1
|
Kuciński M, Jakubowska-Lehrmann M, Góra A, Mirny Z, Nadolna-Ałtyn K, Szlinder-Richert J, Ocalewicz K. Population Genetic Study on the European Flounder ( Platichthys flesus) from the Southern Baltic Sea Using SNPs and Microsatellite Markers. Animals (Basel) 2023; 13:ani13091448. [PMID: 37174485 PMCID: PMC10177365 DOI: 10.3390/ani13091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The European flounder (Platichthys flesus), which is closely related to the recently discovered Baltic flounder (Platichthys solemdali), is currently the third most commercially fished species in the Baltic Sea. According to the available data from the Polish Fisheries Monitoring Center and fishermen's observations, the body condition indices of the species in the Baltic Sea have declined in recent years. The aim of the present study was to obtain information on the current patterns of genetic variability and the population structure of the European flounder and to verify whether the Baltic flounder is present in the southern Baltic Sea. Moreover, we aimed to verify whether the observed decline in the body condition indices of the species in the Baltic Sea might be associated with adaptive alterations in its gene pool due to increased fishing pressure. For this purpose, 190 fish were collected from four locations along the central coastline of Poland, i.e., Mechelinki, Władysławowo, the Vistula Lagoon in 2018, and the Słupsk Bank in 2020. The fish were morphologically analyzed and then genetically screened by the application of nineteen microsatellite DNA and two diagnostic SNP markers. The examined European flounder specimens displayed a high level of genetic diversity (PIC = 0.832-0.903, I = 2.579-2.768). A lack of significant genetic differentiation (Fst = 0.004, p > 0.05) was observed in all the examined fish, indicating that the European flounder in the sampled area constitutes a single genetic cluster. A significant deficiency in heterozygotes (Fis = 0.093, p < 0.05) and overall deviations from Hardy-Weinberg expectations (H-WE) were only detected in fish sampled from the Słupsk Bank. The estimated effective population size (Ne) among the sampled fish groups varied from 712 (Słupsk Bank) to 10,115 (Władysławowo and Mechelinki). However, the recorded values of the Garza-Williamson indicator (M = 0.574-0.600) and the lack of significant (p > 0.05) differences in Heq > He under the SMM model did not support the species' population size changes in the past. The applied SNP markers did not detect the presence of the Baltic flounder among the fish sampled from the studied area. The analysis of an association between biological traits and patterns of genetic diversity did not detect any signs of directional selection or density-dependent adaptive changes in the gene pool of the examined fish that might be caused by increased fishing pressure.
Collapse
Affiliation(s)
- Marcin Kuciński
- Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdansk, Piłsudskiego Ave. 46, 81-378 Gdynia, Poland
| | - Magdalena Jakubowska-Lehrmann
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1 Street, 81-332 Gdynia, Poland
| | - Agnieszka Góra
- Department of Food and Environmental Chemistry, National Marine Fisheries Research Institute, Kołłątaja 1 Street, 81-332 Gdynia, Poland
| | - Zuzanna Mirny
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłątaja 1 Street, 81-332 Gdynia, Poland
| | - Katarzyna Nadolna-Ałtyn
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłątaja 1 Street, 81-332 Gdynia, Poland
| | - Joanna Szlinder-Richert
- Department of Food and Environmental Chemistry, National Marine Fisheries Research Institute, Kołłątaja 1 Street, 81-332 Gdynia, Poland
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdansk, Piłsudskiego Ave. 46, 81-378 Gdynia, Poland
| |
Collapse
|
2
|
Weist P, Jentoft S, Tørresen OK, Schade FM, Pampoulie C, Krumme U, Hanel R. The role of genomic signatures of directional selection and demographic history in the population structure of a marine teleost with high gene flow. Ecol Evol 2022; 12:e9602. [PMID: 36514551 PMCID: PMC9731920 DOI: 10.1002/ece3.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have uncovered patterns of genomic divergence in marine teleosts where panmixia due to high gene flow has been the general paradigm. These signatures of divergent selection are often impacted by structural variants, acting as "supergenes" facilitating local adaptation. The highly dispersing European plaice (Pleuronectes platessa)-in which putative structural variants (i.e., inversions) have been identified-has successfully colonized the brackish water ecosystem of the Baltic Sea. Thus, the species represents an ideal opportunity to investigate how the interplay of gene flow, structural variants, natural selection, past demographic history, and gene flow impacts on population (sub)structuring in marine systems. Here, we report on the generation of an annotated draft plaice genome assembly in combination with population sequencing data-following the salinity gradient from the Baltic Sea into the North Sea together with samples from Icelandic waters-to illuminate genome-wide patterns of divergence. Neutral markers pointed at large-scale panmixia across the European continental shelf associated with high gene flow and a common postglacial colonization history of shelf populations. However, based on genome-wide outlier loci, we uncovered signatures of population substructuring among the European continental shelf populations, i.e., suggesting signs of ongoing selection. Genome-wide selection analyses (xp-EHH) and the identification of genes within genomic regions of recent selective sweeps-overlapping with the outlier loci-suggest that these represent the signs of divergent selection. Our findings provide support for genomic divergence driven by local adaptation in the face of high gene flow and elucidate the relative importance of demographic history versus adaptive divergence in shaping the contemporary population genetic structure of a marine teleost. The role of the putative inversion(s) in the substructuring-and potentially ongoing adaptation-was seemingly not substantial.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | | | | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | | |
Collapse
|
3
|
Koot E, Wu C, Ruza I, Hilario E, Storey R, Wells R, Chagné D, Wellenreuther M. Genome-wide analysis reveals the genetic stock structure of hoki ( Macruronus novaezelandiae). Evol Appl 2021; 14:2848-2863. [PMID: 34950233 PMCID: PMC8674887 DOI: 10.1111/eva.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The assessment of the genetic structuring of biodiversity is crucial for management and conservation. This is particularly critical for widely distributed and highly mobile deep-water teleosts, such as hoki (Macruronus novaezelandiae). This species is significant to Māori people and supports the largest commercial fishery in New Zealand, but uncertainty about its stock structure presents a challenge for management. Here, we apply a comprehensive genomic analysis to shed light on the demographic structure of this species by (1) assembling the genome, (2) generating a catalogue of genome-wide SNPs to infer the stock structure and (3) identifying regions of the genome under selection. The final genome assembly used short and long reads and is near complete, representing 93.8% of BUSCO genes, and consisting of 566 contigs totalling 501 Mb. Whole-genome re-sequencing of 510 hoki sampled from 14 locations around New Zealand and Australia, at a read depth greater than 10×, produced 227,490 filtered SNPs. Analyses of these SNPs were able to resolve the stock structure of hoki into two genetically and geographically distinct clusters, one including the Australian and the other one all New Zealand locations, indicating genetic exchange between these regions is limited. Location differences within New Zealand samples were much more subtle (global F ST = 0.0006), and while small and significant differences could be detected, they did not conclusively identify additional substructures. Ten putative adaptive SNPs were detected within the New Zealand samples, but these also did not geographically partition the dataset further. Contemporary and historical N e estimation suggest the current New Zealand population of hoki is large yet declining. Overall, our study provides the first genomic resources for hoki and provides detailed insights into the fine-scale population genetic structure to inform the management of this species.
