1
|
Xu L, Li C, Wan T, Sun X, Lin X, Yan D, Li J, Wei P. Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun Signal 2025; 23:4. [PMID: 39754256 PMCID: PMC11699683 DOI: 10.1186/s12964-024-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals. While there is increasing evidence supporting the neuroprotective properties of UA in Parkinson's disease and Alzheimer's disease, gaps in knowledge still exist regarding the underlying mechanisms and how to effectively translate these benefits into clinical practice. Moreover, the current UA elevation therapy exhibits unstable antioxidant properties, individual variability, and even adverse effects, limiting its potential clinical applications. This review consolidates recent advancements in understanding how UA exerts neuroprotective effects on neurodegenerative diseases and emphasizes the dual roles of UA in managing oxidative stress and neuroinflammation. Additionally, the review elucidates the mechanisms through which UA confers neuroprotection. Based on this, the review underscores the significance of UA as a potential biomarker and aims to provide a comprehensive understanding of its potential as a therapeutic target, while also addressing possible challenges to clinical implementation.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Tiantian Wan
- Department of Anesthesiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinyi Sun
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Dong Yan
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
2
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
3
|
Chen H, Wang M, Yang L, Li J, Li Z. Association of Uric Acid, High-Sensitivity C-Reactive Protein, and 90-Day Risk of Poor Function Outcome in Patients with Ischemic Stroke or Transient Ischemic Attacks. J Inflamm Res 2024; 17:8681-8694. [PMID: 39553311 PMCID: PMC11566209 DOI: 10.2147/jir.s494487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Aim The interaction between inflammatory biomarkers (high-sensitivity C-reactive protein, hsCRP) and antioxidants (uric acid, UA) regarding prognosis after ischemic stroke or transient ischemic attack (TIA) remains inadequately explored. This study aimed to assess (1) the individual and joint effects of hsCRP and UA, and (2) the neuroprotective role of UA in patients with elevated hsCRP levels concerning poor functional outcomes at 90 days. Methods A prospective cohort study was conducted involving 2140 consecutive ischemic stroke or TIA patients with hsCRP and UA levels. The primary outcome was defined as a poor functional outcome, indicated by a modified Rankin Scale (mRS) score of 3-6 at 90 days, with a shift in the mRS score as a secondary outcome. Logistic regression and propensity score (PS) analyses were employed to ensure robustness. Results Poor functional outcome occurred in 345 (16.1%) patients. Individual effects found that the highest quartiles of hsCRP (adjusted OR = 3.090; 95% CI 2.150-4.442) and UA (adjusted OR = 0.671; 95% CI 0.551-0.883) were associated with increased or decreased risk of poor functional outcome, respectively. Joint effects (adjusted OR = 3.994; 95% CI 2.758-5.640) between hsCRP and UA on the primary outcome were more apparent in patients with high hsCRP levels (hsCRP > 1.60 mg/L) and low UA levels (UA ≤ 291.85 µmol/L). For the patients with high hsCRP levels, patients with low UA levels had a higher risk of primary and secondary outcomes, compared with those with high UA levels, after unadjusted or adjusted for hsCRP. Similar and reliable results were observed in PS-based models. Conclusion In patients with ischemic stroke or TIA, joint high levels of hsCRP and low UA levels significantly correlate with increased risk of poor functional outcome at 90 days. In addition, high UA levels could reduce the risk of poor functional outcome for patients with high hsCRP levels.
Collapse
Affiliation(s)
- Haoran Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Meng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Lin Yang
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Medical Information Intelligent Technology, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jiao Li
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Medical Information Intelligent Technology, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
5
|
Pérez-Mato M, López-Arias E, Bugallo-Casal A, Correa-Paz C, Arias S, Rodríguez-Yáñez M, Santamaría-Cadavid M, Campos F. New Perspectives in Neuroprotection for Ischemic Stroke. Neuroscience 2024; 550:30-42. [PMID: 38387732 DOI: 10.1016/j.neuroscience.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The constant failure of new neuroprotective therapies for ischemic stroke has partially halted the search for new therapies in recent years, mainly because of the high investment risk required to develop a new treatment for a complex pathology, such as stroke, with a narrow intervention window and associated comorbidities. However, owing to recent progress in understanding the stroke pathophysiology, improvement in patient care in stroke units, development of new imaging techniques, search for new biomarkers for early diagnosis, and increasingly widespread use of mechanical recanalization therapies, new opportunities have opened for the study of neuroprotection. This review summarizes the main protective agents currently in use, some of which are already in the clinical evaluation phase. It also includes an analysis of how recanalization therapies, new imaging techniques, and biomarkers have improved their efficacy.
Collapse
Affiliation(s)
- María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Esteban López-Arias
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Arias
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - María Santamaría-Cadavid
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Wang C, Zhou M, Kang T, You S, Cao Y, Kong W, Shi J. The prognostic value of combined uric acid and neutrophil-to-lymphocyte ratio in acute ischemic stroke patients treated with intravenous thrombolysis. BMC Neurol 2024; 24:183. [PMID: 38822243 PMCID: PMC11141032 DOI: 10.1186/s12883-024-03628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Serum uric acid (UA) and the neutrophil-to-lymphocyte ratio (NLR) have been reported to be associated with outcomes in acute ischemic stroke (AIS). However, whether UA is related to the prognosis of AIS patients undergoing intravenous thrombolysis (IVT) remains inconclusive. We sought to explore the combined effect of UA and NLR on the prognosis of AIS treated with IVT. METHODS A total of 555 AIS patients receiving IVT treatment were enrolled. Patients were categorized into four groups according to the levels of UA and NLR: LNNU (low NLR and normal UA), LNHU (low NLR and high UA), HNNU (high NLR and normal UA), and HNHU (high NLR and high UA). Multivariable logistic regression analysis was used to evaluate the value of serum UA level and NLR in predicting prognosis. The primary outcomes were major disability (modified Rankin scale (mRS) score 3-5) and death within 3 months. RESULTS After multivariate adjustment, a high NLR (≥ 3.94) increased the risk of 3-month death or major disability (OR, 2.23; 95% CI, 1.42 to 3.55, p < 0.001). However, there was no statistically significant association between a high UA level (≥ 313.00 µmol/L) and clinical outcome. HNHU was associated with a 5.09-fold increase in the risk of death (OR, 5.09; 95% CI, 1.31-19.83; P value = 0.019) and a 1.98-fold increase in the risk of major disability (OR, 1.98; 95% CI 1.07-3.68; P value = 0.030) in comparison to LNNU. CONCLUSIONS High serum UA levels combined with high NLR were independently associated with 3-month death and major disability in AIS patients after IVT.
Collapse
Affiliation(s)
- Chentao Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Meili Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Tingting Kang
- Department of Neurology, The Nuclear Industry 417 Hospital, Xi'an, Shanxi Province, 710600, China
| | - Shoujiang You
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Weina Kong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China.
| | - Jijun Shi
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China.
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China.
| |
Collapse
|
7
|
Jia J, Jiao W, Wang G, Wu J, Huang Z, Zhang Y. Drugs/agents for the treatment of ischemic stroke: Advances and perspectives. Med Res Rev 2024; 44:975-1012. [PMID: 38126568 DOI: 10.1002/med.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Ischemic stroke (IS) poses a significant threat to global human health and life. In recent decades, we have witnessed unprecedented progresses against IS, including thrombolysis, thrombectomy, and a few medicines that can assist in reopening the blocked brain vessels or serve as standalone treatments for patients who are not eligible for thrombolysis/thrombectomy therapies. However, the narrow time windows of thrombolysis/thrombectomy, coupled with the risk of hemorrhagic transformation, as well as the lack of highly effective and safe medications, continue to present big challenges in the acute treatment and long-term recovery of IS. In the past 3 years, several excellent articles have reviewed pathophysiology of IS and therapeutic medicines for the treatment of IS based on the pathophysiology. Regretfully, there is no comprehensive overview to summarize all categories of anti-IS drugs/agents designed and synthesized based on molecular mechanisms of IS pathophysiology. From medicinal chemistry view of point, this article reviews a multitude of anti-IS drugs/agents, including small molecule compounds, natural products, peptides, and others, which have been developed based on the molecular mechanism of IS pathophysiology, such as excitotoxicity, oxidative/nitrosative stresses, cell death pathways, and neuroinflammation, and so forth. In addition, several emerging medicines and strategies, including nanomedicines, stem cell therapy and noncoding RNAs, which recently appeared for the treatment of IS, are shortly introduced. Finally, the perspectives on the associated challenges and future directions of anti-IS drugs/agents are briefly provided to move the field forward.
