 2:441-9. [DOI: 10.4155/tde.11.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Delivery of RNA-based therapeutics, for example RNA interference (RNAi) effectors, to target cells is one of the major obstacles for the development of RNA-based therapies. Since it has been known for a long time that bacteria can mediate tumor shrinkage, it was obvious to use nonpathogenic bacteria to produce and deliver therapeutic RNA molecules into target cells to induce RNAi. During the last years, two bacteria-based concepts were developed for this strategy, transkingdom RNAi (tkRNAi) and bacteria-mediated RNAi (bmRNAi). The first concept, tkRNAi, delivers RNAi effectors into target cells by invasive bacteria, which themselves produce therapeutic shRNAs. The bmRNAi technology utilizes invasive bacteria conveying RNAi effector-encoding DNA constructs that will act as a matrix for transcription of these sequences in the target cell by the host cell’s transcription machinery.
Collapse
|
32
|
Chang CH, Cheng WJ, Chen SY, Kao MC, Chiang CJ, Chao YP. Engineering of Escherichia coli for targeted delivery of transgenes to HER2/neu-positive tumor cells. Biotechnol Bioeng 2011; 108:1662-72. [DOI: 10.1002/bit.23095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 01/24/2023]
|
33
|
Direct injection of functional single-domain antibodies from E. coli into human cells. PLoS One 2010; 5:e15227. [PMID: 21170340 PMCID: PMC2999559 DOI: 10.1371/journal.pone.0015227] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/01/2010] [Indexed: 12/31/2022] Open
Abstract
Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 105–106 molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes.
Collapse
|
34
|
Kodama T, Aoi A, Watanabe Y, Horie S, Kodama M, Li L, Chen R, Teramoto N, Morikawa H, Mori S, Fukumoto M. Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1196-1205. [PMID: 20620706 DOI: 10.1016/j.ultrasmedbio.2010.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 04/21/2010] [Accepted: 04/28/2010] [Indexed: 05/29/2023]
Abstract
Recent studies have revealed that ultrasound contrast agents with low-intensity ultrasound, namely, sonoporation, can noninvasively deliver therapeutic molecules into target sites. However, the efficiency of molecular delivery is relatively low and the methodology requires optimization. Here, we investigated three types of nano/microbubbles (NMBs)-human albumin shell bubbles, lipid bubbles and acoustic liposomes-to evaluate the efficiency of gene expression in skeletal muscle as a function of their physicochemical properties and the number of bubbles in solution. We found that acoustic liposomes showed the highest transfection and gene expression efficiency among the three types of NMBs under ultrasound-optimized conditions. Liposome transfection efficiency increased with bubble volume concentration; however, neither bubble volume concentration nor their physicochemical properties were related to the tissue damage detected in the skeletal muscle, which was primarily caused by needle injection.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Z, Fallon J, Mandeli J, Wetmur J, Woo SLC. The oncopathic potency of Clostridium perfringens is independent of its alpha-toxin gene. Hum Gene Ther 2010; 20:751-8. [PMID: 19298132 DOI: 10.1089/hum.2008.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia in solid tumors is a major obstacle in conventional treatment because of inefficient delivery of therapeutic agents to the lesions, but offers the potential for anaerobic bacterial colonization that can lead to tumor destruction. We have previously reported a recombinant Clostridium perfringens (Cp) strain constructed by deletion of the superoxide dismutase (sod) gene and insertion of the Panton-Valentine leukocidin (PVL) gene, Cp/sod(-)/PVL, which showed elevated oxygen sensitivity, tumor selectivity, and oncopathic potency in an orthotopic model of pancreatic cancer in immune-competent and syngeneic mice, and that led to substantial prolongation of animal survival. A major limitation to Cp/sod(-)/PVL in clinical applications is that it expresses phospholipase C (plc), the alpha-toxin and the major virulence determinant in Cp that is causative in the development of gas gangrene. In this study, the plc gene in Cp/sod(-)/PVL was knocked out to create Cp/plc(-)/sod(-)/PVL, which was shown to be incapable of inducing gas gangrene in mice. Intravenous injection of Cp/plc(-)/sod(-)/PVL spores led to a significant survival advantage in tumor-bearing mice with the same efficacy as Cp/sod(-)/PVL, indicating that the oncopathic potency of Cp is independent of a functional plc gene. The treatment also did not lead to an attenuated immune response to a subsequent pathogen challenge, indicating that a systemic immune-suppressive effect in the host is absent. Consequently, Cp/plc(-)/sod(-)/PVL is a novel oncopathic bacterial agent for the effective treatment of pancreatic cancer and other poorly vascularized tumors, with a substantially enhanced safety profile, which is essential for the development of translational studies in the future.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