Collapse
Affiliation(s)
- Emily Koot
- The New Zealand Institute for Plant and Food Research LtdPalmerston NorthNew Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | - Igor Ruza
- The New Zealand Institute for Plant and Food Research LtdNelsonNew Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research LtdTe PukeNew Zealand
| | | | - David Chagné
- The New Zealand Institute for Plant and Food Research LtdPalmerston NorthNew Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research LtdNelsonNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| |
Collapse
|
4
|
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, Flores H. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. JOURNAL OF FISH BIOLOGY 2021; 99:49-60. [PMID: 33559136 DOI: 10.1111/jfb.14697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.
Collapse
Affiliation(s)
- Sarah M Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Felix C Mark
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anton Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Hauke Flores
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
5
|
Le Moan A, Bekkevold D, Hemmer-Hansen J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb) 2021; 126:668-683. [PMID: 33531657 PMCID: PMC8115344 DOI: 10.1038/s41437-020-00389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Changing environmental conditions can lead to population diversification through differential selection on standing genetic variation. Structural variant (SV) polymorphisms provide examples of ancient alleles that in time become associated with novel environmental gradients. The European plaice (Pleuronectes platessa) is a marine flatfish showing large allele-frequency differences at two putative SVs associated with environmental variation. In this study, we explored the contribution of these SVs to population structure across the North East Atlantic. We compared genome-wide population structure using sets of RAD-sequencing SNPs with the spatial structure of the SVs. We found that in contrast to the rest of the genome, the SVs were only weakly associated with an isolation-by-distance pattern. Indeed, both SVs showed important variation in haplogroup frequencies, with the same haplogroup increasing both along the salinity gradient of the Baltic Sea, and found in high frequency in the northern-range margin of the Atlantic. Phylogenetic analyses suggested that the SV alleles are much older than the age of the Baltic Sea itself. These results suggest that the SVs are older than the age of the environmental gradients with which they currently co-vary. Altogether, our results suggest that the plaice SVs were shaped by evolutionary processes occurring at two time frames, firstly following their origin, ancient spread and maintenance in the ancestral populations, and secondly related to their current association with more recently formed environmental gradients such as those found in the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Alan Le Moan
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark ,grid.8761.80000 0000 9919 9582Department of Marine Sciences at Tjärnö, University of Gothenburg, Laboratorievägen 10, Strömstad, Sweden
| | - Dorte Bekkevold
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Jakob Hemmer-Hansen
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| |
Collapse
|
6
|
Andersen Ø, Rubiolo JA, De Rosa MC, Martinez P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2367-2376. [PMID: 33011865 PMCID: PMC7584550 DOI: 10.1007/s10695-020-00872-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Turbot is an important flatfish widely distributed along the European coasts, whose fishery is centered in the North Sea. The commercial value of the species has boosted a successful aquaculture sector in Europe and China. Body growth is the main target of turbot breeding programs and is also a key trait related to local adaptation to temperature and salinity. Differences in growth rate and optimal growth temperature in turbot have been shown to be associated with a hemoglobin polymorphism reported more than 50 years ago. Here, we identified a Gly16Asp amino acid substitution in the β1 globin subunit by searching for genetic variation in the five functional globin genes within the whole annotated turbot genome. We predicted increased stability of the turbot hemoglobin by the replacement of the conserved Gly with the negative charged Asp residue that is consistent with the higher rate of αβ dimer assembly in the human J-Baltimore Gly16β->Asp mutant than in normal HbA. The turbot Hbβ1-Gly16 variant dominated in the northern populations examined, particularly in the Baltic Sea, while the Asp allele showed elevated frequencies in southern populations and was the prevalent variant in the Adriatic Sea. Body weight did not associate with the Hbβ1 genotypes at farming conditions (i.e., high oxygen levels, feeding ad libitum) after analyzing 90 fish with high growth dispersal from nine turbot families. Nevertheless, all data at hand suggest that the turbot hemoglobin polymorphism has an adaptive significance in the variable wild conditions regarding temperature and oxygen availability.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, PO Box 5010, N-1430, Ås, Norway.
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433, Ås, Norway.
| | - Juan Andrés Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, 00168, Rome, Italy
| | - Paulino Martinez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
7
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
8
|
Prentice MB, Bowman J, Murray DL, Khidas K, Wilson PJ. Spatial and environmental influences on selection in a clock gene coding trinucleotide repeat in Canada lynx (Lynx canadensis). Mol Ecol 2020; 29:4637-4652. [PMID: 32989809 DOI: 10.1111/mec.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
Clock genes exhibit substantial control over gene expression and ultimately life-histories using external cues such as photoperiod, and are thus likely to be critical for adaptation to shifting seasonal conditions and novel environments as species redistribute their ranges under climate change. Coding trinucleotide repeats (cTNRs) are found within several clock genes, and may be interesting targets of selection due to their containment within exonic regions and elevated mutation rates. Here, we conduct inter-specific characterization of the NR1D1 cTNR between Canada lynx and bobcat, and intra-specific spatial and environmental association analyses of neutral microsatellites and our functional cTNR marker, to investigate the role of selection on this locus in Canada lynx. We report signatures of divergent selection between lynx and bobcat, with the potential for hybrid-mediated gene flow in the area of range overlap. We also provide evidence that this locus is under selection across Canada lynx in eastern Canada, with both spatial and environmental variables significantly contributing to the explained variation, after controlling for neutral population structure. These results suggest that cTNRs may play an important role in the generation of functional diversity within some mammal species, and allow for contemporary rates of adaptation in wild populations in response to environmental change. We encourage continued investment into the study of cTNR markers to better understand their broader relevance to the evolution and adaptation of mammals.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental & Life Sciences, Trent University, Peterborough, ON, Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada
| | - Dennis L Murray
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Kamal Khidas
- Vertebrate Zoology and Beaty Centre for Species Discovery, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Paul J Wilson
- Biology Department, Trent University, Peterborough, ON, Canada
| |
Collapse
|
9
|
Skim-Sequencing Based Genotyping Reveals Genetic Divergence of the Wild and Domesticated Population of Black Tiger Shrimp ( Penaeus monodon) in the Indo-Pacific Region. BIOLOGY 2020; 9:biology9090277. [PMID: 32906759 PMCID: PMC7564732 DOI: 10.3390/biology9090277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
The domestication of a wild-caught aquatic animal is an evolutionary process, which results in genetic discrimination at the genomic level in response to strong artificial selection. Although black tiger shrimp (Penaeus monodon) is one of the most commercially important aquaculture species, a systematic assessment of genetic divergence and structure of wild-caught and domesticated broodstock populations of the species is yet to be documented. Therefore, we used skim sequencing (SkimSeq) based genotyping approach to investigate the genetic structure of 50 broodstock individuals of P. monodon species, collected from five sampling sites (n = 10 in each site) across their distribution in Indo-Pacific regions. The wild-caught P. monodon broodstock population were collected from Malaysia (MS) and Japan (MJ), while domesticated broodstock populations were collected from Madagascar (MMD), Hawaii, HI, USA (MMO), and Thailand (MT). After various filtering process, a total of 194,259 single nucleotide polymorphism (SNP) loci were identified, in which 4983 SNP loci were identified as putatively adaptive by the pcadapt approach. In both datasets, pairwise FST estimates high genetic divergence between wild and domesticated broodstock populations. Consistently, different spatial clustering analyses in both datasets categorized divergent genetic structure into two clusters: (1) wild-caught populations (MS and MJ), and (2) domesticated populations (MMD, MMO and MT). Among 4983 putatively adaptive SNP loci, only 50 loci were observed to be in the coding region. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that non-synonymous mutated genes might be associated with the energy production, metabolic functions, respiration regulation and developmental rates, which likely act to promote adaptation to the strong artificial selection during the domestication process. This study has demonstrated the applicability of SkimSeq in a highly duplicated genome of P. monodon specifically, across a range of genetic backgrounds and geographical distributions, and would be useful for future genetic improvement program of this species in aquaculture.