Collapse
Affiliation(s)
- Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Dong M, An K. Association between uric acid levels and the risk of futile reperfusion in stroke after thrombectomy: A propensity score matching study. J Stroke Cerebrovasc Dis 2024; 33:107611. [PMID: 38301746 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Currently, futile reperfusion (FR) is becoming a major challenge in the endovascular treatment of patients with acute ischemic stroke (AIS). The relationship between serum uric acid (SUA) and FR has not been investigated. This study aims to determine the relationship between SUA and FR using propensity score matching (PSM) analysis. METHODS A total of 441 patients with AIS undergoing mechanical thrombectomy (MT) between August 2017 and January 2023 were included and divided into two groups based on the median SUA (297.4 μmol/L). Two groups were balanced using PSM analysis at a 1:1 ratio. The standardized mean difference (SMD) were used to assess the efficacy of the matching. Finally, 158 patients with low SUA (≤ 297.4 μmol/L) were matched with 158 patients with high SUA (>297.4 μmol/L). Predictors of FR were analyzed by multivariate logistic regression analysis in the PSM cohort. RESULTS After PSM, patients with low SUA (≤ 297.4 μmol/L) had a significant higher incidence of FR (72.8 %, 115/158) than patients with high SUA (>297.4 μmol/L) (48.1 %, 76/158) (P<0.001). Multivariate logistic regression analysis in the PSM cohort showed that low SUA (≤ 297.4 μmol/L) was an independent risk factor for the efficacy of reperfusion (OR: 6.403, 95 % CI: 3.123-13.129, P<0.001), suggesting that patients with SUA ≤ 297.4 μmol/L have a 6.403 times higher risk of FR than patients with SUA>297.4 μmol/L. CONCLUSION The results of this study suggest that low SUA (≤ 297.4 μmol/L) at admission increases the risk of FR in AIS patients undergoing MT by PSM analysis.
Collapse
Affiliation(s)
- Meijuan Dong
- Department of Endocrinology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No.1 West Huanghe Road, Huaiyin District, Huaian, Jiangsu Province, 223300, China.
| | - Kun An
- Department of Neurology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No.1 West Huanghe Road, Huaiyin District, Huai'an City, Jiangsu Province, 223300, China.
| |
Collapse
|
9
|
Leira EC, Planas AM, Chauhan AK, Chamorro A. Uric Acid: A Translational Journey in Cerebroprotection That Spanned Preclinical and Human Data. Neurology 2023; 101:1068-1074. [PMID: 37848338 PMCID: PMC10752646 DOI: 10.1212/wnl.0000000000207825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 10/19/2023] Open
Abstract
Uric acid (UA) is a strong endogenous antioxidant that neutralizes the toxicity of peroxynitrite and other reactive species on the neurovascular unit generated during and after acute brain ischemia. The realization that a rapid reduction of UA levels during an acute ischemic stroke was associated with a worse stroke outcome paved the way to investigate the value of exogenous UA supplementation to counteract the progression of redox-mediated ischemic brain damage. The long translational journey for UA supplementation recently reached a critical milestone when the results of the multicenter NIH stroke preclinical assessment network (SPAN) were reported. In a novel preclinical paradigm, 6 treatment candidates including UA supplementation were selected and tested in 6 independent laboratories following predefined criteria and strict methodological rigor. UA supplementation was the only intervention in SPAN that exceeded the prespecified efficacy boundary with male and female animals, young mice, young rats, aging mice, obese mice, and spontaneously hypertensive rats. This unprecedented achievement will allow UA to undergo clinical testing in a pivotal clinical trial through a NIH StrokeNet thrombectomy endovascular platform created to assess new treatment strategies in patients treated with mechanical thrombectomy. UA is a particularly appealing adjuvant intervention for mechanical thrombectomy because it targets the microcirculatory hypoperfusion and oxidative stress that limits the efficacy of this therapy. This descriptive review aims to summarize the translational development of UA supplementation, highlighting those aspects that likely contributed to its success. It includes having a well-defined target and mechanism of action, and an approach that simultaneously integrated rigorous preclinical assessment, with epidemiologic and preliminary human intervention studies. Validation of the clinical value of UA supplementation in a pivotal trial would confirm the translational value of the SPAN paradigm in preclinical research.
Collapse
Affiliation(s)
- Enrique C Leira
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Anna M Planas
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Anil K Chauhan
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Angel Chamorro
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain.
| |
Collapse
|
10
|
Lyden PD, Diniz MA, Bosetti F, Lamb J, Nagarkatti KA, Rogatko A, Kim S, Cabeen RP, Koenig JI, Akhter K, Arbab AS, Avery BD, Beatty HE, Bibic A, Cao S, Simoes Braga Boisserand L, Chamorro A, Chauhan A, Diaz-Perez S, Dhandapani K, Dhanesha N, Goh A, Herman AL, Hyder F, Imai T, Johnson CW, Khan MB, Kamat P, Karuppagounder SS, Kumskova M, Mihailovic JM, Mandeville JB, Morais A, Patel RB, Sanganahalli BG, Smith C, Shi Y, Sutariya B, Thedens D, Qin T, Velazquez SE, Aronowski J, Ayata C, Chauhan AK, Leira EC, Hess DC, Koehler RC, McCullough LD, Sansing LH. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Sci Transl Med 2023; 15:eadg8656. [PMID: 37729432 DOI: 10.1126/scitranslmed.adg8656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Karisma A Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - André Rogatko
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Imaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazi Akhter
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Ali S Arbab
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912-0004, USA
| | - Brooklyn D Avery
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Hannah E Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | | | - Angel Chamorro
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Hospital Clinic, University of Barcelona, Barcelona 08036, Spain
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Sebastian Diaz-Perez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Krishnan Dhandapani
- Department Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew Goh
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Alison L Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Conor W Johnson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Joseph B Mandeville
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andreia Morais
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cameron Smith
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Thedens
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tao Qin
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sofia E Velazquez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Enrique C Leira
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Yang L, Steiger S, Shi C, Gudermann T, Mammadova-Bach E, Braun A, Anders HJ. Both hyperglycemia and hyperuricemia aggravate acute kidney injury during cholesterol embolism syndrome despite opposite effects on kidney infarct size. Kidney Int 2023; 104:139-150. [PMID: 37001603 DOI: 10.1016/j.kint.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Kidney cholesterol crystal embolism (CCE) occurs in advanced atherosclerosis and induces a thrombotic (micro)angiopathy, a drop in the glomerular filtration rate (GFR), and an ischemic kidney infarction with necroinflammation. We speculated that common metabolic comorbidities such as diabetes or hyperuricemia would independently modulate each of these distinct pathophysiological processes. To test this, experimental CCE was induced by injecting cholesterol crystals into the left kidney artery of mice and thrombotic angiopathy, GFR drop, and infarct size were analyzed after 24 hours in the presence of hyperglycemia (about 500 mg/dL) or hyperuricemia (about 8 mg/dL) or their absence. In healthy mice, unilateral CCE caused diffuse thrombotic angiopathy in interlobar, arcuate and interlobular arteries, followed by a 50% or less drop in GFR compared to baseline and a variable degree of ischemic kidney necrosis. Hyperglycemia but not hyperuricemia aggravated thrombotic angiopathy although both caused a GFR decline, albeit via different mechanisms. Hyperglycemia aggravated GFR loss by increasing necroinflammation and infarct size, while the antioxidative effects of hyperuricemia reasonably attenuated necroinflammation and infarct size but induced a diffuse vasoconstriction in affected and unaffected kidney tissue. Thus, both hyperglycemia or hyperuricemia aggravate CCE-induced acute kidney failure despite having opposite effects on ischemic necroinflammation and infarction.