36
|
Panomket P, Splitter G, Harms J, Sermswan RW, Chedchotisakd P, Wongratanacheewin S. TBK1 does not play a role in the control of in vitro Burkholderia pseudomallei growth. Trans R Soc Trop Med Hyg 2009; 102 Suppl 1:S95-100. [PMID: 19121697 DOI: 10.1016/s0035-9203(08)70023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is an important intracellular pathogen in tropical regions. TANK-binding kinase (TBK1), part of the pathway that induces transcription of Type I interferon genes, has been demonstrated to play an important role in controlling intracellular bacterial infections. To investigate the role of tbk1 in protecting against B. pseudomallei we developed tbk1-deficient cell lines by using shRNA for transient knockdown of the tbk1 gene in HeLa and RAW 264.7 cells. In tbk1-deficient RAW cells, the replication of invasive and non-invasive Escherichia coli was significantly increased at 48 h after infection compared with wild-type cells. The result was confirmed using Brucella melitensis in tbk1-deficient HeLa cells, which demonstrated a >1.5-2.0 log higher bacterial count at 6-48 h after infection compared to wild-type cells. By contrast, the growth of Burkholderia pseudomallei expressing either typical (A2) or atypical (G207) lipopolysaccharide was not significantly different between the tbk1-deficient and control cells. These results suggest that the tbk1 gene and its activation may be able to control invasive E. coli, non-invasive E. coli and B. melitensis growth but may not be able to control B. pseudomallei infection. The role of the tbk1 gene in proinflammatory cytokine induction and bacterial intracellular infection needs further investigation to identify mechanistic differences among the life cycles of various intracellular bacteria.
Collapse
Affiliation(s)
- Pawana Panomket
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
37
|
Harms JS, Durward MA, Magnani DM, Splitter GA. Evaluation of recombinant invasive, non-pathogenic Eschericia coli as a vaccine vector against the intracellular pathogen, Brucella. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:1. [PMID: 19126207 PMCID: PMC2633335 DOI: 10.1186/1476-8518-7-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/06/2009] [Indexed: 01/18/2023]
Abstract
Background There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. Methods E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. Results The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). Conclusion Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
Collapse
Affiliation(s)
- Jerome S Harms
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
38
|
Peerlinck I, Amini-Nik S, Phillips RK, Iggo R, Lemoine NR, Tejpar S, Vassaux G. Therapeutic potential of replication-selective oncolytic adenoviruses on cells from familial and sporadic desmoid tumors. Clin Cancer Res 2008; 14:6187-92. [PMID: 18829497 DOI: 10.1158/1078-0432.ccr-08-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Constitutive activation of the Wnt signaling pathway is a hallmark of many cancers and has been associated with familial and sporadic desmoid tumors. The aim of the present study is to assess the therapeutic potential of oncolytic adenoviruses selectively replicating in cells in which the Wnt signaling pathway is active on primary cells from desmoid tumors. EXPERIMENTAL DESIGN Primary cells extracted from familial (n = 3) or sporadic (n = 3) desmoid tumors were cultured short term. Cancer cell survival and viral replication were measured in vitro upon infection with two different oncolytic adenoviruses targeting a constitutive activation of the Wnt signaling pathway. Adenoviral infectivity was also assessed. RESULTS Although cells extracted from one sporadic desmoid tumor responded very well to the oncolytic action of the adenoviruses (<20% of viable cells upon infection at a multiplicity of infection of 10), cells from two tumor samples were totally resistant to the viral action. Cells from the remaining samples showed intermediate sensitivity to the oncolytic viruses. These effects were correlated to the level of infectivity of the cells. Finally, in responder cells, evidences of viral replication was observed. CONCLUSIONS Our experimental data suggest that the response of desmoid tumor cells to oncolytic adenovirus is neither correlated to the type of mutation activating the Wnt signaling pathway nor to the familial or sporadic nature of the tumor. In addition, they highlight the variability of infectivity of individual tumors and predict a great variability in the response to oncolytic adenoviruses.
