1
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Wu J, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Xu X, Zhang M. Neurovascular coupling alteration in drug-naïve Parkinson's disease: The underlying molecular mechanisms and levodopa's restoration effects. Neurobiol Dis 2024; 191:106406. [PMID: 38199273 DOI: 10.1016/j.nbd.2024.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianshi Zheng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Aucoin R, Lewthwaite H, Ekström M, von Leupoldt A, Jensen D. Impact of trigeminal nerve and/or olfactory nerve stimulation on activity of human brain regions involved in the perception of breathlessness. Respir Physiol Neurobiol 2023; 311:104036. [PMID: 36804472 DOI: 10.1016/j.resp.2023.104036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Breathlessness is a centrally processed symptom, as evidenced by activation of distinct brain regions such as the insular cortex and amygdala, during the anticipation and/or perception of breathlessness. Inhaled L-menthol or blowing cool air to the face/nose, both selective trigeminal nerve (TGN) stimulants, relieve breathlessness without concurrent improvements in physiological outcomes (e.g., breathing pattern), suggesting a possible but hitherto unexplored central mechanism of action. Four databases were searched to identify published reports supporting a link between TGN stimulation and activation of brain regions involved in the anticipation and/or perception of breathlessness. The collective results of the 29 studies demonstrated that TGN stimulation activated 12 brain regions widely implicated in the anticipation and/or perception of breathlessness, including the insular cortex and amygdala. Inhaled L-menthol or cool air to the face activated 75% and 33% of these 12 brain regions, respectively. Our findings support the hypothesis that TGN stimulation contributes to breathlessness relief by altering the activity of brain regions involved in its central neural processing.
Collapse
Affiliation(s)
- Rachelle Aucoin
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada.
| | - Hayley Lewthwaite
- College of Engineering, Science and Environment, School of Environment & Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia
| | - Magnus Ekström
- Department of Respiratory Medicine, Allergology and Palliative Medicine, Institution for Clinical Sciences in Lund, Lund University, SE-221 00 Lund, Sweden
| | - Andreas von Leupoldt
- Health Psychology, University of Leuven, Tiensestraat 102 Box 3726, 3000 Leuven, Belgium
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada; Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, 2155 Guy Street Suite 500, Montréal, Quebec H3H 2R9, Canada
| |
Collapse
|
3
|
Karunakaran KD, Kussman BD, Peng K, Becerra L, Labadie R, Bernier R, Berry D, Green S, Zurakowski D, Alexander ME, Borsook D. Brain-based measures of nociception during general anesthesia with remifentanil: A randomized controlled trial. PLoS Med 2022; 19:e1003965. [PMID: 35452458 PMCID: PMC9075662 DOI: 10.1371/journal.pmed.1003965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Catheter radiofrequency (RF) ablation for cardiac arrhythmias is a painful procedure. Prior work using functional near-infrared spectroscopy (fNIRS) in patients under general anesthesia has indicated that ablation results in activity in pain-related cortical regions, presumably due to inadequate blockade of afferent nociceptors originating within the cardiac system. Having an objective brain-based measure for nociception and analgesia may in the future allow for enhanced analgesic control during surgical procedures. Hence, the primary aim of this study is to demonstrate that the administration of remifentanil, an opioid widely used during surgery, can attenuate the fNIRS cortical responses to cardiac ablation. METHODS AND FINDINGS We investigated the effects of continuous remifentanil on cortical hemodynamics during cardiac ablation under anesthesia. In a randomized, double-blinded, placebo (PL)-controlled trial, we examined 32 pediatric patients (mean age of 15.8 years,16 females) undergoing catheter ablation for cardiac arrhythmias at the Cardiology Department of Boston Children's Hospital from October 2016 to March 2020; 9 received 0.9% NaCl, 12 received low-dose (LD) remifentanil (0.25 mcg/kg/min), and 11 received high-dose (HD) remifentanil (0.5 mcg/kg/min). The hemodynamic changes of primary somatosensory and prefrontal cortices were recorded during surgery using a continuous wave fNIRS system. The primary outcome measures were the changes in oxyhemoglobin concentration (NadirHbO, i.e., lowest oxyhemoglobin concentration and PeakHbO, i.e., peak change and area under the curve) of medial frontopolar cortex (mFPC), lateral prefrontal cortex (lPFC) and primary somatosensory cortex (S1) to ablation in PL versus remifentanil groups. Secondary measures included the fNIRS response to an auditory control condition. The data analysis was performed on an intention-to-treat (ITT) basis. Remifentanil group (dosage subgroups combined) was compared with PL, and a post hoc analysis was performed to identify dose effects. There were no adverse events. The groups were comparable in age, sex, and number of ablations. Results comparing remifentanil versus PL show that PL group exhibit greater NadirHbO in inferior mFPC (mean difference (MD) = 1.229, 95% confidence interval [CI] = 0.334, 2.124, p < 0.001) and superior mFPC (MD = 1.206, 95% CI = 0.303, 2.109, p = 0.001) and greater PeakHbO in inferior mFPC (MD = -1.138, 95% CI = -2.062, -0.214, p = 0.002) and superior mFPC (MD = -0.999, 95% CI = -1.961, -0.036, p = 0.008) in response to ablation. S1 activation from ablation was greatest in PL, then LD, and HD groups, but failed to reach significance, whereas lPFC activation to ablation was similar in all groups. Ablation versus auditory stimuli resulted in higher PeakHbO in inferior mFPC (MD = 0.053, 95% CI = 0.004, 0.101, p = 0.004) and superior mFPC (MD = 0.052, 95% CI = 0.013, 0.091, p < 0.001) and higher NadirHbO in posterior superior S1 (Pos. SS1; MD = -0.342, 95% CI = -0.680, -0.004, p = 0.007) during ablation of all patients. Remifentanil group had smaller NadirHbO in inferior mFPC (MD = 0.098, 95% CI = 0.009, 0.130, p = 0.003) and superior mFPC (MD = 0.096, 95% CI = 0.008, 0.116, p = 0.003) and smaller PeakHbO in superior mFPC (MD = -0.092, 95% CI = -0.680, -0.004, p = 0.007) during both the stimuli. Study limitations were small sample size, motion from surgery, indirect measure of nociception, and shallow penetration depth of fNIRS only allowing access to superficial cortical layers. CONCLUSIONS We observed cortical activity related to nociception during cardiac ablation under general anesthesia with remifentanil. It highlights the potential of fNIRS to provide an objective pain measure in unconscious patients, where cortical-based measures may be more accurate than current evaluation methods. Future research may expand on this application to produce a real-time indication of pain that will aid clinicians in providing immediate and adequate pain treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02703090.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barry D. Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ke Peng