Collapse
Affiliation(s)
- Luying Yang
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany
| | - Stefanie Steiger
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany
| | - Chongxu Shi
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany; School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Elmina Mammadova-Bach
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany.
| |
Collapse
|
12
|
Karaaslan F, Demir F, Yılmaz R, Akıl E. Total oxidant/antioxidant status, copper and zinc levels in acute ischemic stroke patients after mechanical thrombectomy. Clin Neurol Neurosurg 2023; 229:107718. [PMID: 37121029 DOI: 10.1016/j.clineuro.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to identify the relationship of total antioxidant status, total oxidant status, and copper (Cu) and zinc (Zn) situations with the short-term prognostic and stroke severity in acute ischemic stroke cases who were successfully recanalized by mechanical thrombectomy. METHODS A study of 36 acute ischemic stroke patients and 22 controls were prospectively studied. Tube samples were attained at admission and 24 h after recanalization. In patients who were successfully recanalized (thrombolysis in cerebral infarction ≥ 2b), a 3-month modified Rankin scale (mRS) score of 0-2 was considered a good prognosis, and a score of 3-6 was considered a poor prognosis. RESULTS Admission Cu levels were significantly higher in the poor prognosis group (p = 0.031). In the multivariate logistic regression analysis, Cu was not associated with poor prognosis (p = 0.357). Cu and Zn levels were lower in the patients group compared to controls (p = 0.014 and p = 0.010, respectively). There was no correlation between National Institute of Health Stroke Scale and biomarkers (p > 0.05). The temporal variation of biomarkers did not differ significantly between the good prognosis and poor prognosis groups (p interaction > 0.05). CONCLUSIONS High admission Cu levels were associated with poor prognosis, but this association was limited. In addition, Cu and Zn levels were statistically lower in patients. There was no relationship between total antioxidant/oxidant status and short-term prognosis or stroke severity.
Collapse
Affiliation(s)
- Fırat Karaaslan
- Department of Neurology, Diyarbakır Dağkapı State Hospital, Diyarbakır, Turkey.
| | - Fidel Demir
- Department of Neurology, Silopi State Hospital, Şırnak, Turkey
| | - Reşit Yılmaz
- Department of Neurology, Gazi Yaşargil Training and Research Hospital, Diyarbakir, Turkey
| | - Eşref Akıl
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
13
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|
14
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
15
|
Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 2022; 13:1013083. [PMID: 36438975 PMCID: PMC9681807 DOI: 10.3389/fneur.2022.1013083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Ischemic stroke (IS) has complex pathological mechanisms, and is extremely difficult to treat. At present, the treatment of IS is mainly based on intravenous thrombolysis and mechanical thrombectomy, but they are limited by a strict time window. In addition, after intravenous thrombolysis or mechanical thrombectomy, damaged neurons often fail to make ideal improvements due to microcirculation disorders. Therefore, finding suitable pathways and targets from the pathological mechanism is crucial for the development of neuroprotective agents against IS. With the hope of making contributions to the development of IS treatments, this review will introduce (1) how related targets are found in pathological mechanisms such as inflammation, excitotoxicity, oxidative stress, and complement system activation; and (2) the current status and challenges in drug development.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Siddiqui EM, Mehan S, Bhalla S, Shandilya A. Potential role of IGF-1/GLP-1 signaling activation in intracerebral hemorrhage. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100055. [PMID: 36685765 PMCID: PMC9846475 DOI: 10.1016/j.crneur.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
IGF-1 and GLP-1 receptors are essential in all tissues, facilitating defense by upregulating anabolic processes. They are abundantly distributed throughout the central nervous system, promoting neuronal proliferation, survival, and differentiation. IGF-1/GLP-1 is a growth factor that stimulates neurons' development, reorganization, myelination, and survival. In primary and secondary brain injury, the IGF-1/GLP-1 receptors are impaired, resulting in further neuro complications such as cerebral tissue degradation, neuroinflammation, oxidative stress, and atrophy. Intracerebral hemorrhage (ICH) is a severe condition caused by a stroke for which there is currently no effective treatment. While some pre-clinical studies and medications are being developed as symptomatic therapies in clinical trials, there are specific pharmacological implications for improving post-operative conditions in patients with intensive treatment. Identifying the underlying molecular process and recognizing the worsening situation can assist researchers in developing effective therapeutic solutions to prevent post-hemorrhagic symptoms and the associated neural dysfunctions. As a result, in the current review, we have addressed the manifestations of the disease that are aggravated by the downregulation of IGF-1 and GLP-1 receptors, which can lead to ICH or other neurodegenerative disorders. Our review summarizes that IGF-1/GLP-1 activators may be useful for treating ICH and its related neurodegeneration.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
17
|
Numal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends In Electrochemical Nanosensors For The Analysis Of Antioxidants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Virtuoso A, Tveden-Nyborg P, Schou-Pedersen AMV, Lykkesfeldt J, Müller HK, Elfving B, Sørensen DB. A Long-Term Energy-Rich Diet Increases Prefrontal BDNF in Sprague-Dawley Rats. Nutrients 2021; 14:nu14010126. [PMID: 35011001 PMCID: PMC8746649 DOI: 10.3390/nu14010126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022] Open
Abstract
Findings of the effect of high-fat feeding including “Cafeteria Diets” (CAF) on brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and prefrontal cortex (PFC) in rodents are conflicting. CAF is a non-standardized, highly palatable energy-rich diet composed by everyday food items for human consumption and is known to induce metabolic syndrome and obesity in rats. However, the highly palatable nature of CAF may counteract a negative effect of chronic stress on anticipatory behavior and synaptic plasticity in the hippocampus, hence represent a confounding factor (e.g., when evaluating functional effects on the brain). This study investigated the effects of a chronic, restricted access to CAF on BDNF, monoamine neurotransmitters, and redox imbalance in HIP and PFC in male rats. Our results show that CAF induced BDNF and its receptor TrkB in PFC compared to the controls (p < 0.0005). No differences in monoamine neurotransmitters were detected in either PFC or HIP. CAF increased dehydroascorbic acid and decreased malondialdehyde in PFC (p < 0.05), suggesting an early redox imbalance insufficient to induce lipid peroxidation. This study supports that a chronic CAF on a restricted schedule increases BDNF levels in the PFC of rats, highlighting that this may be a suboptimal feeding regime when investigating the effects of diet-induced obesity in the brain and emphasizing this as a point of attention when comparing the findings.
Collapse
Affiliation(s)
- Alessandro Virtuoso
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Anne Marie Voigt Schou-Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (H.K.M.); (B.E.)
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (H.K.M.); (B.E.)