Collapse
Affiliation(s)
- Inge Peerlinck
- Institute of Cancer and the CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Li Z, Fallon J, Mandeli J, Wetmur J, Woo SLC. A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer. J Natl Cancer Inst 2008; 100:1389-400. [PMID: 18812551 DOI: 10.1093/jnci/djn308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A major obstacle in treatment of solid tumors is the inefficient delivery of therapeutic agents to the hypoxic cores. Hypoxia offers the potential for anaerobic bacteria colonization and tumor destruction by the bacteria, and dormant spores of wild-type Clostridium perfringens (Cp) germinate and proliferate within the hypoxic cores of pancreatic tumors in mice. However, the oncopathic effects of Cp were limited by host inflammatory responses and by Cp's residual tolerance to oxygen, which caused toxic effects in animals. METHODS Recombinant Cp strains in which superoxide dismutase, a major oxygen tolerance gene, was deleted (Cp/sod(-)) were constructed to enhance its selective growth in tumors. In addition, Panton-Valentine Leukocidin (PVL), an inflammation-suppressing gene from Staphylococcus aureus, was inserted into the Cp/sod(-) genome to enhance its oncopathic potency. The ability of the recombinant Cp strains to kill tumors was investigated in C57/BL6 mice bearing murine PANC02 tumors. Systemic and organ toxic effects were assessed by monitoring serum chemistries and histopathological examination. Statistical tests were two-sided. RESULTS Cp/sod(-) showed reduced toxic effects compared with wild-type Cp when spores were administered intravenously into PANC02 tumor-bearing mice. Mice treated with Cp/sod(-)/PVL spores demonstrated a reduction in neutrophils and macrophages in tumors, logarithmically elevated growth of intratumoral bacteria, enhanced tumor necrosis, and substantially prolonged survival without apparent systemic and organ toxic effects, compared with mice treated with both wild-type Cp and Cp/sod(-) spores. Accordingly, 47% of Cp/sod(-)/PVL-treated mice (n = 15) achieved tumor-free survival for over 120 days, whereas all mice treated with Cp/sod(-) or phosphate-buffered saline (n = 10 per group) died within 50 days. The median survival for Cp/sod(-)/PVL-treated mice was 77 days (95% confidence interval [CI] = 45 to 120 days) and for Cp/sod(-)-treated mice was 30 days (95% CI = 23 to 36 days; P < .001). CONCLUSIONS Cp/sod(-)/PVL provides a prototype for a novel class of oncopathic microbes that may have potential for the safe and effective treatment of pancreatic cancer and other poorly vascularized tumors.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1496, New York, NY 10029-6574, USA
| | | | | | | | | |
Collapse
|
40
|
A high-throughput comparison of recombinant gene expression parameters for E. coli-mediated gene transfer to P388D1 macrophage cells. J Biotechnol 2008; 137:59-64. [PMID: 18694790 DOI: 10.1016/j.jbiotec.2008.07.1815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/20/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022]
Abstract
Escherichia coli strain BL21(DE3) was tested as a delivery vector for gene transfer to a murine P388D1 macrophage cell line using a 96-well high-throughput assay. Five recombinant strains of E. coli were compared to identify the effect recombinant listeriolysin O (LLO) and associated gene expression parameters had on final delivery of a luciferase reporter gene. Listeriolysin O, native to Listeria monocytogenes and used here in an effort to improve final gene delivery, was expressed from plasmid and chromosomal locations under the control of constitutive Tet or inducible T7 promoters. The E. coli vectors delivered the luciferase reporter gene to the P388D1 line with success assessed by recording luciferase luminescence activity within the macrophage cells. The assay allowed rapid analysis and evaluation of each E. coli strain tested with strain BL21(DE3) harboring a chromosomal copy of the T7-driven LLO gene showing the greatest relative measure of gene delivery. Strains were separately assayed for LLO activity and exhibited a trend of maximum gene delivery between the lowest and highest recorded LLO activities.