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Département en Neuroscience, Centre de Recherche du CHUM, l’Université de Montréal Montreal, Québec, Canada
| | - Lino Becerra
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Labadie
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel Bernier
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Green
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Zurakowski
- Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark E. Alexander
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Borsook
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
5
|
Abstract
Blood oxygen level dependent (BOLD) fMRI is a common technique for measuring brain activation that could be affected by low-level carbon monoxide (CO) exposure from, e.g. smoking. This study aimed to probe the vulnerability of BOLD fMRI to CO and determine whether it may constitute a significant neuroimaging confound. Low-level (6 ppm exhaled) CO effects on BOLD response were assessed in 12 healthy never-smokers on two separate experimental days (CO and air control). fMRI tasks were breath-holds (hypercapnia), visual stimulation and fingertapping. BOLD fMRI response was lower during breath holds, visual stimulation and fingertapping in the CO protocol compared to the air control protocol. Behavioural and physiological measures remained unchanged. We conclude that BOLD fMRI might be vulnerable to changes in baseline CO, and suggest exercising caution when imaging populations exposed to elevated CO levels. Further work is required to fully elucidate the impact on CO on fMRI and its underlying mechanisms.
Collapse
Affiliation(s)
- Caroline Bendell
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Shakeeb H Moosavi
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Mari Herigstad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
6
|
Ayad S, Khanna AK, Iqbal SU, Singla N. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations. Br J Anaesth 2019; 123:378-391. [DOI: 10.1016/j.bja.2019.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023] Open
|
7
|
Van Grootel TJ, Meeson A, Munk MHJ, Kourtzi Z, Movshon JA, Logothetis NK, Kiorpes L. Development of visual cortical function in infant macaques: A BOLD fMRI study. PLoS One 2017; 12:e0187942. [PMID: 29145469 PMCID: PMC5690606 DOI: 10.1371/journal.pone.0187942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level.
Collapse
Affiliation(s)
- Tom J Van Grootel
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Neural Science, New York University, New York, United States of America
| | - Alan Meeson
- Behavioural and Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | | | - Zoe Kourtzi
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Behavioural and Brain Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, United States of America
| | | | - Lynne Kiorpes
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Neural Science, New York University, New York, United States of America
| |
Collapse
|
8
|
Hayen A, Wanigasekera V, Faull OK, Campbell SF, Garry PS, Raby SJM, Robertson J, Webster R, Wise RG, Herigstad M, Pattinson KTS. Opioid suppression of conditioned anticipatory brain responses to breathlessness. Neuroimage 2017; 150:383-394. [PMID: 28062251 PMCID: PMC5391989 DOI: 10.1016/j.neuroimage.2017.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/27/2016] [Accepted: 01/02/2017] [Indexed: 01/20/2023] Open
Abstract
Opioid painkillers are a promising treatment for chronic breathlessness, but are associated with potentially fatal side effects. In the treatment of breathlessness, their mechanisms of action are unclear. A better understanding might help to identify safer alternatives. Learned associations between previously neutral stimuli (e.g. stairs) and repeated breathlessness induce an anticipatory threat response that may worsen breathlessness, contributing to the downward spiral of decline seen in clinical populations. As opioids are known to influence associative learning, we hypothesized that they may interfere with the brain processes underlying a conditioned anticipatory response to breathlessness in relevant brain areas, including the amygdala and the hippocampus. Healthy volunteers viewed visual cues (neutral stimuli) immediately before induction of experimental breathlessness with inspiratory resistive loading. Thus, an association was formed between the cue and breathlessness. Subsequently, this paradigm was repeated in two identical neuroimaging sessions with intravenous infusions of either low-dose remifentanil (0.7 ng/ml target-controlled infusion) or saline (randomised). During saline infusion, breathlessness anticipation activated the right anterior insula and the adjacent operculum. Breathlessness was associated with activity in a network including the insula, operculum, dorsolateral prefrontal cortex, anterior cingulate cortex and the primary sensory and motor cortices. Remifentanil reduced breathlessness unpleasantness but not breathlessness intensity. Remifentanil depressed anticipatory activity in the amygdala and the hippocampus that correlated with reductions in breathlessness unpleasantness. During breathlessness, remifentanil decreased activity in the anterior insula, anterior cingulate cortex and sensory motor cortices. Remifentanil-induced reduction in breathlessness unpleasantness was associated with increased activity in the rostral anterior cingulate cortex and nucleus accumbens, components of the endogenous opioid system known to decrease the perception of aversive stimuli. These findings suggest that in addition to effects on brainstem respiratory control, opioids palliate breathlessness through an interplay of altered associative learning mechanisms. These mechanisms provide potential targets for novel ways to develop and assess treatments for chronic breathlessness. The mechanisms of how low-dose opioids relieve breathlessness are unknown. We tested whether low-dose opioids affect conditioned anticipation and perception of breathlessness. Low-dose opioids reduced unpleasantness, but not intensity of breathlessness. Reduced breathlessness unpleasantness was associated with activation of the endogenous opioid system. Breathlessness relief was predicted by decreased anticipatory activity in amygdala/hippocampus.