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
- Correspondence:
| |
Collapse
|
19
|
Liu J, Fan Y, Yu H, Xu T, Zhang C, Zhou L, Li G, Zhang Y. Allopurinol Protects Against Cholestatic Liver Injury in Mice Not Through Depletion of Uric Acid. Toxicol Sci 2021; 181:295-305. [PMID: 33749747 DOI: 10.1093/toxsci/kfab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is one of the most severe manifestations of liver injury and has limited therapeutic options. Allopurinol (AP), an inhibitor of uric acid (UA) synthesis, was reported to prevent liver damage in several liver diseases. However, whether AP protects against intrahepatic cholestatic liver injury and what is the role of UA in the pathogenesis of cholestasis remain unknown. In this study, we reported that AP attenuated liver injury in a mouse model of intrahepatic cholestasis induced by alpha-naphthylisothiocyanate (ANIT). AP showed no significant effect on glutathione depletion, inflammation, or bile acid metabolism in livers of ANIT-treated mice. Instead, AP significantly improved fatty acid β-oxidation in livers of ANIT-treated mice, which was associated with activation of PPARα. The protective effect of AP on cholestatic liver injury was not attributable to the depletion of UA, because both exogenous and endogenous UA prevented liver injury in ANIT-treated mice via inhibition of NF-kB-mediated inflammation. In conclusion, the present study provides a new perspective for the therapeutic use of AP and the role of UA in cholestatic liver injury.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Lijun Zhou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,School of Pharmacy, Weifang Medical University, Shandong 261053, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Wang J, Su Q, Lv Q, Cai B, Xiaohalati X, Wang G, Wang Z, Wang L. Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment. NANO LETTERS 2021; 21:4654-4665. [PMID: 34008994 DOI: 10.1021/acs.nanolett.1c00719] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stroke is one of most common causes of death and disability. Most of neuroprotective agents fail to rescue neurons from cerebral ischemic insults, mainly because of targeting downstream cascading events, such as excitotoxicity, oxidative and nitrosative stress, and inflammation, rather than improving hypoxia that initially occurs. Here, we report a near-infrared light (NIR)-driven nanophotosynthesis biosystem capable of generating oxygen and absorbing carbon dioxide, thus rescuing neurons from ischemia toward treating stroke. Through cerebral delivery of S. elongatus that spontaneously photosynthesize and upconversion nanoparticles (UCNPs), NIR with excellent tissue penetrating capability is converted to visible light by UCNPs to activate S. elongatus generating oxygen in vivo, enhancing angiogenesis, reducing infarction, and facilitating repair of brain tissues, thus improving neuronal function recovery. The combination of cell-biological, biochemical, and animal-level behavioral data provides compelling evidence demonstrating that this oxygen-generating biosystem through jointly utilizing microorganism and nanotechnology represents a novel approach to stroke treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiangfei Su
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiakeerzhati Xiaohalati
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Hyperuricaemia as a prognostic factor for acute ischaemic stroke. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Aliena-Valero A, Baixauli-Martín J, Castelló-Ruiz M, Torregrosa G, Hervás D, Salom JB. Effect of uric acid in animal models of ischemic stroke: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2021; 41:707-722. [PMID: 33210575 PMCID: PMC7983496 DOI: 10.1177/0271678x20967459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Addition of uric acid (UA) to thrombolytic therapy, although safe, showed limited efficacy in improving patients' stroke outcome, despite alleged neuroprotective effects of UA in preclinical research. This systematic review assessed the effects of UA on brain structural and functional outcomes in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 16 and 14 eligible rodent studies for qualitative and quantitative synthesis, respectively. Range of evidence met 10 of a possible 13 STAIR criteria. Median (Q1, Q3) quality score was 7.5 (6, 10) on the CAMARADES 15-item checklist. For each outcome, we used standardised mean difference (SMD) as effect size and random-effects modelling. Meta-analysis showed that UA significantly reduced infarct size (SMD: -1.18; 95% CI [-1.47, -0.88]; p < 0.001), blood-brain barrier (BBB) impairment/oedema (SMD: -0.72; 95% CI [-0.97, -0.48]; p < 0.001) and neurofunctional deficit (SMD: -0.98; 95% CI [-1.32, -0.63]; p < 0.001). Overall, there was low to moderate between-study heterogeneity and sizeable publication bias. In conclusion, published rodent data suggest that UA improves outcome following ischemic stroke by reducing infarct size, improving BBB integrity and ameliorating neurofunctional condition. Specific recommendations are given for further high-quality preclinical research required to better inform clinical research.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain
| | | | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain
| | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med 2021; 165:171-183. [PMID: 33515754 DOI: 10.1016/j.freeradbiomed.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1β were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1β inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dan Yang
- Department of Chemistry, Morningside Laboratory for Chemical Biology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.
| |
Collapse
|
24
|
Wang Q, Zhao H, Gao Y, Lu J, Xie D, Yu W, He F, Liu W, Hisatome I, Yamamoto T, Wang W, Cheng J. Uric acid inhibits HMGB1-TLR4-NF-κB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia. Biochem Biophys Res Commun 2021; 540:22-28. [PMID: 33429196 DOI: 10.1016/j.bbrc.2020.12.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/26/2020] [Indexed: 02/08/2023]
Abstract
Mounting evidence has implicated inflammation in ischemia-reperfusion injury following acute ischemic stroke (AIS). Microglia remain the primary initiator and participant of brain inflammation. Emerging evidence has indicated that uric acid has promise for the treatment of AIS, but its explicit mechanisms remain elusive. Here, we observed that uric acid reduced the severity of cerebral infarction and attenuated the activation of microglia in the cerebral cortex in a mouse middle cerebral-artery occlusion/reperfusion model. Thus, we speculated that uric acid may play a role by directly interfering with the inflammatory response of microglia. First, we investigated whether the HMGB1-TLR4-NF-κB signaling plays a role in oxygen glucose deprivation and reperfusion (OGD/R) injury of BV2 cells. Inhibition of the signaling significantly reduced the release of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1β (IL1β), and IL6 caused by OGD/R in BV2 cells. Second, uric acid weakened the decreased cell viability and lactate dehydrogenase release induced by OGD/R in BV2 cells. Finally, uric acid reduced the release of the proinflammatory cytokines TNF-α, IL1β, and IL6 caused by OGD/R in BV2 cells by dampening HMGB1-TLR4-NF-κB signaling, which was reversed by probenecid treatment, an inhibitor of the uric acid channel. Hence, uric acid halted the release of inflammatory factors and the decreased cell viability induced by ODG/R via inhibiting the microglia HMGB1-TLR4-NF-κB signaling, thereby alleviating the damage to microglia. This may be part of the molecular mechanisms by which uric acid protects mice against the brain damage of middle cerebral-artery occlusion/reperfusion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuan Gao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiaming Lu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China.
| |
Collapse
|
25
|
Mármol F, Sanchez J, Martínez-Pinteño A. Effects of uric acid on oxidative and nitrosative stress and other related parameters in SH-SY5Y human neuroblastoma cells. Prostaglandins Leukot Essent Fatty Acids 2021; 165:102237. [PMID: 33429354 DOI: 10.1016/j.plefa.2020.102237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Uric acid (UA) comprises about 65% of the total antioxidant capacity of plasma. In patients with acute ischemic stroke, UA reduces the incidence of early clinical worsening and improves patient outcomes compared with placebo. It also reduces infarct growth and improves functional outcomes in some patient subgroups, such as those with hyperglycemia pretreatment. Although UA is widely recognized as an important antioxidant in blood, its precise mechanism of action on the CNS is still unclear. Here, we assess how UA produces an antioxidant effect in neuroblastoma cells subjected to oxidative/nitrosative stress. We also evaluate its action on mitochondrial complexes I and III, as well as the capacity of UA to modify cell death induced by oxidative stress. Other related parameters such as BDNF and PGE2 were also determined. We observed that UA is a very powerful antioxidant which efficiently reduces ROS/RNS stress signaling and cell death during oxidative/nitrosative neurotoxicity. This providing evidence that UA could be used to improve disorders in which ROS and RNS play important role, such as ischemic stroke and chronic neurodegeneration, as confirmed by BDNF results. PGE2 results indicate that UA does not modify the inflammation in control neuroblastoma cells despite an increased in PGE2 levels in ischemic situations.
Collapse
Affiliation(s)
- Frederic Mármol
- Departament de Fonaments Clínics. Unitat de Farmacologia. Facultat de Medicina. Universitat de Barcelona, c/Casanova, 143, 08036 Barcelona, Spain.
| | - Juan Sanchez
- Departament de Fonaments Clínics. Unitat de Farmacologia. Facultat de Medicina. Universitat de Barcelona, c/Casanova, 143, 08036 Barcelona, Spain
| | - Albert Martínez-Pinteño
- Departament de Fonaments Clínics. Unitat de Farmacologia. Facultat de Medicina. Universitat de Barcelona, c/Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
26
|
Liu X, Cao Z, Gu H, Yang K, Ji R, Li Z, Zhao X, Wang Y. Uric Acid and Clinical Outcomes Among Intracerebral Hemorrhage Patients: Results From the China Stroke Center Alliance. Front Neurol 2021; 11:609938. [PMID: 33424760 PMCID: PMC7793938 DOI: 10.3389/fneur.2020.609938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023] Open
Abstract
Background and Purpose: The effect of uric acid (UA) levels on severity and prognosis of spontaneous intracerebral hemorrhage (ICH) remains controversial. We aimed to explore the association of admission UA levels with stroke severity and outcomes in ICH patients. Materials and Methods: The patients enrolled in this study were from the China Stroke Center Alliance study (CSCA). Patients were divided into four groups (Q1–Q4) according to the quartiles of UA levels at admission. The primary outcome was in-hospital mortality. The secondary outcomes included stroke severity, in-hospital complications, and discharge disposition. Multivariate logistic regression was adopted to explore the association of UA levels with outcomes after ICH. Results: Patients (84,304) with acute ICH were included in the final analysis; the median (interquartile range) of UA was 277 (210, 354) μmol/L. The four groups were defined as follows: Q1 ≤ 210 μmol/L, 210 μmol/L < Q2 ≤ 277 μmol/L, 277 μmol/L < Q3 ≤ 354 μmol/L, Q4 > 354 μmol/L. There was no significant evidence indicating that UA levels were correlated with the discharge disposition and in-hospital mortality after ICH. However, compared to Q1, the patients with higher UA levels had decreased odds of severe stroke (NIHSS ≥ 16) at admission (OR 0.89, 95% CI 0.86–0.92). An L-shaped association was found between UA and severe stroke. Among in-hospital complications, decrease in pneumonia, poor swallow function, gastrointestinal bleeding, and deep vein thrombosis (DVT) were significantly associated with higher UA levels compared to Q1 (P for trend < 0.0001). Conclusions: UA was a protective factor for stroke severity and in-hospital complications such as pneumonia, poor swallow function, gastrointestinal bleeding, and DVT. However, no significant evidence indicated that UA levels were predictive of the discharge disposition and in-hospital mortality after ICH.