Collapse
|
10
|
Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, Huang S, Asakawa S, Rahman MM, Wong LL. Population Genomics of an Anadromous Hilsa Shad Tenualosa ilisha Species across Its Diverse Migratory Habitats: Discrimination by Fine-Scale Local Adaptation. Genes (Basel) 2019; 11:46. [PMID: 31905942 PMCID: PMC7017241 DOI: 10.3390/genes11010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Marine Bioresource Science, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulsi, Chattogram 4225, Bangladesh
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Yoji Igarashi
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Abdul Wahab
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Nahiduzzaman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Jalilur Rahman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Michael J. Phillips
- WorldFish Headquarters, Jalan Batu Maung, Batu Muang, Penang 11960, Malaysia;
| | - Songqian Huang
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh;
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala-Terengganu, Terengganu 21030, Malaysia
| |
Collapse
|
11
|
Prentice MB, Bowman J, Murray DL, Klütsch CFC, Khidas K, Wilson PJ. Evaluating evolutionary history and adaptive differentiation to identify conservation units of Canada lynx (Lynx canadensis). Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Blondel L, Baillie L, Quinton J, Alemu JB, Paterson I, Hendry AP, Bentzen P. Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecol Evol 2019; 9:4504-4517. [PMID: 31031923 PMCID: PMC6476793 DOI: 10.1002/ece3.5033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
In dendritic river systems, gene flow is expected to occur primarily within watersheds. Yet, rare cross-watershed transfers can also occur, whether mediated by (often historical) geological events or (often contemporary) human activities. We explored these events and their potential evolutionary consequences by analyzing patterns of neutral genetic variation (microsatellites) and adaptive phenotypic variation (male color) in wild guppies (Poecilia reticulata) distributed across two watersheds in northern Trinidad. We found the expected signatures of within-watershed gene flow; yet we also inferred at least two instances of cross-watershed gene flow-one in the upstream reaches and one further downstream. The upstream cross-watershed event appears to be very recent (41 ± 13 years), suggesting dispersal via recent flooding or undocumented human-mediated transport. The downstream cross-watershed event appears to be considerably older (577 ± 265 years), suggesting a role for rare geological or climatological events. Alongside these strong signatures of both contemporary and historical gene flow, we found little evidence of impacts on presumably adaptive phenotypic differentiation, except perhaps in the one instance of very recent cross-watershed gene flow. Selection in this system seems to overpower gene flow-at least on the spatiotemporal scales investigated here.
Collapse
Affiliation(s)
- Léa Blondel
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Lyndsey Baillie
- University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jessica Quinton
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jahson B. Alemu
- Department of Life SciencesThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | - Ian Paterson
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
13
|
Perrier C, Ferchaud AL, Sirois P, Thibault I, Bernatchez L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RADseq in a northern lacustrine fish. Mol Ecol 2017; 26:6317-6335. [PMID: 29024140 DOI: 10.1111/mec.14361] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
Abstract
Understanding genomic signatures of divergent selection underlying long-term adaptation in populations located in heterogeneous environments is a key goal in evolutionary biology. In this study, we investigated neutral, adaptive and deleterious genetic variation using 7,192 SNPs in 31 Lake Trout (Salvelinus namaycush) populations (n = 673) from Québec, Canada. Average genetic diversity was low, weakly shared among lakes, and positively correlated with lake size, indicating a major role for genetic drift subsequent to lake isolation. Putatively deleterious mutations were on average at lower frequencies than the other SNPs, and their abundance relative to the entire polymorphism in each population was positively correlated with inbreeding, suggesting that the effectiveness of purifying selection was negatively correlated with inbreeding, as predicted from theory. Despite evidence for pronounced genetic drift and inbreeding, several outlier loci were associated with temperature and found in or close to genes with biologically relevant functions notably related to heat stress and immune responses. Outcomes of gene-temperature associations were influenced by the inclusion of the most inbred populations, in which allele frequencies deviated the most from model predictions. This result illustrates challenge in identifying gene-environment associations in cases of high genetic drift and restricted gene flow and suggests limited adaptation in populations experiencing higher inbreeding. We discuss the relevance of these findings for the conservation and management, notably regarding stocking and genetic rescue, of Lake Trout populations and other species inhabiting highly fragmented habitats.
Collapse
Affiliation(s)
- Charles Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Campus CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Pascal Sirois
- Chaire de Recherche sur les Espèces Aquatiques Exploitées, Laboratoire des Sciences Aquatiques, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise sur la Faune Aquatique, Ministère des Forêts de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Svensson O, Gräns J, Celander MC, Havenhand J, Leder EH, Lindström K, Schöld S, van Oosterhout C, Kvarnemo C. Immigrant reproductive dysfunction facilitates ecological speciation. Evolution 2017; 71:2510-2521. [PMID: 28791680 DOI: 10.1111/evo.13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 01/20/2023]
Abstract
The distributions of species are not only determined by where they can survive - they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats. We propose that "immigrant reproductive dysfunction" is a hitherto overlooked aspect of reproductive isolation caused by natural selection on immigrants. This idea is supported by results from experiments on an externally fertilizing fish (sand goby, Pomatoschistus minutus). Growth and condition of adults were not affected by non-native salinity whereas males spawning as immigrants had lower sperm motility and hatching success than residents. We interpret these results as evidence for local adaptation or acclimation of sperm, and possibly also components of paternal care. The resulting loss in fitness, which we call "immigrant reproductive dysfunction," has the potential to reduce gene flow between populations with locally adapted reproduction, and it may play a role in species distributions and speciation.