Collapse
Affiliation(s)
- Anja Hayen
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK; Department of Psychology, University of Reading, Reading, UK.
| | - Vishvarani Wanigasekera
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK; Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Olivia K Faull
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Stewart F Campbell
- Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Payashi S Garry
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Simon J M Raby
- Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Josephine Robertson
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Ruth Webster
- Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mari Herigstad
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Kyle T S Pattinson
- Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK; Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
9
|
Ravi H, Liu P, Peng SL, Liu H, Lu H. Simultaneous multi-slice (SMS) acquisition enhances the sensitivity of hemodynamic mapping using gas challenges. NMR IN BIOMEDICINE 2016; 29:1511-1518. [PMID: 27598821 PMCID: PMC5123823 DOI: 10.1002/nbm.3600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Hemodynamic mapping using gas inhalation has received increasing interest in recent years. Cerebrovascular reactivity (CVR), which reflects the ability of the brain vasculature to dilate in response to a vasoactive stimulus, can be measured by CO2 inhalation with continuous acquisition of blood oxygen level-dependent (BOLD) magnetic resonance images. Cerebral blood volume (CBV) can be measured by O2 inhalation. These hemodynamic mapping methods are appealing because of their absence of gadolinium contrast agent, their ability to assess both baseline perfusion and vascular reserve, and their utility in calibrating the functional magnetic resonance imaging (fMRI) signal. However, like other functional and physiological indices, a major drawback of these measurements is their poor sensitivity and reliability. Simultaneous multi-slice echo planar imaging (SMS EPI) is a fast imaging technology that allows the excitation and acquisition of multiple two-dimensional slices simultaneously, and has been shown to enhance the sensitivity of several MRI applications. To our knowledge, the benefit of SMS in gas inhalation imaging has not been investigated. In this work, we compared the sensitivity of CO2 and O2 inhalation data collected using SMS factor 2 (SMS2) and SMS factor 3 (SMS3) with those collected using conventional EPI (SMS1). We showed that the sensitivity of SMS scans was significantly (p = 0.01) higher than that of conventional EPI, although no difference was found between SMS2 and SMS3 (p = 0.3). On a voxel-wise level, approximately 20-30% of voxels in the brain showed a significant enhancement in sensitivity when using SMS compared with conventional EPI, with other voxels showing an increase, but not reaching statistical significance. When using SMS, the scan duration can be reduced by half, whilst maintaining the sensitivity of conventional EPI. The availability of a sensitive acquisition technique can further enhance the potential of gas inhalation MRI in clinical applications.
Collapse
Affiliation(s)
- Harshan Ravi
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shin-Lei Peng
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
|
11
|
Kaplan R, Adhikari MH, Hindriks R, Mantini D, Murayama Y, Logothetis NK, Deco G. Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network. Curr Biol 2016; 26:686-91. [PMID: 26898464 PMCID: PMC4791429 DOI: 10.1016/j.cub.2016.01.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022]
Abstract
The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1, 2, 3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]—particularly in DMN regions [6, 7, 8]. Mechanistic support for the DMN’s role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples—both during sleep [9, 10] and awake deliberative periods [11, 12, 13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16, 17, 18, 19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20, 21, 22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24, 25, 26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs—like the DMN—unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics. Behavioral relevance of offline fluctuations in the default mode network is unclear Hippocampal sharp-wave ripples during rest are linked with memory consolidation Default mode network signal increases after ripples, but not other hippocampal events Other neocortical resting-state networks do not show similar changes after ripples
Collapse
Affiliation(s)
- Raphael Kaplan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK; Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.
| | - Mohit H Adhikari
- Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
| | - Rikkert Hindriks
- Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
| | - Dante Mantini
- Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium
| | - Yusuke Murayama
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
12
|
Lloyd DM, Helbig T, Findlay G, Roberts N, Nurmikko T. Brain Areas Involved in Anticipation of Clinically Relevant Pain in Low Back Pain Populations With High Levels of Pain Behavior. THE JOURNAL OF PAIN 2016; 17:577-87. [PMID: 26844417 DOI: 10.1016/j.jpain.2016.01.470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/19/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED The purpose of this study was to identify neural correlates of pain anticipation in people with nonspecific low back pain (NSLBP) that correlated with pain-related distress and disability, thus providing evidence for mechanisms underlying pain behavior in this population. Thirty NSLBP sufferers, with either high levels of pain behavior or low levels on the basis of Waddell signs, were scanned with functional magnetic resonance imaging while a straight-leg raise (of the side deemed to cause moderate pain in the lower back) was performed. On each trial colored stimuli were presented and used to indicate when the leg definitely would be raised (green; 100% certainty), might be raised (yellow; 50% certainty), or would definitely not be raised (red; 100% certainty). In response to expected versus unexpected pain the group difference in activation between patients with high levels of pain behavior and low levels of pain behavior covaried as a function of anxiety scores in the right insula and pregenual anterior cingulate cortex and as a function of catastrophizing in prefrontal and parietal cortex and hippocampus. The results suggest NSLBP populations with the highest levels of pain-related distress are more likely to attend to and infer threat from innocuous cues, which may contribute to the maintenance of pain behavior associated with some chronic pain states. PERSPECTIVE This article shows a likely neural network for exacerbating pain anticipation in NSLBP contributing to high levels of pain behavior in some people. This information could potentially help clinicians and patients to understand how anticipation of pain may contribute to patient pain and disability.