Collapse
Affiliation(s)
- Xinmin Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhentang Cao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongqiu Gu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Kaixuan Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ruijun Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
27
|
Aliena-Valero A, Rius-Pérez S, Baixauli-Martín J, Torregrosa G, Chamorro Á, Pérez S, Salom JB. Uric Acid Neuroprotection Associated to IL-6/STAT3 Signaling Pathway Activation in Rat Ischemic Stroke. Mol Neurobiol 2021; 58:408-423. [PMID: 32959172 DOI: 10.1007/s12035-020-02115-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Sergio Rius-Pérez
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Júlia Baixauli-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Chamorro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departamento de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Pérez
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
28
|
Wang C, Cui T, Wang L, Zhu Q, Wang A, Yuan Y, Hao Z, Wu B. Prognostic significance of uric acid change in acute ischemic stroke patients with reperfusion therapy. Eur J Neurol 2020; 28:1218-1224. [PMID: 33176022 DOI: 10.1111/ene.14643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Uric acid (UA) is an important endogenous free radical scavenger that has been found to have a neuroprotective effect. However, there is uncertainty about the relationship between UA change and outcome in acute ischemic stroke (AIS) patients with reperfusion therapy. METHODS We consecutively enrolled AIS patients with reperfusion therapy. UA was measured upon admission and during hospitalization. The change in UA levels (ΔUA) was determined by calculating the difference between admission UA and the lowest UA among all follow-up measurements, with a positive ΔUA suggesting a decrease in UA levels. Functional outcome was assessed by modified Rankin Scale (mRS) at 3 months. Poor outcome was defined as mRS >2. RESULTS A total of 361 patients were included (mean age 68.7 ± 13.9 years, 54.3% males). The mean UA on admission was 355 ± 96.1 μmol/L. The median ΔUA was 121 μmol/L (IQR 50-192 μmol/L) and 18 (5%) patients had increased UA levels. UA on admission was positively associated with good outcome (p for trend = 0.017). When patients were classified into quartiles by ΔUA, patients with the largest decrease in UA (Q4: 199-434 μmol/L) had a higher risk of poor outcome at 3 months compared to patients with the least decrease in UA (Q1: 0-57 μmol/L) (OR 2.55, 95% CI 1.09-5.98, p = 0.031). The risk of poor outcome increased with ΔUA (p for trend = 0.048). CONCLUSIONS In patients with reperfusion therapy, high UA on admission was associated with a good 3-month outcome, while a greater decrease in UA was associated with poor outcome.
Collapse
Affiliation(s)
- Changyi Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Cui
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiange Zhu
- The Second Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Anmo Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Yuan
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilong Hao
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Higher uric acid is associated with better discharge recovery and short-term outcome in stroke patients treated with thrombolysis. Neurol Sci 2020; 42:3225-3231. [PMID: 33241534 DOI: 10.1007/s10072-020-04919-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Uric acid (UA) possesses antioxidant features and potential neuroprotective effects. However, conflicting results regarding the association between serum uric acid (SUA) levels and the prognosis of stroke have been obtained. We aimed to assess whether SUA is related to discharge recovery and short-term outcomes in patients who underwent thrombolysis therapy. METHODS We recruited 393 consecutive patients who were diagnosed with acute ischaemic stroke (AIS) and treated with thrombolysis. The demographic information, including sex and age, was collected. Haematology tests, including SUA, fasting plasma glucose (FPG), and blood lipid parameters, were performed under fasting conditions the morning after admission. The modified Rankin Scale (mRS) was used to assess the functional outcome of patients at discharge and 3 months after onset. RESULTS A negative correlation was observed between the levels of SUA and the National Institute of Health Stroke Scale (NIHSS) score at discharge (r = - 0.171, P = 0.003). Additionally, a positive correlation was observed between the levels of SUA and the difference between the baseline NIHSS and discharge NIHSS (r = 0.118, P = 0.032). The levels of SUA in the patients with good outcomes (353.76 ± 93.05) were higher than those in the patients with poor outcomes (301.99 ± 92.24; P = 0.015) at 3 months. The multivariate logistic regression analysis demonstrated that a higher SUA level (odds ratio 0.988, 95% confidence interval 0.985-0.991, P = 0.002) was an independent predictor of a good outcome at 3 months. CONCLUSION Higher SUA levels were associated with better discharge recovery and 3-month outcomes in patients with ischaemic stroke who received thrombolysis.
Collapse
|
30
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Huang H, Huang G, Gu J, Chen K, Huang Y, Xu H. Relationship of Serum Uric Acid to Hematoma Volume and Prognosis in Patients with Acute Supratentorial Intracerebral Hemorrhage. World Neurosurg 2020; 143:e604-e612. [PMID: 32781152 DOI: 10.1016/j.wneu.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative stress and inflammation play important roles in the neuronal injury caused by intracerebral hemorrhage (ICH). Uric acid (UA), an important natural antioxidant, might reduce the neuronal injury caused by ICH. Delineating the relationship between UA and ICH will enhance our understanding of antioxidative mechanisms in recovery from ICH. METHODS We conducted a retrospective study of 325 patients with acute supratentorial ICH to investigate the relationship between serum UA levels and hematoma volumes and prognosis. A hematoma volume of ≥30 mL was defined as a large hematoma. An unfavorable outcome was defined as a modified Rankin scale score of 4-6 on day 30. RESULTS The serum UA level was significantly lower in the patients with a large hematoma volume (median, 306 μmol/L; 25th to 75th percentile, 243-411 μmol/L) than in those with a small hematoma volume (median, 357 μmol/L; 25th to 75th percentile, 271-442 μmol/L; P = 0.012). Similarly, the unfavorable outcome group had had lower serum UA levels (median, 309 vs. 363 μmol/L; P = 0.009) compared with the favorable outcome group. The results of the multivariate logistic analysis indicated that a lower serum UA level was associated with a larger hematoma volume (odds ratio, 0.996; P = 0.006) and an unfavorable outcome (odds ratio, 0.997; P = 0.030). CONCLUSIONS The results from the present study have indicated that in patients with acute supratentorial ICH, a low serum UA level might indicate that the patient has a large hematoma volume and might be a risk factor for a poor day 30 functional prognosis.
