1
|
Karakaplan ND, Song Y, Laurenti MC, Vella A, Jensen MD. Suppression of Endogenous Insulin Secretion by Euglycemic Hyperinsulinemia. J Clin Endocrinol Metab 2024; 109:e596-e601. [PMID: 37758511 PMCID: PMC10795933 DOI: 10.1210/clinem/dgad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
CONTEXT The impact of insulin, particularly exogenous hyperinsulinemia, on insulin secretion in humans is debated. OBJECTIVE We assessed the effects of exogenous hyperinsulinemia on insulin secretion and whether the response is altered in insulin resistance associated with obesity. METHODS Insulin secretion rates (ISRs) during euglycemic hyperinsulinemic clamp studies (52 volunteers) were calculated using a model that employs plasma C-peptide concentrations. One study involved a 2-step insulin clamp and the other study was a single step insulin clamp. For both studies the goal was to achieve plasma glucose concentrations of 95 mg/dL during the clamp irrespective of fasting glucose concentrations. The percent change in ISR from fasting to the end of the insulin clamp interval was the main outcome. Linear regression and analysis of covariance were used to test for the effects of insulin on ISR and to test for group differences. RESULTS ISR was greater in obese volunteers (P < .001) under fasting and hyperinsulinemic clamp conditions. The change in plasma glucose from baseline to the end of the insulin clamp interval was highly correlated with the change in ISR (r = 0.61, P < .001). From baseline to the end of the clamp we observed a 27% (SD 20) suppression of ISR. The participants who underwent a 2-step insulin clamp had greater suppression of ISR during the second step than the first step (P < .001). The proportional suppression of ISR during euglycemic hyperinsulinemia was not different between nonobese and obese groups (P = .19). CONCLUSION Hyperinsulinemia suppresses endogenous insulin secretion and the relative change in insulin secretion produced by exogenous insulin did not differ between nonobese and obese people.
Collapse
Affiliation(s)
- Nesrin Damla Karakaplan
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Yilin Song
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcello C Laurenti
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrian Vella
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael D Jensen
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Kaga H, Tamura Y, Takeno K, Kakehi S, Someya Y, Funayama T, Furukawa Y, Suzuki R, Sugimoto D, Kadowaki S, Nishitani-Yokoyama M, Shimada K, Daida H, Aoki S, Giacca A, Kanazawa A, Kawamori R, Watada H. Higher C-Peptide Level During Glucose Clamp Is Associated With Muscle Insulin Resistance in Nonobese Japanese Men. J Endocr Soc 2019; 3:1847-1857. [PMID: 31555755 PMCID: PMC6753586 DOI: 10.1210/js.2019-00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022] Open
Abstract
Context Circulating C-peptide is generally suppressed by exogenous insulin infusion. However, steady-state serum C-peptide (SSSC) levels during hyperinsulinemic-euglycemic clamp in obese subjects are higher than in healthy subjects, which may contribute to hyperinsulinemia to compensate for insulin resistance. Even in healthy subjects, interindividual variations in SSSC levels are present; however, the characteristics of subjects with high SSSC levels in those populations have not been fully elucidated. Objective To investigate the clinical parameters associated with interindividual variations in SSSC levels in apparently healthy, nonobese Japanese men. Design and Participants We studied 49 nonobese (BMI < 25 kg/m2), healthy Japanese men. We evaluated SSSC and insulin sensitivity using hyperinsulinemic-euglycemic clamp with tracer. Intrahepatic lipid (IHL) was measured using proton magnetic resonance spectroscopy. Results We divided subjects into high and low SSSC groups based on the median SSSC value and compared their clinical parameters. Compared with the low SSSC group, the high SSSC group had IHL accumulation, impaired muscle insulin sensitivity, reduced insulin clearance, and hyperinsulinemia during a 75-g oral glucose tolerance test (OGTT). All of these factors were significantly correlated with SSSC. Conclusions In healthy, nonobese men, higher SSSC was associated with impaired muscle insulin sensitivity, IHL accumulation, and hyperinsulinemia during OGTT. These findings suggest that higher endogenous insulin secretion during hyperinsulinemia, along with reduced insulin clearance, may be an early change to maintain metabolic status in the face of moderate muscle insulin resistance, even in healthy, nonobese men.