Collapse
Affiliation(s)
- Donna M Lloyd
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom; Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, Liverpool, United Kingdom.
| | - Torben Helbig
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Gordon Findlay
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Neil Roberts
- Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, Liverpool, United Kingdom; Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Turo Nurmikko
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
13
|
Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, Deco G. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 2015; 127:242-256. [PMID: 26631813 PMCID: PMC4758830 DOI: 10.1016/j.neuroimage.2015.11.055] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022] Open
Abstract
During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI) has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the analysis of changes of functional connectivity within sessions. Although several studies have reported the presence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI recordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions. We mainly focus on sliding-window correlations since these are most widely used in assessing dFC, but also consider a recently proposed non-linear measure. The simulations and methodology, however, are general and can be applied to any measure. The results are twofold. First, through simulations, we show that in typical resting-state sessions of 10 min, it is almost impossible to detect dFC using sliding-window correlations. This prediction is validated by both the macaque and the human data: in none of the individual recording sessions was evidence for dFC found. Second, detection power can be considerably increased by session- or subject-averaging of the measures. In doing so, we found that most of the functional connections are in fact dynamic. With this study, we hope to raise awareness of the statistical pitfalls in the assessment of dFC and how they can be avoided by using appropriate statistical methods.
Collapse
Affiliation(s)
- R Hindriks
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | - M H Adhikari
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Y Murayama
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - M Ganzetti
- Department of Health Sciences and Technology, ETH Zurich, Switzerland; Department of Experimental Psychology, University of Oxford, United Kingdom
| | - D Mantini
- Department of Health Sciences and Technology, ETH Zurich, Switzerland; Department of Experimental Psychology, University of Oxford, United Kingdom
| | - N K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Instituci Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Leung J, Kim JA, Kassner A. Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI. J Magn Reson Imaging 2015; 43:1191-5. [PMID: 26435493 DOI: 10.1002/jmri.25063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the reproducibility of cerebrovascular reactivity (CVR) measurements acquired in children using magnetic resonance imaging (MRI) in combination with a computer-controlled carbon dioxide (CO2 ) stimulus. MATERIALS AND METHODS Ten healthy children (age 16.1 ± 1.6 years) underwent CVR imaging on a 3T scanner using a blood-oxygen level-dependent (BOLD) MRI sequence. Targeted hypercapnia was induced during imaging with a CO2 gas challenge delivered using a specialized gas sequencer (RespirAct). A total of four BOLD scans were performed over 2 separate days to test within-day and between-day consistency of the data. CVR values were computed by correlating the relative change in BOLD signal in response to the CO2 stimulus delivered to the each subject. RESULTS Intraclass correlation coefficients (ICCs) of within-day values show highly reproducible measures in both the gray matter (ICC = 0.857, P < 0.001) and white matter (ICC = 0.895, P < 0.001). Relatively lower between-day reproducibility was observed in both the gray matter (ICC = 0.776, P = 0.001) and white matter (ICC = 0.719, P = 0.004). CONCLUSION Using a computer-controlled CO2 stimulus, we have demonstrated the reliability of BOLD-CVR measurements in pediatric subjects. Within-day and between-day metrics of reproducibility were comparable to adult data.
Collapse
Affiliation(s)
- Jackie Leung
- Department of Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Junseok A Kim
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- Department of Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Ravi H, Thomas BP, Peng SL, Liu H, Lu H. On the optimization of imaging protocol for the mapping of cerebrovascular reactivity. J Magn Reson Imaging 2015; 43:661-8. [PMID: 26268541 DOI: 10.1002/jmri.25028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To devise an improved blood-oxygen-level-dependent (BOLD) imaging protocol for cerebrovascular reactivity (CVR) measurement that can remove a known artifact of negative values. METHODS Theoretical and simulation studies were first performed to understand the biophysical mechanism of the negative CVR signals, through which improved BOLD sequence parameters were proposed. This was achieved by equating signal intensities between cerebrospinal fluid and blood, by means of shortening the echo time (TE) of the BOLD sequence. Then, 10 healthy volunteers were recruited to participate in an experimental study, in which we compared the CVR results of two versions of the optimized ("Opt1" and "Opt2") protocols with that of the standard protocol at 3 Tesla. Two sessions were performed for each subject to test the reproducibility of all three protocols. RESULTS Experimental results demonstrated that the optimized protocols resulted in elimination of negative-CVR voxels. Quantitative CVR results were compared across protocols, which show that the optimized protocols yielded smaller CVR values (Opt1: 0.16 ± 0.01 %BOLD/mmHg CO2 ; Opt2: 0.15 ± 0.01 %BOLD/mmHg CO2 ) than (P < 0.001) the standard protocol (0.21 ± 0.01 %BOLD/mmHg CO2 ), but the CNR was comparable (P = 0.1) to the standard protocol. The coefficient-of-variation between repetitions was found to be 5.6 ± 1.4%, 6.3 ± 1.6%, and 6.9 ± 0.9% for the three protocols, but there were no significant differences (P = 0.65). CONCLUSION Based on the theoretical and experimental results obtained from this study, we suggest that the use of a TE shorter than those used in fMRI is necessary to minimize negative artifact in CVR results.
Collapse
Affiliation(s)
- Harshan Ravi
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Shin-Lei Peng
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Bourke JH, Wall MB. phMRI: methodological considerations for mitigating potential confounding factors. Front Neurosci 2015; 9:167. [PMID: 25999812 PMCID: PMC4423340 DOI: 10.3389/fnins.2015.00167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Pharmacological Magnetic Resonance Imaging (phMRI) is a variant of conventional MRI that adds pharmacological manipulations in order to study the effects of drugs, or uses pharmacological probes to investigate basic or applied (e.g., clinical) neuroscience questions. Issues that may confound the interpretation of results from various types of phMRI studies are briefly discussed, and a set of methodological strategies that can mitigate these problems are described. These include strategies that can be employed at every stage of investigation, from study design to interpretation of resulting data, and additional techniques suited for use with clinical populations are also featured. Pharmacological MRI is a challenging area of research that has both significant advantages and formidable difficulties, however with due consideration and use of these strategies many of the key obstacles can be overcome.