Collapse
Affiliation(s)
- Haoping Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Guanhua Huang
- Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China
| | - Jiajie Gu
- Department of Neurosurgery, Yinzhou people's Hospital, Ningbo, Zhejiang, China
| | - Kehua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Yuejun Huang
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
32
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2020; 42:621-646. [PMID: 33125600 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
33
|
Irfan M, Jawaid W, Hashmat O, Nisa Q, Khastoori DR, Shahbaz NN. Association Between Hyperuricemia and Acute Ischemic Stroke in Patients at a Tertiary Care Hospital. Cureus 2020; 12:e10899. [PMID: 33194468 PMCID: PMC7654977 DOI: 10.7759/cureus.10899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction Stroke is the most debilitating of neurologic diseases. The rationale of the current study was to determine the association between hyperuricemia and ischemic stroke to establish a local perspective. Methods A total of 148 patients at a tertiary care hospital in Pakistan who fulfilled the inclusion criteria were enrolled in the study and then equally distributed into two study groups consisting of cases and controls (n = 74 in each group). In this study, there were 36 (48.6%) participants in the case group with hyperuricemia and ischemic stroke and 18 (24.3%) participants in the control group with hyperuricemia. The mean and standard deviations were computed for quantitative variables such as age, body mass index (BMI), and duration of stroke. Frequencies and percentages for the qualitative variables such as gender, hypertension, type 2 diabetes (T2D), dyslipidemia, smoking status, socioeconomic status, educational level, and hyperuricemia were calculated. The chi-square test was applied to compare both groups, with p ≤ 0.05 indicating significance. The odds ratio was also calculated to determine the association between case and control. Effect modifiers were controlled through stratification of age, gender, BMI, duration of stroke, hypertension, T2D, dyslipidemia, socioeconomic status, educational level, and smoking status to determine the effect of these on outcome variables. A post-stratification chi-square test was applied, with p ≤ 0.05 indicating statistical significance. Results In our study, stratification of hyperuricemia into cases and controls was performed for age, gender, T2D, hypertension, dyslipidemia, smoking status, socioeconomic status, and educational status. The maximum results were significant, with high strength of association between both groups. In the case group, the frequency of elevated uric acid was significantly higher than that of the control group. A comparison of hyperuricemia indicated p = 0.002, with an odds ratio of 2.95, which showed that elevated uric acid could be taken as a predictor of ischemic stroke. The uric acid level was significantly higher in men than in women. Additionally, hyperuricemia was associated with dyslipidemia. In patients with ischemic stroke, there was a significant association between serum uric acid level and T2D, hypertension, and smoking. Conclusions This study showed that the prevalence of hyperuricemia in patients with ischemic stroke was significantly higher as compared to the healthy population. Hyperuricemia can be considered as a risk factor for ischemic stroke because of its high prevalence in ischemic stroke patients. Our study explored the relationship between stroke and hyperuricemia and enabled increased understanding for caregivers so that effective management plans can be formulated for patients with ischemic stroke to prevent adverse outcomes.
Collapse
Affiliation(s)
- Muhammad Irfan
- Neurology, Dow University of Health Sciences, Karachi, PAK
| | - Wajid Jawaid
- Neurology, Dow University of Health Sciences, Karachi, PAK
| | | | - Qamar Nisa
- Neurology, Dow University of Health Sciences, Karachi, PAK
| | | | | |
Collapse
|
34
|
Lei Z, Li S, Feng H, Lai Y, Zhou Y, Li C, Ren L. Prognostic nomogram for patients with minor stroke and transient ischaemic attack. Postgrad Med J 2020; 97:644-649. [PMID: 32917776 DOI: 10.1136/postgradmedj-2020-137680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 07/18/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischaemic stroke and transient ischaemic attack (TIA) share a common cause. We aim to develop and validate a concise prognostic nomogram for patients with minor stroke and TIA. METHODS A total of 994 patients with minor stroke and TIA were included. They were split into a derivation (n=746) and validation (n=248) cohort. The modified Rankin Scale (mRS) scores 3 months after onset were used to assess the prognosis as unfavourable outcome (mRS≥2) or favourable outcome (mRS<2). RESULT The final model included seven independent predictors: gender, age, baseline National Institute of Health Stroke Scale (NIHSS), hypertension, diabetes mellitus, white blood cell and serum uric acid. The Harrell's concordance index (C-index) of the nomogram for predicting the outcome was 0.775 (95% CI 0.735 to 0.814), which was confirmed by the validation cohort (C-index=0.787 (95% CI 0.722 to 0.853)). The calibration curve showed that the nomogram-based predictions were consistent with actual observation in both derivation cohort and validation cohort. CONCLUSION The proposed nomogram showed favourable predictive accuracy for minor stroke and TIA. This has the potential to contribute to clinical decision-making.
Collapse
Affiliation(s)
- Zhihao Lei
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shuanglin Li
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hongye Feng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yupeng Lai
- Department of Rheumatology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yanxia Zhou
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chao Li
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
35
|
Khalil MI, Salwa M, Sultana S, Al Mamun MA, Barman N, Haque MA. Role of serum uric acid in ischemic stroke: A case-control study in Bangladesh. PLoS One 2020; 15:e0236747. [PMID: 32745144 PMCID: PMC7398521 DOI: 10.1371/journal.pone.0236747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Increased level of serum uric acid (SUA) is often considered a risk factor for ischemic stroke. This study was conducted to examine the association of SUA level with ischemic stroke and assessed gender-based differences, if any. Methods In this case-control study, neuroimaging-confirmed ischemic stroke patients were recruited as cases within three days of an incident from neurology in-patient department, and as controls, patients without stroke history were recruited from neurology out-patient department. Blood was collected from the respondents of both groups to assess SUA level, lipid profile and oral glucose tolerance test. Binary logistic regression was done for estimating the risks of ischemic stroke. Results A total of 338 participants were recruited, where 169 were cases and 169 were controls. Around 60 percent respondents of both case and control groups were male. Mean SUA levels for cases and controls were 6.03 (SD 1.84) mg/dl and 4.04 (SD 1.46) mg/dl, respectively. After adjustment for age, tobacco consumption status, diabetes, hypertension, coronary heart disease and dyslipidemia, elevated SUA level was found to be significantly associated with ischemic stroke only in females (OR = 1.49; 95% CI = 1.01–2.19; p<0.05). Overall, each unit increase in SUA level exhibits 25 percent increment in odds of having ischemic stroke (OR = 1.25; 95% CI = 1.02–1.5372; p<0.05). Conclusion This study concluded that elevated SUA level is significantly associated with the acute phase of an ischemic stroke and gender-specific analysis demonstrates this association only in females.
Collapse
Affiliation(s)
| | - Marium Salwa
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- * E-mail:
| | - Sarmin Sultana
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Mohammad Abdullah Al Mamun
- Department of Epidemiology & Research, National Heart Foundation Hospital & Research Institute, Dhaka, Bangladesh
| | - Nilima Barman
- Department of Laboratory Medicine, Bangladesh Institute of Research and Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| | - M. Atiqul Haque
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
36
|
Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, Borghi C, Piani F, Cara-Fuentes G, Bjornstad P, Lanaspa MA, Johnson RJ. Uric Acid and Hypertension: An Update With Recommendations. Am J Hypertens 2020; 33:583-594. [PMID: 32179896 PMCID: PMC7368167 DOI: 10.1093/ajh/hpaa044] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
The association between increased serum urate and hypertension has been a subject of intense controversy. Extracellular uric acid drives uric acid deposition in gout, kidney stones, and possibly vascular calcification. Mendelian randomization studies, however, indicate that serum urate is likely not the causal factor in hypertension although it does increase the risk for sudden cardiac death and diabetic vascular disease. Nevertheless, experimental evidence strongly suggests that an increase in intracellular urate is a key factor in the pathogenesis of primary hypertension. Pilot clinical trials show beneficial effect of lowering serum urate in hyperuricemic individuals who are young, hypertensive, and have preserved kidney function. Some evidence suggest that activation of the renin-angiotensin system (RAS) occurs in hyperuricemia and blocking the RAS may mimic the effects of xanthine oxidase inhibitors. A reduction in intracellular urate may be achieved by lowering serum urate concentration or by suppressing intracellular urate production with dietary measures that include reducing sugar, fructose, and salt intake. We suggest that these elements in the western diet may play a major role in the pathogenesis of primary hypertension. Studies are necessary to better define the interrelation between uric acid concentrations inside and outside the cell. In addition, large-scale clinical trials are needed to determine if extracellular and intracellular urate reduction can provide benefit hypertension and cardiometabolic disease.
Collapse
Affiliation(s)
- Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | | | - Magdalena Madero
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Dan I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, Alabama, USA
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Piani
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Petter Bjornstad
- Division of Pediatric Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
37
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
38
|
The Impact of Health Resort Treatment on the Nonenzymatic Endogenous Antioxidant System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8423105. [PMID: 32089783 PMCID: PMC7016389 DOI: 10.1155/2020/8423105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/27/2019] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
Abstract
Introduction. Oxygen, reacting with organic compounds in living organisms, oxidizes them without being completely reduced due to numerous exogenous as well as endogenous factors. As a consequence, free radicals or reactive oxygen species are formed. Health resort-based balneophysiotherapy is a comprehensive therapeutic intervention that triggers positive therapeutic effects within the entire system. Material and Methods. The objective of the study was to assess the impact of health resort-based balneophysiotherapy on the levels of nonenzymatic endogenous antioxidants in patients with degenerative motor organ diseases, as well as to determine potential correlation of these changes with free radical-mediated processes. Observation was carried out in patients undergoing health resort therapy as part of 21-day stay periods. The study population consisted of n = 110 patients with articular and spinal pains due to degenerative diseases or discopathies.