Collapse
Affiliation(s)
- Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kageumi Takeno
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Furukawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Sugimoto
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Kazunori Shimada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Akio Kanazawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Kavalakatt S, Khadir A, Madhu D, Hammad M, Devarajan S, Abubaker J, Al-Mulla F, Tuomilehto J, Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front Endocrinol (Lausanne) 2019; 10:762. [PMID: 31781037 PMCID: PMC6851015 DOI: 10.3389/fendo.2019.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78-86.07) and 6.27 (0.64-77.04), respectively; p < 0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77-104.92) p < 0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p < 0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84-4.11, 95% CI] and OR = 2.12 [1.59-3.10, 95% CI], p < 0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p < 0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ali Tiss
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Ali Tiss
| |
Collapse
|
4
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
6
|
Letiexhe MR, Desaive C, Lefèbvre PJ, Scheen AJ. Intact cross-talk between insulin secretion and insulin action after postgastroplasty recovery of ideal body weight in severely obese patients. Int J Obes (Lond) 2004; 28:821-3. [PMID: 15052278 DOI: 10.1038/sj.ijo.0802632] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most reports investigating the hormonal and metabolic effects of bariatric surgery studied obese subjects after partial weight loss only. Nevertheless, all studies showed significant improvements of insulin secretion, action, clearance and inhibition of its own secretion, although the parallel kinetics of all these changes remained questionable. Using the intravenous glucose tolerance test, we demonstrated a full normalization of insulin secretion, action on glucose metabolism and clearance in eight obese women who recovered and maintained ideal body weight following gastroplasty. Reciprocal changes were observed between postglucose acute insulin secretion and insulin-mediated glucose disposal so that the so-called disposition index (product of these two variables) remained unchanged after vs before gastroplasty in those individuals with normal glucose tolerance. These favourable results should encourage obtaining a drastic and sustained weight loss in patients with severe obesity at risk of developing type II diabetes.
Collapse
Affiliation(s)
- M R Letiexhe
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Sart Tilman, Liège, Belgium
| | | | | | | |
Collapse
|
7
|
Pereira JA, Claro BM, Pareja JC, Chaim EA, Astiarraga BD, Saad MJA, Muscelli E. Restored insulin inhibition on insulin secretion in nondiabetic severely obese patients after weight loss induced by bariatric surgery. Int J Obes (Lond) 2003; 27:463-8. [PMID: 12698955 DOI: 10.1038/sj.ijo.0802269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To examine the impact of important weight loss on insulin inhibition of its own secretion during experimentally induced hyperinsulinemia under euglycemic conditions. DESIGN Longitudinal, clinical intervention study--bariatric surgery (vertical banded gastroplasty--gastric bypass--Capella technique), re-evaluation after 4 and 14 months. SUBJECTS Nine obese patients class III (BMI=54.6+/-2.6 kg/m2) and nine lean subjects (BMI=22.7+/-0.7 kg/m2). MEASUREMENTS Euglycemic hyperinsulinemic clamp (insulin infusion: 40 mU/min m2), C-peptide plasma levels, electrical bioimpedance methodology, and oral glucose tolerance test (OGTT). RESULTS BMI was reduced in the follow-up: 44.5+/-2.2 and 33.9+/-1.5 kg/m2 at 4 and 14 months. Insulin-induced glucose uptake was markedly reduced in obese patients (19.5+/-1.9 micromol/min kg FFM) and improved with weight loss, but in the third study, it was still lower than that observed in controls (35.9+/-4.0 vs 52.9+/-2.2 micromol/min kg FFM). Insulin-induced inhibition of its own secretion was blunted in obese patients (19.9+/-5.7%, relative to fasting values), and completely reversed to values similar to that of lean ones in the second and third studies (-60.8+/-4.2 and -54.0+/-6.1%, respectively). CONCLUSION Weight loss in severe obesity improved insulin-induced glucose uptake, and completely normalized the insulin inhibition on its own secretion.
Collapse
Affiliation(s)
- J A Pereira
- Departmento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estudual de Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|