Collapse
|
41
|
Fu W, Lan H, Liang S, Gao T, Ren D. Suicide gene/prodrug therapy using salmonella-mediated delivery of Escherichia coli purine nucleoside phosphorylase gene and 6-methoxypurine 2'-deoxyriboside in murine mammary carcinoma 4T1 model. Cancer Sci 2008; 99:1172-9. [PMID: 18429958 PMCID: PMC11158249 DOI: 10.1111/j.1349-7006.2008.00808.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/18/2008] [Accepted: 02/20/2008] [Indexed: 11/26/2022] Open
Abstract
Attenuated salmonella have been reported to be capable of both selectively growing in tumors and expressing exogenous genes for tumor-targeted therapy. As 6-methoxypurine 2'-deoxyriboside (MoPdR) is similar to 6-methylpurine 2'-deoxyriboside in structure, we aimed to evaluate the antitumoral effect of the Escherichia coli purine nucleoside phosphorylase (ePNP) gene, using an attenuated salmonella-mediated delivery system, in combination with MoPdR. A novel mutant serovar Typhimurium (SC36) was used to carry the pEGFP-C1-ePNP vector that contains an enhanced green fluorescent protein and an ePNP gene under the control of the cytomegalovirus promoter. The function of the ePNP expression vector was confirmed in vitro using the enzymic conversion of MoPdR into methoxypurine. We also observed a high bystander effect induced by the ePNP/MoPdR system with a very low proportion (1%) of ePNP-positive cells and 5 microg/mL MoPdR, although the growth of parental cells was affected appreciably by MoPdR. The killing effect and increased apoptosis induced by SC36 carrying the ePNP expression vector (SC/ePNP) were detected by cytotoxicity assay and propidium iodide staining flow cytometry analysis, in combination with MoPdR. SC/ePNP was given orally to mice bearing mammary carcinomas, and its antitumor effect was evaluated. SC/ePNP plus MoPdR significantly inhibited tumor growth by approximately 86.6-88.7% and prolonged the survival of tumor-hosting mice. Our data support the view that MoPdR combined with the ePNP gene could be used in gene-directed enzyme prodrug therapy. Attenuated salmonella could be a promising strategy to improve ePNP/MoPdR bystander killing due to its preferential accumulation and anticancer activity in tumors.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Blotting, Western
- Bystander Effect
- Caspase 3/metabolism
- Cell Proliferation
- Combined Modality Therapy
- Escherichia coli/enzymology
- Female
- Genes, Transgenic, Suicide
- Genetic Therapy
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Humans
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prodrugs/therapeutic use
- Promoter Regions, Genetic
- Purine Nucleosides/therapeutic use
- Purine-Nucleoside Phosphorylase/genetics
- Salmonella/genetics
- Transcription, Genetic
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Fu
- The State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
42
|
Stritzker J, Pilgrim S, Szalay AA, Goebel W. Prodrug converting enzyme gene delivery by L. monocytogenes. BMC Cancer 2008; 8:94. [PMID: 18402662 PMCID: PMC2329648 DOI: 10.1186/1471-2407-8-94] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Listeria monocytogenes is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that L. monocytogenes is able to colonize and replicate within solid tumors after local or even systemic injection. Methods Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by L. monocytogenes. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria. Results The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although L. monocytogenes-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively PCMV-promoter with the melanoma specific P4xTETP-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies. Conclusion These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.
Collapse
Affiliation(s)
- Jochen Stritzker
- Biocenter (Microbiology), University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
43
|
Abstract
Monitoring p53 transcriptional activity to identify genotoxic damages induced by drugs has been proposed and validated in vitro. However, this methodology is by design limited to the cell line tested. In this study, we have fully validated a luciferase-based p53-reporter system in vitro and in vivo. We generated a mouse transgenic line to monitor non-invasively p53 activation in response to chemically induced DNA damage. Doxorubicin was used as a drug of known toxicity to validate our model. Reporter gene expression was measured using bioluminescence imaging. In females, a weak p53 luciferase activity driven by a p53-responsive promoter was detectable in the oral cavity region after doxorubicin treatment. In males, the signal increased in the lower abdominal region. Imaging of various organs revealed that the luciferase activity was mainly generated from the testes. Immunohistology demonstrated that the cells in the seminiferous tubules were damaged by the drug and confirmed that they were luciferase and p53 positive. Therefore, these transgenic mice could provide a powerful tool to predict, map and characterize at the organ and cellular levels the toxicity of compounds and help to develop new therapeutic agents in humans.