Collapse
|
39
|
Serum Uric Acid Level and Outcome of Patients With Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurologist 2019; 24:121-131. [PMID: 31246721 DOI: 10.1097/nrl.0000000000000234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The issue of whether serum uric acid (SUA) is associated with the outcome of acute ischemic stroke is controversial. This study aimed to evaluate the correlation between the SUA level and outcome of patients with ischemic stroke by performing a meta-analysis. MATERIALS AND METHODS Studies were included by a systematic search of several databases through December 01, 2018, followed by reviewing reference lists of obtained articles. Studies that included odds ratios (ORs) for ischemic stroke outcome per unit SUA level with 95% confidence intervals (95% CIs) were eligible for the meta-analysis. A random-effects model was used to calculate the pooled risk estimate. Publication bias was detected by Begg's test. RESULTS Fifteen studies with a total of 12,739 cases of stroke were included. Overall, higher SUA levels were associated with a significantly better outcome of ischemic stroke (OR, 1.13; 95% CI, 1.07-1.18; P<0.00001). For patients receiving thrombolytic therapy, a subgroup meta-analysis showed a positive association between SUA level and patient outcome (OR, 1.26; 95% CI, 1.14-1.40; P<0.00001). In addition, the pooled estimate of patients with a modified Rankin Scale score ≤2 at 90 days also showed a positive association (OR, 1.07; 95% CI, 1.01-1.133; P<0.00001). Furthermore, we found that the average SUA level in patients with a good outcome was higher than in those with a poor outcome (mean difference, 0.24 µmol/L; 95% CI, 0.16-0.32; P<0.00001). CONCLUSIONS This meta-analysis suggested that there was a significant positive association between SUA level and the outcome of ischemic stroke.
Collapse
|
40
|
Tariq MA, Shamim SA, Rana KF, Saeed A, Malik BH. Serum Uric Acid - Risk Factor for Acute Ischemic Stroke and Poor Outcomes. Cureus 2019; 11:e6007. [PMID: 31815071 PMCID: PMC6881082 DOI: 10.7759/cureus.6007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decades several studies among the adult population have attempted to establish a correlation between the risk of stroke incidence and serum uric acid (SUA) concentration, and how these levels influence the patient’s neurological outcome after a stroke. But, to date, the results are conflicting. In this review, an extensive literature search was performed through PubMed for articles published until May 2019 to review the association. The study selection was narrowed by searching PubMed database using the Medical Subject Headings (MesH) and associated keywords. Only articles conducted in English and on human subjects were included. We considered an article for this review if it had statistics on either the incidence, stroke mortality or post-stroke functional outcomes along with serum uric acid levels in adults. This review includes 21 articles with data of 33,580 cases of stroke and 1,100,888 participants. We can divide the articles reviewed into two separate cohorts of studies. One relates serum uric acid levels to stroke frequency and mortality, while the other is associated with serum uric acid and outcomes for stroke survivors. Based on our review, no significant relationship is observed with uric acid exhibiting protective effects on stroke outcome. Large clinical trials are advised to provide well-defined solutions to further assess the benefits of uric acid level lowering treatment in patients of vascular events, such as a stroke. However, we confidently report that increasing uric acid levels poses a higher risk for incidence of stroke.
Collapse
Affiliation(s)
- Muhammad Ali Tariq
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sohaib A Shamim
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Kiran F Rana
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Aisha Saeed
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
41
|
Brovold H, Lund T, Svistounov D, Solbu MD, Jenssen TG, Ytrehus K, Zykova SN. Crystallized but not soluble uric acid elicits pro-inflammatory response in short-term whole blood cultures from healthy men. Sci Rep 2019; 9:10513. [PMID: 31324844 PMCID: PMC6642259 DOI: 10.1038/s41598-019-46935-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Several epidemiological studies have pointed at serum uric acid (SUA) as an independent risk factor for mortality, diabetes, hypertension, cardiovascular and kidney disease; however, no clear pathogenic pathway is established. Uric acid (UA) crystals show pro-inflammatory properties and can thus create or contribute to the state of chronic low-grade inflammation, a widely accepted pathogenic mechanism in several of the above-mentioned pathologies. On the other hand, soluble uric acid possesses antioxidant properties that might attenuate inflammatory responses. We aimed to explore the net effects of experimentally rising SUA in human whole blood cultures on several mediators of inflammation. Production of TNF-α, IL-1ß, IL-1RA, MCP-1 and IL-8 was assessed upon addition of 200 µM UA, 500 µM UA or monosodium urate (MSU) crystals in the presence or absence of 5 ng/ml lipopolysaccharide (LPS). RT-qPCR and multiplex bead based immunoassay were used to measure mRNA expression and cytokine release at 2 and 4 h of culture, respectively. 14C labeled UA was used to assess intracellular uptake of UA. We show that crystallized, but not soluble, UA induces production of pro-inflammatory mediators in human whole blood. Soluble UA is internalized in blood cells but does not potentiate or reduce LPS-induced release of cytokines.
Collapse
Affiliation(s)
- Henrik Brovold
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trine Lund
- Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dmitri Svistounov
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Marit D Solbu
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Trond G Jenssen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Transplantation Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kirsti Ytrehus
- Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svetlana N Zykova
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway. .,Center for Quality Assurance and Development, University Hospital of North Norway, Tromsø, Norway. .,Department of Blood Bank and Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway.
| |
Collapse
|
42
|
Fernández-Gajardo R, Matamala JM, Gutiérrez R, Lozano P, Cortés-Fuentes IA, Sotomayor CG, Bustamante G, Pasten JA, Vargas G, Guerrero R, Reyes P, Cavada G, Feuerhake W, Rodrigo R. Relationship between infarct size and serum uric acid levels during the acute phase of stroke. PLoS One 2019; 14:e0219402. [PMID: 31295304 PMCID: PMC6622494 DOI: 10.1371/journal.pone.0219402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction Uric acid has gained considerable attention as a potential neuroprotective agent in stroke during the last decades, however, its role in the pathophysiology of ischemic stroke remains poorly understood. A serial evaluation of uric acid levels during the acute phase of stroke and its association with infarct size on magnetic resonance imaging is lacking. Methods We present a cohort study of 31 patients with ischemic stroke who were not candidates for thrombolysis according to current criteria at the time. We performed daily measurements of serum uric acid and total antioxidant capacity of plasma during the first week after symptoms onset and 30 days after. Infarct size was determined in the acute phase by a DWI sequence and the final infarct size with a control MRI (FLAIR) at day 30. Results Uric acid significantly decreases between days 2 to 6 compared to day 1, after adjustment by sex, age and DWI at diagnosis, with a nadir value at 72h. A mixed model analysis showed a negative association between DWI at diagnosis and uric acid evolution during the first week after stroke. Moreover, multivariable linear regression of uric acid values during follow up on DWI volumes demonstrated that DWI volume at diagnosis is negatively associated with uric acid levels at day 3 and 4. There were no significant associations between total antioxidant capacity of plasma and DWI at diagnosis, or FLAIR at any point. Discussion Patients with larger infarcts exhibited a significant decrease in serum uric acid levels, accounting for a more prominent reactive oxygen species scavenging activity with subsequent consumption and decay of this antioxidant. The different kinetics of total antioxidant capacity of plasma and serum uric acid levels suggests a specific role of uric acid in the antioxidant response in ischemic stroke.