Collapse
Affiliation(s)
- Julius H Bourke
- Centre for Psychiatry, The London School of Medicine and Dentistry, Wolfson Barts Institute for Preventive Medicine, Queen Mary University of London London, UK
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences, Imperial College London, Hammersmith Hospital London, UK ; Division of Brain Sciences, Imperial College London London, UK
| |
Collapse
|
17
|
Zhou Y, Rodgers ZB, Kuo AH. Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging 2015; 33:566-76. [PMID: 25708263 DOI: 10.1016/j.mri.2015.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. MATERIALS AND METHODS Sixteen healthy volunteers (age: 37.8±14.3years; 6 women and 10 men; education attainment: 17±2.1years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. RESULTS The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11±0.87%/mmHg in gray matter (GM) and 4.64±0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04%/mmHg and 0.22±0.04%/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8%/mmHg versus 4.5%/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64%/mmHg per decade for GM. CONCLUSION Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Anderson H Kuo
- Department of Radiology, University of Texas South Medical Center, San Antonio, TX
| |
Collapse
|
18
|
Brain P, Strimenopoulou F, Diukova A, Berry E, Jolly A, Hall JE, Wise RG, Ivarsson M, Wilson FJ. Extracting drug mechanism and pharmacodynamic information from clinical electroencephalographic data using generalised semi-linear canonical correlation analysis. Physiol Meas 2014; 35:2459-74. [PMID: 25402261 DOI: 10.1088/0967-3334/35/12/2459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conventional analysis of clinical resting electroencephalography (EEG) recordings typically involves assessment of spectral power in pre-defined frequency bands at specific electrodes. EEG is a potentially useful technique in drug development for measuring the pharmacodynamic (PD) effects of a centrally acting compound and hence to assess the likelihood of success of a novel drug based on pharmacokinetic-pharmacodynamic (PK-PD) principles. However, the need to define the electrodes and spectral bands to be analysed a priori is limiting where the nature of the drug-induced EEG effects is initially not known. We describe the extension to human EEG data of a generalised semi-linear canonical correlation analysis (GSLCCA), developed for small animal data. GSLCCA uses data from the whole spectrum, the entire recording duration and multiple electrodes. It provides interpretable information on the mechanism of drug action and a PD measure suitable for use in PK-PD modelling. Data from a study with low (analgesic) doses of the μ-opioid agonist, remifentanil, in 12 healthy subjects were analysed using conventional spectral edge analysis and GSLCCA. At this low dose, the conventional analysis was unsuccessful but plausible results consistent with previous observations were obtained using GSLCCA, confirming that GSLCCA can be successfully applied to clinical EEG data.
Collapse
Affiliation(s)
- P Brain
- Pfizer Limited, Ramsgate Road, Sandwich, CT13 9NJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Illness behavior in patients with chronic low back pain and activation of the affective circuitry of the brain. Psychosom Med 2014; 76:413-21. [PMID: 24977349 DOI: 10.1097/psy.0000000000000076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Patients with chronic low back pain (cLBP) show a range of behavioral patterns that do not correlate with degree of spinal abnormality found in clinical, radiological, neurophysiological, or laboratory investigations. This may indicate an augmented central pain response, consistent with factors that mediate and maintain psychological distress in this group. METHODS Twenty-four cLBP patients were scanned with functional magnetic resonance imaging while receiving noxious thermal stimulation to the right hand. Patients were clinically assessed into those with significant pain-related illness behavior (Waddell signs [WS]-H) or without (WS-L) based on WS. RESULTS Our findings revealed a significant increase in brain activity in WS-H versus WS-L patients in response to noxious heat in the right amygdala/parahippocampal gyrus and ventrolateral prefrontal and insular cortex (at a VoxelPThreshold = 0.01). We found no difference between groups for heat pain thresholds (t(22) = -1.17, p = .28) or sensory-discriminative pain regions. CONCLUSIONS Patients with cLBP displaying major pain behavior have increased activity in the emotional circuitry of the brain. This study is the first to suggest an association between a specific clinical test in cLBP and neurobiology of the brain. Functional magnetic resonance imaging may provide a tool capable of enhancing diagnostic accuracy and affecting treatment decisions in cases where no structural cause can be identified.
Collapse
|
21
|
Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, Pietras J, Grand S, Le Bas JF, Warnking J. Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013; 94:1259-78. [PMID: 24011870 DOI: 10.1016/j.diii.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional imaging of perfusion enables the study of its properties such as the vasoreactivity to circulating gases, the autoregulation and the neurovascular coupling. Downstream from arterial stenosis, this imaging can estimate the vascular reserve and the risk of ischemia in order to adapt the therapeutic strategy. This method reveals the hemodynamic disorders in patients suffering from Alzheimer's disease or with arteriovenous malformations revealed by epilepsy. Functional MRI of the vasoreactivity also helps to better interpret the functional MRI activation in practice and in clinical research.
Collapse
Affiliation(s)
- A Krainik
- Clinique universitaire de neuroradiologie et IRM, CHU de Grenoble, CS 10217, 38043 Grenoble cedex, France; Inserm U836, université Joseph-Fourier, site santé, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; UMS IRMaGe, unité IRM 3T recherche, CHU de Grenoble, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Harrison AH, Connolly JF. Finding a way in: A review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness. Neurosci Biobehav Rev 2013; 37:1403-19. [PMID: 23680699 DOI: 10.1016/j.neubiorev.2013.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023]
|
23
|
Lee MC, Wanigasekera V, Tracey I. Imaging opioid analgesia in the human brain and its potential relevance for understanding opioid use in chronic pain. Neuropharmacology 2013; 84:123-30. [PMID: 23891639 PMCID: PMC4067746 DOI: 10.1016/j.neuropharm.2013.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 01/09/2023]
Abstract
Opioids play an important role for the management of acute pain and in palliative care. The role of long-term opioid therapy in chronic non-malignant pain remains unclear and is the focus of much clinical research. There are concerns regarding analgesic tolerance, paradoxical pain and issues with dependence that can occur with chronic opioid use in the susceptible patient. In this review, we discuss how far human neuroimaging research has come in providing a mechanistic understanding of pain relief provided by opioids, and suggest avenues for further studies that are relevant to the management of chronic pain with opioids. This article is part of the Special Issue Section entitled ‘Neuroimaging in Neuropharmacology’. Brain mechanisms are crucial to opioid analgesia in humans. Opioids can have a direct effect on brain mechanisms for pain perception. Opioids can also engage descending inhibition of spinal nociception. Drug-induced tolerance, dependence and paradoxical pain may limit chronic opioid analgesic therapy.