Collapse
Affiliation(s)
- Arnaud Briat
- Centre for Molecular Oncology, Queen Mary's School of Medicine and Dentistry, Charterhouse Square London EC1M 6BQ, UK.
| | | |
Collapse
|
44
|
Brun P, Zumbo A, Castagliuolo I, Delogu G, Manfrin F, Sali M, Fadda G, Grillot-Courvalin C, Palù G, Manganelli R. Intranasal delivery of DNA encoding antigens of Mycobacterium tuberculosis by non-pathogenic invasive Escherichia coli. Vaccine 2008; 26:1934-41. [DOI: 10.1016/j.vaccine.2008.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/17/2008] [Accepted: 02/07/2008] [Indexed: 02/06/2023]
|
45
|
Larsen MDB, Griesenbach U, Goussard S, Gruenert DC, Geddes DM, Scheule RK, Cheng SH, Courvalin P, Grillot-Courvalin C, Alton EWFW. Bactofection of lung epithelial cells in vitro and in vivo using a genetically modified Escherichia coli. Gene Ther 2008; 15:434-42. [PMID: 18317498 PMCID: PMC3725396 DOI: 10.1038/sj.gt.3303090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/25/2007] [Accepted: 11/26/2007] [Indexed: 11/09/2022]
Abstract
Bacteria-mediated gene transfer ('bactofection') has emerged as an alternative approach for genetic vaccination and gene therapy. Here, we assessed bactofection of airway epithelial cells in vitro and in vivo using an attenuated Escherichia coli genetically engineered to invade non-phagocytic cells. Invasive E. coli expressing green fluorescent protein (GFP) under the control of a prokaryotic promoter was efficiently taken up into the cytoplasm of cystic fibrosis tracheal epithelial (CFTE29o-) cells and led to dose-related reporter gene expression. In vivo experiments showed that following nasal instillation the vast majority of GFP-positive bacteria pooled in the alveoli. Further, bactofection was assessed in vivo. Mice receiving 5 x 10(8) E. coli carrying pCIKLux, in which luciferase (lux) expression is under control of the eukaryotic cytomegalovirus (CMV) promoter, showed a significant increase (P<0.01) in lux activity in lung homogenates compared to untransfected mice. Surprisingly, similar level of lux activity was observed for the non-invasive control strain indicating that the eukaryotic CMV promoter might be active in E. coli. Insertion of prokaryotic transcription termination sequences into pCIKLux significantly reduced prokaryotic expression from the CMV promoter allowing bactofection to be detected in vitro and in vivo. However, bacteria-mediated gene transfer leads to a significantly lower lux expression than cationic lipid GL67-mediated gene transfer. In conclusion, although proof-of-principle for lung bactofection has been demonstrated, levels were low and further modification to the bacterial vector, vector administration and the plasmids will be required.
Collapse
Affiliation(s)
- MDB Larsen
- Department of Gene Therapy, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- UK Cystic Fibrosis Gene Therapy Consortium, London, UK
| | - U Griesenbach
- Department of Gene Therapy, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- UK Cystic Fibrosis Gene Therapy Consortium, London, UK
| | - S Goussard
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France
| | - DC Gruenert
- Department of Laboratory Medicine, California Pacific Medical Center Research Institute, University of California, San Francisco, CA, USA
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - DM Geddes
- Department of Gene Therapy, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - RK Scheule
- Genzyme Corporation, Framingham, MA, USA
| | - SH Cheng
- Genzyme Corporation, Framingham, MA, USA
| | - P Courvalin
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France
| | | | - EWFW Alton
- Department of Gene Therapy, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- UK Cystic Fibrosis Gene Therapy Consortium, London, UK
| |
Collapse
|
46
|
Martinico SCM, Jezzard S, Sturt NJH, Michils G, Tejpar S, Phillips RK, Vassaux G. Assessment of endostatin gene therapy for familial adenomatous polyposis-related desmoid tumors. Cancer Res 2007; 66:8233-40. [PMID: 16912203 DOI: 10.1158/0008-5472.can-06-1209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of the Wnt signaling pathway is a hallmark of many cancers, including familial adenomatous polyposis (FAP)-related desmoid tumors. Endostatin is a well-known antiangiogenic protein that has been described recently as a potential inhibitor of this signaling pathway. Here, we show that endostatin directly induces apoptosis and inhibits the Wnt signaling pathway in colorectal cancer cell lines bearing mutations on the adenomatous polyposis coli (APC) gene as a model of FAP-related malignant cells. We then explore the relationship between apoptosis and inhibition of this pathway and show that they are not correlated. These results seem to contradict a well-recognized study, showing that reintroduction of the APC cDNA in APC-deficient cells leads to apoptosis. To reconcile our conclusions with the literature, we further show that a truncated fragment of APC capable of inhibiting the Wnt signaling pathway in SW480 cells is incapable of inducing apoptosis in these cells, confirming that APC-mediated apoptosis is uncoupled to the inhibition of the Wnt signaling pathway. Finally, we show that endostatin directly induces cell death on primary FAP-related desmoid tumor cells in culture. This phenomenon is also independent of the inhibition of the Wnt signaling pathway. Considering the current lack of effective treatment against desmoid tumors, we advocate that endostatin gene therapy represents an attractive new therapeutic approach for this disease.