Collapse
Affiliation(s)
- Ola Svensson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Johanna Gräns
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jonathan Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Tjärnö, SE-452 96 Strömstad, Sweden
| | - Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Biology, University of Turku, FI-20014 Turun yliopisto, Finland.,Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Sofie Schöld
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-603 80 Norrköping, Sweden
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
15
|
Prentice MB, Bowman J, Lalor JL, McKay MM, Thomson LA, Watt CM, McAdam AG, Murray DL, Wilson PJ. Signatures of selection in mammalian clock genes with coding trinucleotide repeats: Implications for studying the genomics of high-pace adaptation. Ecol Evol 2017; 7:7254-7276. [PMID: 28944015 PMCID: PMC5606889 DOI: 10.1002/ece3.3223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Climate change is predicted to affect the reproductive ecology of wildlife; however, we have yet to understand if and how species can adapt to the rapid pace of change. Clock genes are functional genes likely critical for adaptation to shifting seasonal conditions through shifts in timing cues. Many of these genes contain coding trinucleotide repeats, which offer the potential for higher rates of change than single nucleotide polymorphisms (SNPs) at coding sites, and, thus, may translate to faster rates of adaptation in changing environments. We characterized repeats in 22 clock genes across all annotated mammal species and evaluated the potential for selection on repeat motifs in three clock genes (NR1D1,CLOCK, and PER1) in three congeneric species pairs with different latitudinal range limits: Canada lynx and bobcat (Lynx canadensis and L. rufus), northern and southern flying squirrels (Glaucomys sabrinus and G. volans), and white‐footed and deer mouse (Peromyscus leucopus and P. maniculatus). Signatures of positive selection were found in both the interspecific comparison of Canada lynx and bobcat, and intraspecific analyses in Canada lynx. Northern and southern flying squirrels showed differing frequencies at common CLOCK alleles and a signature of balancing selection. Regional excess homozygosity was found in the deer mouse at PER1 suggesting disruptive selection, and further analyses suggested balancing selection in the white‐footed mouse. These preliminary signatures of selection and the presence of trinucleotide repeats within many clock genes warrant further consideration of the importance of candidate gene motifs for adaptation to climate change.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
| | | | - Michelle M McKay
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | | | - Cristen M Watt
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Andrew G McAdam
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | | - Paul J Wilson
- Biology Department Trent University Peterborough ON Canada
| |
Collapse
|
16
|
Pédron N, Artigaud S, Infante JLZ, Le Bayon N, Charrier G, Pichereau V, Laroche J. Proteomic responses of European flounder to temperature and hypoxia as interacting stressors: Differential sensitivities of populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:890-899. [PMID: 28215807 DOI: 10.1016/j.scitotenv.2017.02.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
In the context of global change, ectotherms are increasingly impacted by abiotic perturbations. Along the distribution area of a species, the populations at low latitudes are particularly exposed to temperature increase and hypoxic events. In this study, we have compared the proteomic responses in the liver of European flounder populations, by using 2-D electrophoresis. One southern peripheral population from Portugal vs two northern core populations from France, were reared in a common garden experiment. Most of the proteomic differences were observed between the two experimental conditions, a cold vs a warm and hypoxic conditions. Consistent differentiations between populations were observed in accumulation of proteins involved in the bioenergetics- and methionine-metabolisms, fatty acids transport, and amino-acid catabolism. The specific regulation of crucial enzymes like ATP-synthase and G6PDH, in the liver of the southern population, could be related to a possible local adaptation. This southern peripheral population is spatially distant from northern core populations and has experienced dissimilar ecological conditions; thus it may contain genotypes that confer resilience to climate changes.
Collapse
Affiliation(s)
- Nicolas Pédron
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Sébastien Artigaud
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - José-Luis Zambonino Infante
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Nicolas Le Bayon
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Grégory Charrier
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Vianney Pichereau
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Jean Laroche
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France.
| |
Collapse
|
17
|
Zhang Y, Sun J, Chen C, Watanabe HK, Feng D, Zhang Y, Chiu JM, Qian PY, Qiu JW. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. Sci Rep 2017; 7:46205. [PMID: 28397791 PMCID: PMC5387418 DOI: 10.1038/srep46205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Jin Sun
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiromi K. Watanabe
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Dong Feng
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, P. R. China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Jill M.Y. Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
18
|
Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Sci Rep 2017; 7:43417. [PMID: 28262802 PMCID: PMC5338269 DOI: 10.1038/srep43417] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 12/04/2022] Open
Abstract
The assessment of the genetic structuring of biodiversity is crucial for management and conservation. For species with large effective population sizes a low number of markers may fail to identify population structure. A solution of this shortcoming can be high-throughput sequencing that allows genotyping thousands of markers on a genome-wide approach while facilitating the detection of genetic structuring shaped by selection. We used Genotyping-by-Sequencing (GBS) on 176 individuals of the endemic East Atlantic peacock wrasse (Symphodus tinca), from 6 locations in the Adriatic and Ionian seas. We obtained a total of 4,155 polymorphic SNPs and we observed two strong barriers to gene flow. The first one differentiated Tremiti Islands, in the northwest, from all the other locations while the second one separated east and south-west localities. Outlier SNPs potentially under positive selection and neutral SNPs both showed similar patterns of structuring, although finer scale differentiation was unveiled with outlier loci. Our results reflect the complexity of population genetic structure and demonstrate that both habitat fragmentation and positive selection are on play. This complexity should be considered in biodiversity assessments of different taxa, including non-model yet ecologically relevant organisms.
Collapse
|
19
|
Wang C, Agrawal S, Laudien J, Häussermann V, Held C. Discrete phenotypes are not underpinned by genome-wide genetic differentiation in the squat lobster Munida gregaria (Crustacea: Decapoda: Munididae): a multi-marker study covering the Patagonian shelf. BMC Evol Biol 2016; 16:258. [PMID: 27903261 PMCID: PMC5131467 DOI: 10.1186/s12862-016-0836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA barcoding has demonstrated that many discrete phenotypes are in fact genetically distinct (pseudo)cryptic species. Genetically identical, isogenic individuals, however, can also express similarly different phenotypes in response to a trigger condition, e.g. in the environment. This alternative explanation to cryptic speciation often remains untested because it requires considerable effort to reject the hypothesis that the observed underlying genetic homogeneity of the different phenotypes may be trivially caused by too slowly evolving molecular markers. The widespread squat lobster Munida gregaria comprises two discrete ecotypes, gregaria s. str. and subrugosa, which were long regarded as different species due to marked differences in morphological, ecological and behavioral traits. We studied the morphometry and genetics of M. gregaria s. l. and tested (1) whether the phenotypic differences remain stable after continental-scale sampling and inclusion of different life stages, (2) and whether each phenotype is underpinned by a specific genotype. RESULTS A total number of 219 gregaria s. str. and subrugosa individuals from 25 stations encompassing almost entire range in South America were included in morphological and genetic analyses using nine unlinked hypervariable microsatellites and new COI sequences. Results from the PCA and using discriminant functions demonstrated that the morphology of the two forms remains discrete. The mitochondrial data showed a shallow, star-like haplotype network and complete overlap of genetic distances within and among ecotypes. Coalescent-based species delimitation methods, PTP and GMYC, coherently suggested that haplotypes of both ecotypes forms a single species. Although all microsatellite markers possess sufficient genetic variation, AMOVA, PCoA and Bayesian clustering approaches revealed no genetic clusters corresponding to ecotypes or geographic units across the entire South-American distribution. No evidence of isolation-by-distance could be detected for this species in South America. CONCLUSIONS Despite their pronounced bimodal morphologies and different lifestyles, the gregaria s. str. and subrugosa ecotypes form a single, dimorphic species M. gregaria s. l.. Based on adequate geographic coverage and multiple independent polymorphic loci, there is no indication that each phenotype may have a unique genetic basis, leaving phenotypic plasticity or localized genomic islands of speciation as possible explanations.