Collapse
Affiliation(s)
- Michael C Lee
- Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurology and Nuffield Department of Clinical Neurosciences, Division of Anaesthesia, United Kingdom.
| | - Vishvarani Wanigasekera
- Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurology and Nuffield Department of Clinical Neurosciences, Division of Anaesthesia, United Kingdom
| | - Irene Tracey
- Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurology and Nuffield Department of Clinical Neurosciences, Division of Anaesthesia, United Kingdom.
| |
Collapse
|
24
|
Khalili-Mahani N, van Osch MJ, de Rooij M, Beckmann CF, van Buchem MA, Dahan A, van Gerven JM, Rombouts SARB. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies. Hum Brain Mapp 2012; 35:929-42. [PMID: 23281174 DOI: 10.1002/hbm.22224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/08/2012] [Accepted: 10/22/2012] [Indexed: 01/28/2023] Open
Abstract
Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, Johansen-Berg H, Jones DK, Rocca MA, Wise RG, Barkhof F, Palace J. Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 2012; 8:635-46. [PMID: 22986429 PMCID: PMC3770511 DOI: 10.1038/nrneurol.2012.179] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of therapeutic strategies that promote functional recovery is a major goal of multiple sclerosis (MS) research. Neuroscientific and methodological advances have improved our understanding of the brain's recovery from damage, generating novel hypotheses about potential targets and modes of intervention, and laying the foundation for development of scientifically informed recovery-promoting strategies in interventional studies. This Review aims to encourage the transition from characterization of recovery mechanisms to development of strategies that promote recovery in MS. We discuss current evidence for functional reorganization that underlies recovery and its implications for development of new recovery-oriented strategies in MS. Promotion of functional recovery requires an improved understanding of recovery mechanisms that can be modulated by interventions and the development of robust measurements of therapeutic effects. As imaging methods can be used to measure functional and structural alterations associated with recovery, this Review discusses their use to obtain reliable markers of the effects of interventions.
Collapse
|
26
|
Hayen A, Herigstad M, Kelly M, Okell TW, Murphy K, Wise RG, Pattinson KTS. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation. Neuroimage 2012; 66:479-88. [PMID: 23108273 PMCID: PMC3547172 DOI: 10.1016/j.neuroimage.2012.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 11/19/2022] Open
Abstract
Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9cmH2O for 270s) and viewed an intermittent 2Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data.
Collapse
Affiliation(s)
- Anja Hayen
- Nuffield Division of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Mari Herigstad
- Nuffield Division of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Michael Kelly
- Nuffield Division of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Thomas W Okell
- Nuffield Division of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, CF10 3AT, Cardiff, UK.
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, CF10 3AT, Cardiff, UK.
| | - Kyle T S Pattinson
- Nuffield Division of Anaesthetics and Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
27
|
Lee MC, Wanigasekera V, Tracey I. Imaging opioid analgesia in the human brain. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2012. [DOI: 10.1016/j.tacc.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Peng T, Niazy R, Payne SJ, Wise RG. The effects of respiratory CO2 fluctuations in the resting-state BOLD signal differ between eyes open and eyes closed. Magn Reson Imaging 2012; 31:336-45. [PMID: 22921940 DOI: 10.1016/j.mri.2012.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/24/2012] [Indexed: 11/16/2022]
Abstract
Resting fluctuations in arterial CO2 (a cerebral vasodilator) are believed to be an important source of low-frequency blood oxygenation level dependent (BOLD) signal fluctuations. In this study we focus on the two commonly used resting-states in functional magnetic resonance imaging experiments, eyes open and eyes closed, and quantify the degree to which measured spontaneous fluctuations in the partial pressure of end-tidal CO2 (Petco2) relate to BOLD signal time series. A significantly longer latency of BOLD signal changes following Petco2 fluctuations was found in the eyes closed condition compared to with eyes open, which may reveal different intrinsic vascular response delays in CO2 reactivity or an alteration in the net BOLD signal arising from Petco2 fluctuations and altered neural activity with eyes closed. By allowing a spatially varying time delay for the compensation of this temporal difference, a more spatially consistent CO2 correlation map can be obtained. Finally, Granger-causality analysis demonstrated a "causal" relationship between Petco2 and BOLD. The identified dominant Petco2→BOLD directional coupling supports the notion that Petco2 fluctuations are indeed a cause of resting BOLD variance in the majority of subjects.