Collapse
Affiliation(s)
- Sandra C M Martinico
- Institute of Cancer and Cancer Research UK Clinical Centre, Barts and The London Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Hedley D, Ogilvie L, Springer C. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nat Rev Cancer 2007; 7:870-9. [PMID: 17943135 DOI: 10.1038/nrc2247] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) aims to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending.
Collapse
Affiliation(s)
- Douglas Hedley
- Institute of Cancer Research Haddow Laboratories, 15, Cotswold Road, Sutton, Surrey, UK
| | | | | |
Collapse
|
48
|
Cacciapuoti G, Gorassini S, Mazzeo MF, Siciliano RA, Carbone V, Zappia V, Porcelli M. Biochemical and structural characterization of mammalian-like purine nucleoside phosphorylase from the Archaeon Pyrococcus furiosus. FEBS J 2007; 274:2482-95. [PMID: 17419725 DOI: 10.1111/j.1742-4658.2007.05784.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report here the characterization of the first mammalian-like purine nucleoside phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus (PfPNP). The gene PF0853 encoding PfPNP was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. PfPNP is a homohexamer of 180 kDa which shows a much higher similarity with 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) than with purine nucleoside phosphorylase (PNP) family members. Like human PNP, PfPNP shows an absolute specificity for inosine and guanosine. PfPNP shares 50% identity with MTAP from P. furiosus (PfMTAP). The alignment of the protein sequences of PfPNP and PfMTAP indicates that only four residue changes are able to switch the specificity of PfPNP from a 6-oxo to a 6-amino purine nucleoside phosphorylase still maintaining the same overall active site organization. PfPNP is highly thermophilic with an optimum temperature of 120 degrees C and is characterized by extreme thermodynamic stability (T(m), 110 degrees C that increases to 120 degrees C in the presence of 100 mm phosphate), kinetic stability (100% residual activity after 4 h incubation at 100 degrees C), and remarkable SDS-resistance. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. By integrating biochemical methodologies with mass spectrometry we assigned three pairs of intrasubunit disulfide bridges that play a role in the stability of the enzyme against thermal inactivation. The characterization of the thermal properties of the C254S/C256S mutant suggests that the CXC motif in the C-terminal region may also account for the extreme enzyme thermostability.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Università di Napoli, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
50
|
Loessner H, Endmann A, Rohde M, Curtiss R, Weiss S. Differential effect of auxotrophies on the release of macromolecules by Salmonella enterica vaccine strains. FEMS Microbiol Lett 2006; 265:81-8. [PMID: 17034415 DOI: 10.1111/j.1574-6968.2006.00470.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Attenuated Salmonella enterica strains have been widely used as live carriers for vaccines and therapeutic molecules. Appropriate attenuation has been introduced into such bacteria for safety reasons and the improvement of strain properties. Here, we compared two strains that were rendered auxotroph for diaminopimelic acid or thymidine monophosphate precursors by deletion of the genes asd or thyA, respectively. Upon removal of the complementing compound from bacterial cultures, both strains quickly lose their property to form colonies. However, while the Deltaasd bacteria lysed almost immediately under such conditions, DeltathyA bacteria remained physically intact during the observation period. As a consequence, the Deltaasd bacteria released their intracellular content such as proteins or plasmids into the supernatant. In contrast, no intracellular component, either proteins or plasmids, could be recovered from the supernatants of DeltathyA bacteria upon depletion of thymidine. Thus, the release of macromolecules from the bacterial carrier occurs as a consequence of appropriate lethal attenuation. This might substitute for sophisticated secretion systems.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|