Collapse
Affiliation(s)
- Chen Wang
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shobhit Agrawal
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Jürgen Laudien
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Vreni Häussermann
- Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brasil 2950, Valparaíso, Chile
- Huinay Scientific Field Station, Huinay, Los Lagos Chile
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
20
|
Guo B, Li Z, Merilä J. Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Mol Ecol 2016; 25:2833-52. [DOI: 10.1111/mec.13657] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Baocheng Guo
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| | - Zitong Li
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| |
Collapse
|
21
|
Francuski L, Milankov V. Assessing spatial population structure and heterogeneity in the dronefly. J Zool (1987) 2015. [DOI: 10.1111/jzo.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. Francuski
- Faculty of Sciences Department of Biology and Ecology University of Novi Sad Novi Sad Serbia
| | - V. Milankov
- Faculty of Sciences Department of Biology and Ecology University of Novi Sad Novi Sad Serbia
| |
Collapse
|
22
|
DeFaveri J, Merilä J. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus). PLoS One 2015; 10:e0123891. [PMID: 25853707 PMCID: PMC4390281 DOI: 10.1371/journal.pone.0123891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.
Collapse
Affiliation(s)
- Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol 2015; 13:19. [PMID: 25857931 PMCID: PMC4410466 DOI: 10.1186/s12915-015-0130-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene-flow marine fish populations remain poorly understood. Results We here investigated genome-wide patterns of genetic variability and differentiation in ten marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing >30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. Conclusions The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation, in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0130-8) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Gubili C, Sims DW, Veríssimo A, Domenici P, Ellis J, Grigoriou P, Johnson AF, McHugh M, Neat F, Satta A, Scarcella G, Serra-Pereira B, Soldo A, Genner MJ, Griffiths AM. A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140175. [PMID: 26064555 PMCID: PMC4448844 DOI: 10.1098/rsos.140175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.
Collapse
Affiliation(s)
- Chrysoula Gubili
- School of Environment and Life Sciences, University of Salford, Salford, Greater Manchester M5 4WU, UK
| | - David W. Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Ana Veríssimo
- CIBIO-U.P., Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão 4485-661, Portugal
| | | | - Jim Ellis
- Centre for Environment, Fisheries and Aquaclture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Panagiotis Grigoriou
- Cretaquarium, Thalassocosmos, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion Crete 71003, Greece
| | - Andrew F. Johnson
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography 0202, University of California, 9500 Gilman Drive, San Diego, CA 92083-0202, USA
| | - Matthew McHugh
- Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Francis Neat
- Marine Scotland—Science, Marine Laboratory, PO Box 101, Aberdeen AB11 9DB, UK
| | - Andrea Satta
- CNR-IAMC Località Sa Mardini, Torregrande 09170, Italy
| | - Giuseppe Scarcella
- ISMAR-CNR—Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, Largo Fiera della Pesca 2, Ancona 60125, Italy
| | - Bárbara Serra-Pereira
- Departamento do Mar e Recursos Marinhos, IPMA, Instituto Português do Mar e da Atmosfera, Av. Brasilia, Lisboa 1449-006, Portugal
| | - Alen Soldo
- Department of Marine Studies, University of Split, Livanjska 5, Split 21000, Croatia
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Andrew M. Griffiths
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes: next-generation prospects and challenges. THE BIOLOGICAL BULLETIN 2014; 227:117-132. [PMID: 25411371 DOI: 10.1086/bblv227n2p117] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past few years, technological advances have facilitated giant leaps forward in our ability to generate genome-wide molecular data, offering exciting opportunities for gaining new insights into the ecology and evolution of species where genomic information is still limited. Marine fishes are valuable organisms for advancing our understanding of evolution on historical and contemporary time scales, and here we highlight areas in which research on these species is likely to be particularly important in the near future. These include possibilities for gaining insights into processes on ecological time scales, identifying genomic signatures associated with population divergence under gene flow, and determining the genetic basis of phenotypic traits. We also consider future challenges pertaining to the implementation of genome-wide coverage through next-generation sequencing and genotyping methods in marine fishes. Complications associated with fast decay of linkage disequilibrium, as expected for species with large effective population sizes, and the possibility that adaptation is associated with both soft selective sweeps and polygenic selection, leaving complex genomic signatures in natural populations, are likely to challenge future studies. However, the combination of high genome coverage and new statistical developments offers promising solutions. Thus, the next generation of studies is likely to truly facilitate the transition from population genetics to population genomics in marine fishes. This transition will advance our understanding of basic evolutionary processes and will offer new possibilities for conservation and management of valuable marine resources.
Collapse
Affiliation(s)
- Jakob Hemmer-Hansen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, DK-8600 Silkeborg, Denmark;
| | | | - José Martin Pujolar
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Wrange AL, André C, Lundh T, Lind U, Blomberg A, Jonsson PJ, Havenhand JN. Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea. BMC Evol Biol 2014; 14:156. [PMID: 25038588 PMCID: PMC4223505 DOI: 10.1186/1471-2148-14-156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
Background Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species’ capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system – Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded. Results We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses – notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure. Conclusions Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.
Collapse
Affiliation(s)
- Anna-Lisa Wrange
- Department of Biological and Environmental Sciences-Tjärnö, University of Gothenburg, S-45296 Strömstad, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Olsen MT, Pampoulie C, Daníelsdóttir AK, Lidh E, Bérubé M, Víkingsson GA, Palsbøll PJ. Fin whale MDH-1 and MPI allozyme variation is not reflected in the corresponding DNA sequences. Ecol Evol 2014; 4:1787-803. [PMID: 24963377 PMCID: PMC4063476 DOI: 10.1002/ece3.1046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 11/07/2022] Open
Abstract
The appeal of genetic inference methods to assess population genetic structure and guide management efforts is grounded in the correlation between the genetic similarity and gene flow among populations. Effects of such gene flow are typically genomewide; however, some loci may appear as outliers, displaying above or below average genetic divergence relative to the genomewide level. Above average population, genetic divergence may be due to divergent selection as a result of local adaptation. Consequently, substantial efforts have been directed toward such outlying loci in order to identify traits subject to local adaptation. Here, we report the results of an investigation into the molecular basis of the substantial degree of genetic divergence previously reported at allozyme loci among North Atlantic fin whale (Balaenoptera physalus) populations. We sequenced the exons encoding for the two most divergent allozyme loci (MDH-1 and MPI) and failed to detect any nonsynonymous substitutions. Following extensive error checking and analysis of additional bioinformatic and morphological data, we hypothesize that the observed allozyme polymorphisms may reflect phenotypic plasticity at the cellular level, perhaps as a response to nutritional stress. While such plasticity is intriguing in itself, and of fundamental evolutionary interest, our key finding is that the observed allozyme variation does not appear to be a result of genetic drift, migration, or selection on the MDH-1 and MPI exons themselves, stressing the importance of interpreting allozyme data with caution. As for North Atlantic fin whale population structure, our findings support the low levels of differentiation found in previous analyses of DNA nucleotide loci.