Collapse
Affiliation(s)
- Tingying Peng
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
29
|
Jensen D, Alsuhail A, Viola R, Dudgeon DJ, Webb KA, O'Donnell DE. Inhaled fentanyl citrate improves exercise endurance during high-intensity constant work rate cycle exercise in chronic obstructive pulmonary disease. J Pain Symptom Manage 2012; 43:706-19. [PMID: 22168961 DOI: 10.1016/j.jpainsymman.2011.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/09/2011] [Accepted: 05/18/2011] [Indexed: 10/14/2022]
Abstract
CONTEXT Activity limitation and dyspnea are the dominant symptoms of chronic obstructive pulmonary disease (COPD). Traditionally, efforts to alleviate these symptoms have focused on improving ventilatory mechanics, reducing ventilatory demand, or both of these in combination. Nevertheless, many patients with COPD remain incapacitated by dyspnea and exercise intolerance despite optimal therapy. OBJECTIVES To determine the effect of single-dose inhalation of nebulized fentanyl citrate (a μ-opioid agonist drug) on exercise tolerance and dyspnea in COPD. METHODS In a randomized, double-blind, placebo-controlled, crossover study, 12 stable patients with COPD (mean ± standard error of the mean post-β(2)-agonist forced expiratory volume in one second [FEV(1)] and FEV(1) to forced vital capacity ratio of 69% ± 4% predicted and 49% ± 3%, respectively) received either nebulized fentanyl citrate (50 mcg) or placebo on two separate days. After each treatment, patients performed pulmonary function tests and a symptom-limited constant work rate cycle exercise test at 75% of their maximum incremental work rate. RESULTS There were no significant postdose differences in spirometric parameters or plethysmographic lung volumes. Neither the intensity nor the unpleasantness of perceived dyspnea was, on average, significantly different at isotime (5.0 ± 0.6 minutes) or at peak exercise after treatment with fentanyl citrate vs. placebo. Compared with placebo, fentanyl citrate was associated with 1) increased exercise endurance time by 1.30 ± 0.43 minutes or 25% ± 8% (P=0.01); 2) small but consistent increases in dynamic inspiratory capacity by ∼0.10 L at isotime and at peak exercise (both P≤0.03); and 3) no concomitant change in ventilatory demand, breathing pattern, pulmonary gas exchange, and/or cardiometabolic function during exercise. The mean rate of increase in dyspnea intensity (1.2 ± 0.3 vs. 2.9 ± 0.8 Borg units/minute, P=0.03) and unpleasantness ratings (0.5 ± 0.2 vs. 2.9 ± 1.3 Borg units/minute, P=0.06) between isotime and peak exercise was less after treatment with fentanyl citrate vs. placebo. CONCLUSION Single-dose inhalation of fentanyl citrate was associated with significant and potentially clinically important improvements in exercise tolerance in COPD. These improvements were accompanied by a delay in the onset of intolerable dyspnea during exercise near the limits of tolerance.
Collapse
Affiliation(s)
- Dennis Jensen
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Pulsed arterial spin labeling perfusion imaging at 3 T: estimating the number of subjects required in common designs of clinical trials. Magn Reson Imaging 2011; 29:1382-9. [DOI: 10.1016/j.mri.2011.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Accepted: 02/20/2011] [Indexed: 11/24/2022]
|
31
|
Valverde Salzmann MF, Wallace DJ, Logothetis NK, Schüz A. Multimodal vessel mapping for precise large area alignment of functional optical imaging data to neuroanatomical preparations in marmosets. J Neurosci Methods 2011; 201:159-72. [PMID: 21843550 DOI: 10.1016/j.jneumeth.2011.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 11/19/2022]
Abstract
Imaging technologies, such as intrinsic optical imaging (IOI), functional magnetic resonance imaging (fMRI) or multiphoton microscopy provide excellent opportunities to study the relationship between functional signals recorded from a cortical area and the underlying anatomical structure. This, in turn, requires accurate alignment of the recorded functional imaging data with histological datasets from the imaged tissue obtained after the functional experiment. This alignment is complicated by distortions of the tissue which naturally occur during histological treatment, and is particularly difficult to achieve over large cortical areas, such as primate visual areas. We present here a method that uses IOI vessel maps revealed in the time course of the intrinsic signal, in combination with vascular casts and vascular lumen labeling techniques together with a pseudo three dimensional (p3D) reconstruction of the tissue architecture in order to facilitate alignment of IOI data with posthoc histological datasets. We demonstrate that by such a multimodal vessel mapping approach, we are able to constitute a hook in anatomical-functional data alignment that enables the accurate assignment of functional signals over large cortical regions. As an example, we present precise alignments of IOI responses showing orientation selectivity of primate V1 with anatomical sections stained for cytochrome-oxidase-reactivity.
Collapse
|
32
|
Pseudocontinuous arterial spin labeling reveals dissociable effects of morphine and alcohol on regional cerebral blood flow. J Cereb Blood Flow Metab 2011; 31:1321-33. [PMID: 21245872 PMCID: PMC3099639 DOI: 10.1038/jcbfm.2010.234] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have examined sensitivity and specificity of pseudocontinuous arterial spin labeling (PCASL) to detect global and regional changes in cerebral blood flow (CBF) in response to two different psychoactive drugs. We tested alcohol and morphine in a placebo-controlled, double-blind randomized study in 12 healthy young men. Drugs were administered intravenously. Validated pharmacokinetic protocols achieved minimal intersubject and intrasubject variance in plasma drug concentration. Permutation-based statistical testing of a mixed effect repeated measures model revealed a widespread increase in absolute CBF because of both morphine and alcohol. Conjunction analysis revealed overlapping effects of morphine and alcohol on absolute CBF in the left anterior cingulate, right hippocampus, right insula, and left primary sensorimotor areas. Effects of morphine and alcohol on relative CBF (obtained from z-normalization of absolute CBF maps) were significantly different in the left putamen, left frontoparietal network, cerebellum, and the brainstem. Corroborating previous PET results, our findings suggest that PCASL is a promising tool for central nervous system drug research.
Collapse
|
33
|
Khalili-Mahani N, Zoethout RMW, Beckmann CF, Baerends E, de Kam ML, Soeter RP, Dahan A, van Buchem MA, van Gerven JMA, Rombouts SARB. Effects of morphine and alcohol on functional brain connectivity during "resting state": a placebo-controlled crossover study in healthy young men. Hum Brain Mapp 2011; 33:1003-18. [PMID: 21391283 DOI: 10.1002/hbm.21265] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 11/07/2022] Open
Abstract
A major challenge in central nervous system (CNS) drug research is to develop a generally applicable methodology for repeated measurements of drug effects on the entire CNS, without task-related interactions and a priori models. For this reason, data-driven resting-state fMRI methods are promising for pharmacological research. This study aimed to investigate whether different psychoactive substances cause drug-specific effects in functional brain connectivity during resting-state. In this double blind placebo-controlled (double dummy) crossover study, seven resting-state fMRI scans were obtained in 12 healthy young men in three different drug sessions (placebo, morphine and alcohol; randomized). Drugs were administered intravenously based on validated pharmacokinetic protocols to minimize the inter- and intra-subject variance in plasma drug concentrations. Dual-regression was used to estimate whole-brain resting-state connectivity in relation to eight well-characterized resting-state networks, for each data set. A mixed effects analysis of drug by time interactions revealed dissociable changes in both pharmacodynamics and functional connectivity resulting from alcohol and morphine. Post hoc analysis of regions of interest revealed adaptive network interactions in relation to pharmacokinetic and pharmacodynamic curves. Our results illustrate the applicability of resting-state functional brain connectivity in CNS drug research.