Collapse
Affiliation(s)
- Rodrigo Fernández-Gajardo
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Manuel Matamala
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Gutiérrez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Ignacio A. Cortés-Fuentes
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camilo G. Sotomayor
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gonzalo Bustamante
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neurology, Clínica Santa María, Santiago, Chile
| | - Juan A. Pasten
- Department of Neurology, Clínica Santa María, Santiago, Chile
| | - Gabriel Vargas
- Department of Neurology, Clínica Santa María, Santiago, Chile
| | | | - Pablo Reyes
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neurology, Clínica Santa María, Santiago, Chile
| | - Gabriel Cavada
- School of Public Health, University of Chile, Santiago, Chile
| | - Walter Feuerhake
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neurology, Clínica Santa María, Santiago, Chile
- * E-mail: (WF); (RR)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail: (WF); (RR)
| |
Collapse
|
43
|
Amaro S, Jiménez-Altayó F, Chamorro Á. Uric acid therapy for vasculoprotection in acute ischemic stroke. Brain Circ 2019; 5:55-61. [PMID: 31334357 PMCID: PMC6611195 DOI: 10.4103/bc.bc_1_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Uric acid (UA) is a product of the catabolism of purine nucleotides, the principal constituents of DNA, RNA, and cellular energy stores, such as adenosine triphosphate. The main properties of UA include scavenging of hydroxyl radicals, superoxide anion, hydrogen peroxide, and peroxynitrite that make this compound to be the most potent antioxidant in the human plasma. As the result of two silencing mutations in the gene of the hepatic enzyme uricase which degrades UA to allantoin, humans have higher levels of UA than most mammals. However, these levels rapidly decrease following an acute ischemic stroke (AIS), and this decrement has been associated to worse stroke outcomes. This review highlights the safety and potential clinical value of UA therapy in AIS, particularly in patients more exposed to redox-mediated mechanism following the onset of ischemia, such as women, hyperglycemic patients, or patients treated with mechanical thrombectomy. The clinical findings are supported by preclinical data gathered in different laboratories, and in assorted animal species which include male and female individuals or animals harboring comorbidities frequently encountered in patients with AIS, such as hyperglycemia or hypertension. A remarkable finding in these studies is that UA targets its main effects in the brain vasculature since available evidence suggests that does not seem to cross the blood–brain barrier. Altogether, the available data with UA therapy extend the importance of vasculoprotection for effective neuroprotection at the bedside and reinforce the role of endothelial cells after brain ischemia for an increased survival of the whole neurovascular unit.
Collapse
Affiliation(s)
- Sergi Amaro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension. Biochem Pharmacol 2019; 164:115-128. [DOI: 10.1016/j.bcp.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
|
45
|
Kim JS. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J Stroke 2019; 21:160-174. [PMID: 31161761 PMCID: PMC6549064 DOI: 10.5853/jos.2019.00584] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only therapeutic agent approved to treat patients with acute ischemic stroke. The clinical benefits of tPA manifest when the agent is administered within 4.5 hours of stroke onset. However, tPA administration, especially delayed administration, is associated with increased intracranial hemorrhage (ICH), hemorrhagic transformation (HT), and mortality. In the ischemic brain, vascular remodeling factors are upregulated and microvascular structures are destabilized. These factors disrupt the blood brain barrier (BBB). Delayed recanalization of the vessels in the presence of relatively matured infarction appears to damage the BBB, resulting in HT or ICH, also known as reperfusion injury. Moreover, tPA itself activates matrix metalloproteases, further aggravating BBB disruption. Therefore, attenuation of edema, HT, or ICH after tPA treatment is an important therapeutic strategy that may enable clinicians to extend therapeutic time and increase the probability of excellent outcomes. Recently, numerous agents with various mechanisms have been developed to interfere with various steps of ischemia/ reperfusion injuries or BBB destabilization. These agents successfully reduce infarct volume and decrease the incidence of ICH and HT after delayed tPA treatment in various animal stroke models. However, only some have entered into clinical trials; the results have been intriguing yet unsatisfactory. In this narrative review, I describe such drugs and discuss the problems and future directions. These “tPA helpers” may be clinically used in the future to increase the efficacy of tPA in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Perez-Gomez MV, Bartsch LA, Castillo-Rodriguez E, Fernandez-Prado R, Kanbay M, Ortiz A. Potential Dangers of Serum Urate-Lowering Therapy. Am J Med 2019; 132:457-467. [PMID: 30611833 DOI: 10.1016/j.amjmed.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
In observational studies, high serum urate levels are associated with adverse outcomes, including mortality. However, the hypothesis that urate-lowering may improve nongout outcomes has not been confirmed by placebo-controlled clinical trials. On the contrary, 7 recent placebo-controlled trials of urate-lowering drugs with different mechanisms of action (uricosuric: lesinurad; xanthine oxidase inhibition: febuxostat; uricase: pegloticase) have observed higher mortality or trends to higher mortality in gout patients, with the largest decreases in serum urate. Because all urate-lowering mechanisms were implicated, this raises safety concerns about urate-lowering itself. Far from unexpected, the higher mortality associated with more intense urate-lowering is in line with the U-shaped association of urate with mortality in some observational studies. Urate accounts for most of the antioxidant capacity of plasma, and strategies to increase urate are undergoing clinical trials in neurological disease. Post hoc analysis of recent trials should explore whether the magnitude of urate-lowering is associated with adverse outcomes, and safety trials are needed before guidelines recommend lowering serum urate below certain thresholds.
Collapse
Affiliation(s)
- Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz Universidad Autónoma Madrid (UAM), Spain; Red de Investigación Renal (REDinREN), Madrid, Spain; Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
| | | | - Esmeralda Castillo-Rodriguez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz Universidad Autónoma Madrid (UAM), Spain; Red de Investigación Renal (REDinREN), Madrid, Spain; Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz Universidad Autónoma Madrid (UAM), Spain; Red de Investigación Renal (REDinREN), Madrid, Spain; Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz Universidad Autónoma Madrid (UAM), Spain; Red de Investigación Renal (REDinREN), Madrid, Spain; Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain.
| |
Collapse
|
47
|
Sidorov E, Sanghera DK, Vanamala JKP. Biomarker for Ischemic Stroke Using Metabolome: A Clinician Perspective. J Stroke 2019; 21:31-41. [PMID: 30732441 PMCID: PMC6372900 DOI: 10.5853/jos.2018.03454] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Finding ischemic stroke biomarker is highly desirable because it can improve diagnosis even before a patient arrives to the hospital. Metabolome is one of new technologies that help to find biomarkers. Most metabolome-related ischemic stroke studies were done in Asia and had exploratory designs. Although failed to find specific biomarkers, they discovered several important metabolite-stroke associations which belong to three pathophysiological mechanisms: Excitotoxicity with activation of glutamate, resulting in the increase of glutamate derivatives proline and pyroglutamate; Oxidative stress with production of free radicals and perturbed concentrations of uric acid, matrix metalloproteinase-9, branch-chained amino acids, sphingolipids, homocysteine, asymmetric dimethylarginine, nitric oxide and folate cycle metabolites; and Stroke mediated inflammation, affecting phospholipid metabolism with perturbed levels of lysophosphatidylethanolamine and lysophosphatidylcholine. The discovered metabolite-stroke associations need further evaluation in prospective, high-quality studies with patients matched for age, risk factors, and medications.
Collapse
Affiliation(s)
- Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jairam K P Vanamala
- Department of Plant Science, Penn State University, University Park, PA, USA.,Department of Food Science/Center for Molecular Immunology and Infectious Diseases, Penn State University, University Park, PA, USA
| |
Collapse
|
48
|
Cutler RG, Camandola S, Feldman NH, Yoon JS, Haran JB, Arguelles S, Mattson MP. Uric acid enhances longevity and endurance and protects the brain against ischemia. Neurobiol Aging 2018; 75:159-168. [PMID: 30576885 DOI: 10.1016/j.neurobiolaging.2018.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/13/2018] [Accepted: 10/28/2018] [Indexed: 01/12/2023]
Abstract
Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/- mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/- mice, but not wild-type mice, and the endurance of the UOX+/- mice is significantly greater than wild-type mice. UOX+/- mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/- mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.
Collapse
Affiliation(s)
- Roy G Cutler
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Neil H Feldman
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Jeong Seon Yoon
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - James B Haran
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Sandro Arguelles
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Shi L, Rocha M, Leak RK, Zhao J, Bhatia TN, Mu H, Wei Z, Yu F, Weiner SL, Ma F, Jovin TG, Chen J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J Cereb Blood Flow Metab 2018; 38:2073-2091. [PMID: 30191760 PMCID: PMC6282224 DOI: 10.1177/0271678x18798162] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on "neuroprotectants" (1990-2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%-80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Collapse
Affiliation(s)
- Ligen Shi
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Marcelo Rocha
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jingyan Zhao
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hongfeng Mu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan L Weiner
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Feifei Ma
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tudor G Jovin
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|