Collapse
Affiliation(s)
- Morten Tange Olsen
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden
| | | | | | - Emmelie Lidh
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden
| | - Martine Bérubé
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden ; Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen PO Box 11103, 9700 CC, Groningen, The Netherlands
| | | | - Per J Palsbøll
- Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden ; Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen PO Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
28
|
A review of molecular approaches for investigating patterns of coevolution in marine host-parasite relationships. ADVANCES IN PARASITOLOGY 2014; 84:209-52. [PMID: 24480315 DOI: 10.1016/b978-0-12-800099-1.00004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Parasites and their relationships with hosts play a crucial role in the evolutionary pathways of every living organism. One method of investigating host-parasite systems is using a molecular approach. This is particularly important as analyses based solely on morphology or laboratory studies of parasites and their hosts do not take into account historical evolutionary interactions that can shape the distribution, abundance and population structure of parasites and their hosts. However, the predominant host-parasite coevolution literature has focused on terrestrial hosts and their parasites, and there still is a lack of studies in marine environments. Given that marine systems are generally more open than terrestrial ones, they provide fascinating opportunities for large-scale (as well as small-scale) geographic studies. Further, patterns and processes of genetic structuring and systematics are becoming more available across many different taxa (but especially fishes) in many marine systems, providing an excellent basis for examining whether parasites follow host population/species structure. In this chapter, we first highlight the factors and processes that challenge our ability to interpret evolutionary patterns of coevolution of hosts and their parasites in marine systems at different spatial, temporal and taxonomic scales. We then review the use of the most commonly utilized genetic markers in studying marine host-parasite systems. We give an overview and discuss which molecular methodologies resolve evolutionary relationships best and also discuss the applicability of new approaches, such as next-generation sequencing and studies utilizing functional markers to gain insights into more contemporary processes shaping host-parasite relationships.
Collapse
|
29
|
DeFaveri J, Merilä J. Local adaptation to salinity in the three-spined stickleback? J Evol Biol 2013; 27:290-302. [PMID: 24330503 DOI: 10.1111/jeb.12289] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023]
Abstract
Different lines of evidence suggest that the occurrence and extent of local adaptation in high gene flow marine environments - even in mobile and long-lived vertebrates with complex life cycles - may be more widespread than earlier thought. We conducted a common garden experiment to test for local adaptation to salinity in Baltic Sea sticklebacks (Gasterosteus aculeatus). Fish from three different native salinity regimes (high, mid and low) were subjected to three salinity treatments (high, mid and low) in a full-factorial experimental design. Irrespective of their origin, fish subjected to low (and mid) salinity treatments exhibited higher juvenile survival, grew to largest sizes and were in better condition than fish subjected to the high salinity treatment. However, a significant interaction between native and treatment salinities - resulting mainly from the poor performance of fish native to low salinity in the high salinity treatment - provided clear cut evidence for adaptation to local variation in salinity. Additional support for this inference was provided by the fact that the results concur with an earlier demonstration of significant differentiation in a number of genes with osmoregulatory functions across the same populations and that the population-specific responses to salinity treatments exceeded that to be expected by random genetic drift.
Collapse
Affiliation(s)
- J DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
30
|
Wang L, Liu S, Zhuang Z, Guo L, Meng Z, Lin H. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS One 2013; 8:e83493. [PMID: 24349521 PMCID: PMC3861527 DOI: 10.1371/journal.pone.0083493] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/04/2013] [Indexed: 12/02/2022] Open
Abstract
The genetic differentiation of many marine fish species is low. Yet local adaptation may be common in marine fish species as the vast and changing marine environment provides more chances for natural selection. Here, we used anonymous as well as known protein gene linked microsatellites and mitochondrial DNA to detect the population structure of the small yellow croaker (Larimichthys polyactis) in the Northwest Pacific marginal seas. Among these loci, we detected at least two microsatellites, anonymous H16 and HSP27 to be clearly under diversifying selection in outlier tests. Sequence cloning and analysis revealed that H16 was located in the intron of BAHCC1 gene. Landscape genetic analysis showed that H16 mutations were significantly associated with temperature, which further supported the diversifying selection at this locus. These marker types presented different patterns of population structure: (i) mitochondrial DNA phylogeny showed no evidence of genetic divergence and demonstrated only one glacial linage; (ii) population differentiation using putatively neutral microsatellites presented a pattern of high gene flow in the L. polyactis. In addition, several genetic barriers were identified; (iii) the population differentiation pattern revealed by loci under diversifying selection was rather different from that revealed by putatively neutral loci. The results above suggest local adaptation in the small yellow croaker. In summary, population genetic studies based on different marker types disentangle the effects of demographic history, migration, genetic drift and local adaptation on population structure and also provide valuable new insights for the design of management strategies in L. polyactis.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Liang Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, Espiñeira M, Fiorentino F, Garofalo G, Geffen AJ, Hansen JH, Helyar SJ, Nielsen EE, Ogden R, Patarnello T, Stagioni M, Tinti F, Bargelloni L. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol 2013; 23:118-35. [DOI: 10.1111/mec.12568] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Ilaria Milano
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | - Alessia Cariani
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Miroslava Atanassova
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Dorte Bekkevold
- National Institute of Aquatic Resources; Technical University of Denmark; Vejlsøvej 39 DK-8600 Silkeborg Denmark
| | - Gary R. Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory; School of Biological Sciences; Bangor University; Environment Centre Wales; Bangor UK
| | - Montserrat Espiñeira
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Fabio Fiorentino
- National Research Council (CNR)-Institute for Coastal Marine Environment (IAMC); Via L. Vaccara 61 91026 Mazara del Vallo Trapani Italy
| | - Germana Garofalo
- National Research Council (CNR)-Institute for Coastal Marine Environment (IAMC); Via L. Vaccara 61 91026 Mazara del Vallo Trapani Italy
| | - Audrey J. Geffen
- Department of Biology; University of Bergen; P.O. Box 7803, N-5020 Bergen Norway
| | - Jakob. H. Hansen
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Sarah J. Helyar
- Food Safety, Environment & Genetics; Matís ohf, Vínlandsleið 12; 113 Reykjavík Iceland
| | - Einar E. Nielsen
- National Institute of Aquatic Resources; Technical University of Denmark; Vejlsøvej 39 DK-8600 Silkeborg Denmark
| | - Rob Ogden
- TRACE Wildlife Forensics Network; Royal Zoological Society of Scotland; Edinburgh EH12 6TS UK
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | - Marco Stagioni
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Fausto Tinti
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | | |
Collapse
|
32
|
Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Defaveri J, Shikano T, Shimada Y, Merilä J. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus). Mol Ecol 2013; 22:4811-28. [PMID: 23947683 DOI: 10.1111/mec.12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022]
Abstract
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.
Collapse
Affiliation(s)
- Jacquelin Defaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
34
|
Tysklind N, Taylor MI, Lyons BP, Goodsir F, McCarthy ID, Carvalho GR. Population genetics provides new insights into biomarker prevalence in dab (Limanda limanda L.): a key marine biomonitoring species. Evol Appl 2013; 6:891-909. [PMID: 24062799 PMCID: PMC3779091 DOI: 10.1111/eva.12074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 12/19/2022] Open
Abstract
Bioindicators are species for which some quantifiable aspect of its biology, a biomarker, is assumed to be sensitive to ecosystem health. However, there is frequently a lack of information on the underlying genetic and environmental drivers shaping the spatiotemporal variance in prevalence of the biomarkers employed. Here, we explore the relative role of potential variables influencing the spatiotemporal prevalence of biomarkers in dab, Limanda limanda, a species used as a bioindicator of marine contaminants. Firstly, the spatiotemporal genetic structure of dab around UK waters (39 samples across 15 sites for four years: 2005–2008) is evaluated with 16 microsatellites. Two temporally stable groups are identified corresponding to the North and Irish Seas (average between basin = 0.007; = 0.022). Secondly, we examine the association between biomarker prevalence and several variables, including genetic structuring, age and contaminant exposure. Genetic structure had significant interactive effects, together with age and some contaminants, in the prevalence of some of the biomarkers considered, namely hyperpigmentation and liver lesions. The integration of these data sets enhanced our understanding of the relationship between biomarker prevalence, exposure to contaminants and population-specific response, thereby yielding more informative predictive models of response and prospects for environmental remediation.
Collapse
Affiliation(s)
- Niklas Tysklind
- Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University Gwynedd, UK
| | | | | | | | | | | |
Collapse
|
35
|
Rhode C, Vervalle J, Bester-van der Merwe AE, Roodt-Wilding R. Detection of molecular signatures of selection at microsatellite loci in the South African abalone (Haliotis midae) using a population genomic approach. Mar Genomics 2013; 10:27-36. [PMID: 23583728 DOI: 10.1016/j.margen.2013.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 01/09/2023]
Abstract
Identifying genomic regions that may be under selection is important for elucidating the genetic architecture of complex phenotypes underlying adaptation to heterogeneous environments. A population genomic approach, using a classical neutrality test and various Fst-outlier detection methods was employed to evaluate genome-wide polymorphism data in order to identify loci that may be candidates for selection amongst six populations (three cultured and three wild) of the South African abalone, Haliotis midae. Approximately 9% of the genome-wide microsatellite markers were putatively subject to directional selection, whilst 6-18% of the genome is thought to be influenced by balancing selection. Genetic diversity estimates for candidate loci under directional selection was significantly reduced in comparison to candidate neutral loci, whilst candidate balancing selection loci demonstrated significantly higher levels of genetic diversity (Kruskal-Wallis test, P<0.05). Pairwise Fst estimates based on candidate directional selection loci also demonstrated increased levels of differentiation between study populations. Various candidate loci under selection showed significant inter-chromosomal linkage disequilibrium, suggesting possible gene-networks underling adaptive phenotypes. Furthermore, several loci had significant hits to known genes when performing BLAST searches to NCBI's non-redundant databases, whilst others are known to be derived from expressed sequences even though homology to a known gene could not be established. A number of loci also demonstrated relatively high similarity to transposable elements. The association of these loci to functional and genomically active sequences could in part explain the observed signatures of selection.
Collapse
Affiliation(s)
- Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
36
|
DeFaveri J, Jonsson PR, Merilä J. Heterogeneous Genomic Differentiation in marine threespine sticklebacks: adaptation along an environmental gradient. Evolution 2013; 67:2530-46. [PMID: 24033165 DOI: 10.1111/evo.12097] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Evolutionary divergence among populations occupying ecologically distinct environments can occur even in the face of on-going gene flow. However, the genetic underpinnings, as well as the scale and magnitude at which this differentiation occurs in marine habitats are not well understood. We investigated the patterns and degree of genomic heterogeneity in threespine sticklebacks (Gasterosteus aculeatus) by assessing genetic variability in 20 nongenic and 20 genic (associated with genes important for freshwater adaptation) microsatellite loci in samples collected from 38 locations spanning the entire Baltic Sea coast to the North Sea boundary. Population divergence (F(ST) ≈ 0.026) and structuring (five genetic clusters) was significantly more pronounced in the genic as compared to nongenic markers (F(ST) ≈ 0.008; no genetic clusters). Patterns of divergence in the genic markers--45% of which were identified as outliers--correlated with local differences in salinity. Yet, a strong positive correlation between divergence in genic and nongenic markers, and their association with environmental factors suggests that adaptive divergence is reducing gene flow across the genome. Apart from providing a clear demonstration of heterogeneous genomic patterns of differentiation in a marine species, the results are indicative of adaptive population structuring across the relatively young Baltic Sea in spite of ample opportunities for gene flow.
Collapse
Affiliation(s)
- Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, PO Box 65, FI 00014, Finland.
| | | | | |
Collapse
|
37
|
Gross R, Palm S, Kõiv K, Prestegaard T, Jussila J, Paaver T, Geist J, Kokko H, Karjalainen A, Edsman L. Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0476-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Larsen PF, Nielsen EE, Hansen MM, Wang T, Meier K, Pertoldi C, Loeschcke V. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0101-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Diopere E, Hellemans B, Volckaert FA, Maes GE. Identification and validation of single nucleotide polymorphisms in growth- and maturation-related candidate genes in sole (Solea solea L.). Mar Genomics 2013; 9:33-8. [DOI: 10.1016/j.margen.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/29/2022]
|
40
|
Kokita T, Takahashi S, Kumada H. Molecular signatures of lineage-specific adaptive evolution in a unique sea basin: the example of an anadromous goby Leucopsarion petersii. Mol Ecol 2013; 22:1341-55. [PMID: 23294249 DOI: 10.1111/mec.12184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 11/11/2012] [Accepted: 11/21/2012] [Indexed: 01/28/2023]
Abstract
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome-scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence- and diversity-based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real-time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage-specific adaptive evolution in this unique sea basin.
Collapse
Affiliation(s)
- Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan.
| | | | | |
Collapse
|
41
|
de Jong MA, Collins S, Beldade P, Brakefield PM, Zwaan BJ. Footprints of selection in wild populations ofBicyclus anynanaalong a latitudinal cline. Mol Ecol 2012; 22:341-53. [DOI: 10.1111/mec.12114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - S. Collins
- African Butterfly Research Institute; PO Box 14308; 0800; Nairobi; Kenya
| | | | | | | |
Collapse
|
42
|
Chaoui L, Gagnaire PA, Guinand B, Quignard JP, Tsigenopoulos C, Kara MH, Bonhomme F. Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol Ecol 2012; 21:5497-511. [PMID: 23061421 DOI: 10.1111/mec.12062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
Abstract
The genetic basis and evolutionary implications of local adaptation in high gene flow marine organisms are still poorly understood. In several Mediterranean fish species, alternative migration patterns exist between individuals entering coastal lagoons that offer favourable conditions for growth and those staying in the sea where environmental conditions are less subject to rapid and stressful change. Whether these coexisting strategies are phenotypically plastic or include a role for local adaptation through differential survival needs to be determined. Here, we explore the genetic basis of alternate habitat use in western Mediterranean populations of the gilthead sea bream (Sparus aurata). Samples from lagoonal and open-sea habitats were typed for three candidate gene microsatellite loci, seven anonymous microsatellites and 44 amplified fragment length polymorphism markers to test for genotype-environment associations. While anonymous markers globally indicated high levels of gene flow across geographic locations and habitats, non-neutral differentiation patterns correlated with habitat type were found at two candidate microsatellite loci located in the promoter region of the growth hormone and prolactin genes. Further analysis of these two genes revealed that a mechanism based on habitat choice alone could not explain the distribution of genotype frequencies at a regional scale, thus implying a role for differential survival between habitats. We also found an association between allele size and habitat type, which, in the light of previous studies, suggests that polymorphisms in the proximal promoter region could influence gene expression by modulating transcription factor binding, thus providing a potential explanatory link between genotype and growth phenotype in nature.
Collapse
Affiliation(s)
- Lamya Chaoui
- Institut des Sciences de l'Evolution, Université Montpellier II, SMEL, 2 rue des chantiers, 34200 Sète, France
| | | | | | | | | | | | | |
Collapse
|
43
|
LIMBORG MORTENT, HELYAR SARAHJ, De BRUYN MARK, TAYLOR MARTINI, NIELSEN EINARE, OGDEN ROB, CARVALHO GARYR, BEKKEVOLD DORTE. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 2012; 21:3686-703. [DOI: 10.1111/j.1365-294x.2012.05639.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Coscia I, Vogiatzi E, Kotoulas G, Tsigenopoulos CS, Mariani S. Exploring neutral and adaptive processes in expanding populations of gilthead sea bream, Sparus aurata L., in the North-East Atlantic. Heredity (Edinb) 2012; 108:537-46. [PMID: 22126850 PMCID: PMC3331784 DOI: 10.1038/hdy.2011.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 11/08/2022] Open
Abstract
Recent studies in empirical population genetics have highlighted the importance of taking into account both neutral and adaptive genetic variation in characterizing microevolutionary dynamics. Here, we explore the genetic population structure and the footprints of selection in four populations of the warm-temperate coastal fish, the gilthead sea bream (Sparus aurata), whose recent northward expansion has been linked to climate change. Samples were collected at four Atlantic locations, including Spain, Portugal, France and the South of Ireland, and genetically assayed using a suite of species-specific markers, including 15 putatively neutral microsatellites and 23 expressed sequence tag-linked markers, as well as a portion of the mitochondrial DNA (mtDNA) control region. Two of the putatively neutral markers, Bld-10 and Ad-10, bore signatures of strong directional selection, particularly in the newly established Irish population, although the potential 'surfing effect' of rare alleles at the edge of the expansion front was also considered. Analyses after the removal of these loci suggest low but significant population structure likely affected by some degree of gene flow counteracting random genetic drift. No signal of historic divergence was detected at mtDNA. BLAST searches conducted with all 38 markers used failed to identify specific genomic regions associated to adaptive functions. However, the availability of genomic resources for this commercially valuable species is rapidly increasing, bringing us closer to the understanding of the interplay between selective and neutral evolutionary forces, shaping population divergence of an expanding species in a heterogeneous milieu.
Collapse
Affiliation(s)
- I Coscia
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | - E Vogiatzi
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Genetics (IMBG), Crete, Greece
- Department of Molecular Biology and Genetics, Democritian University of Thrace, Alexandroupolis, Greece
| | - G Kotoulas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Genetics (IMBG), Crete, Greece
| | - C S Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Genetics (IMBG), Crete, Greece
| | - S Mariani
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Buonaccorsi VP, Kimbrell CA, Lynn EA, Hyde JR. Comparative population genetic analysis of bocaccio rockfish Sebastes paucispinis using anonymous and gene-associated simple sequence repeat loci. J Hered 2012; 103:391-9. [PMID: 22490232 DOI: 10.1093/jhered/ess002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative population genetic analyses of traditional and emergent molecular markers aid in determining appropriate use of new technologies. The bocaccio rockfish Sebastes paucispinis is a high gene-flow marine species off the west coast of North America that experienced strong population decline over the past 3 decades. We used 18 anonymous and 13 gene-associated simple sequence repeat (SSR) loci (expressed sequence tag [EST]-SSRs) to characterize range-wide population structure with temporal replicates. No F(ST)-outliers were detected using the LOSITAN program, suggesting that neither balancing nor divergent selection affected the loci surveyed. Consistent hierarchical structuring of populations by geography or year class was not detected regardless of marker class. The EST-SSRs were less variable than the anonymous SSRs, but no correlation between F(ST) and variation or marker class was observed. General linear model analysis showed that low EST-SSR variation was attributable to low mean repeat number. Comparative genomic analysis with Gasterosteus aculeatus, Takifugu rubripes, and Oryzias latipes showed consistently lower repeat number in EST-SSRs than SSR loci that were not in ESTs. Purifying selection likely imposed functional constraints on EST-SSRs resulting in low repeat numbers that affected diversity estimates but did not affect the observed pattern of population structure.
Collapse
|
46
|
PAPAKOSTAS SPIROS, VASEMÄGI ANTI, VÄHÄ JUHAPEKKA, HIMBERG MIKAEL, PEIL LAURI, PRIMMER CRAIGR. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus). Mol Ecol 2012; 21:3516-30. [DOI: 10.1111/j.1365-294x.2012.05553.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR. A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. JOURNAL OF FISH BIOLOGY 2012; 80:1789-1843. [PMID: 22497408 DOI: 10.1111/j.1095-8649.2012.03265.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.
Collapse
Affiliation(s)
- C L Dudgeon
- The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
LE CORRE VALÉRIE, KREMER ANTOINE. The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 2012; 21:1548-66. [DOI: 10.1111/j.1365-294x.2012.05479.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Zelenina DA, Martinsohn JT, Ogden R, Volkov AA, Zelenina IA, Carvalho GR. Advanced approaches to studying the population diversity of marine fishes: New opportunities for fisheries control and management. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411120179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Schunter C, Carreras-Carbonell J, Macpherson E, Tintoré J, Vidal-Vijande E, Pascual A, Guidetti P, Pascual M. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol 2011; 20:5167-81. [PMID: 22097887 DOI: 10.1111/j.1365-294x.2011.05355.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts.
Collapse
Affiliation(s)
- C Schunter
- Centre d'Estudis Avançats de Blanes-CSIC, Car Acc Cala St Francesc 14, Blanes, 17300 Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|