Collapse
|
34
|
Abstract
Chronic dyspnoea is a devastating symptom that debilitates millions of people worldwide. It causes a large burden on both patient and carer, and significant costs to society and health services. Treatment options are limited. Much effort has been directed at optimising lung function and improving exercise capacity, however, the brain mechanisms underlying dyspnoea perception have received less attention. In this review, we focus on cognitive and affective aspects of dyspnoea and discuss how novel neuroimaging methods can provide quantitative measures of these subjective sensations. We draw parallels with the more advanced field of chronic pain, and explain some of the challenges faced when imaging dyspnoea. To date, brain mechanisms of dyspnoea have been investigated in a handful of studies by a limited number of authors. These have found consistent activation in the insular cortex, the anterior cingulate cortex and the amygdala. Novel neuroimaging methods and an improved understanding of perceptual mechanisms underlying dyspnoea now position us to transform dyspnoea research. Future research should investigate how brain regions associated with dyspnoea interact, as well as accurately correlate this neuronal activation with reliable behavioural measures. A better understanding of the brain processes underlying dyspnoea perception will lead to new therapies that will improve quality of life for a very large group of patients.
Collapse
|
35
|
Kassner A, Winter JD, Poublanc J, Mikulis DJ, Crawley AP. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging 2010; 31:298-304. [PMID: 20099341 DOI: 10.1002/jmri.22044] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the reproducibility and gender differences in cerebrovascular reactivity (CVR) measurements obtained using the blood-oxygen level dependent (BOLD) response to controlled changes in end-tidal partial pressure of carbon dioxide (PETCO(2)). MATERIALS AND METHODS We obtained ethical approval to image 19 healthy volunteers (10 men, 9 women) on a 1.5 Tesla (T) MRI scanner twice on two separate days using identical procedures. CVR images were generated by collecting BOLD MRI data during controlled changes in PETCO(2) induced by a sequential gas delivery system. RESULTS Using the intraclass correlation coefficient (ICC), we demonstrated excellent within-day CVR measures in gray matter (GM) (ICC = 0.92) and white matter (WM) (ICC = 0.88) regions, excellent between-day reproducibility in GM (ICC = 0.81), and good between-day reproducibility in the WM (ICC = 0.66). CVR values between men and women were significantly different in the GM and WM. Men exhibited a 22 +/- 2% greater CVR in GM and a 17 +/- 2% greater CVR in WM compared with females. CONCLUSION Our results demonstrate the reliability of BOLD MRI CVR measurements obtained using a controlled cerebrovascular challenge. Using this technique, we also revealed significantly increased BOLD response to CO(2) in males compared with females.
Collapse
Affiliation(s)
- Andrea Kassner
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Pain is a complex subjective phenomenon that so far cannot be objectively quantified by any standardized procedure. This fact renders it also difficult to measure the efficacy of analgesic drugs. In recent years the application of functional magnetic resonance imaging (fMRI) has significantly increased our current knowledge about the brain physiological correlates of pain in humans. The technique is non-invasive and detects the increased blood flow into neuronally active brain regions based on the so-called BOLD (blood oxygenation level dependent) effect of T2-weighted MRI. This paper gives an overview of the application of pharmacological fMRI (phfMRI) as an approach to evaluate the efficacy of analgesics. In contrast to EEG- and MEG-based methods phfMRI allows more flexibility in the design of experimental paradigms and stimulus protocols to account for the diversity of clinical pain types (inflammatory pain, tactile allodynia etc.) or their dependence upon psychological circumstances (anxiety, depression, stress) in which pain occurs. However, in order to specifically refer results from phfMRI to the neuronal processes underlying pain, future research needs to increase the understanding of the mechanisms underlying the neurovascular coupling reaction represented by the BOLD technique. The same applies for the influence of cerebrovascular diseases on the BOLD response.
Collapse
|
37
|
Tillisch K, Wang Z, Kilpatrick L, Holschneider DP, Mayer EA. Studying the brain-gut axis with pharmacological imaging. Ann N Y Acad Sci 2009; 1144:256-64. [PMID: 19076383 DOI: 10.1196/annals.1418.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pharmacological imaging provides great potential both for evaluating the efficacy of new candidate compounds in the treatment of gastrointestinal symptom-based disorders, and for furthering our understanding of the underlying pathophysiology of such disorders. By combining evaluation of symptoms, behavior, and brain responses to relevant stimuli, use of neuroimaging is able to move the study of brain-gut disorders away from more subjective outcomes and emphasize the underlying neural networks involved in symptom generation and treatment. This chapter reviews the state of the art in pharmacological imaging studies, both in human subjects and in animal models of brain-gut interactions.
Collapse
Affiliation(s)
- Kirsten Tillisch
- Center for Neurobiology of Stress, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6949, USA
| | | | | | | | | |
Collapse
|
38
|
Mitsis GD, Governo RJM, Rogers R, Pattinson KTS. The effect of remifentanil on respiratory variability, evaluated with dynamic modeling. J Appl Physiol (1985) 2009; 106:1038-49. [PMID: 19196914 DOI: 10.1152/japplphysiol.90769.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid drugs disrupt signaling in the brain stem respiratory network affecting respiratory rhythm. We evaluated the influence of a steady-state infusion of a model opioid, remifentanil, on respiratory variability during spontaneous respiration in a group of 11 healthy human volunteers. We used dynamic linear and nonlinear models to examine the effects of remifentanil on both directions of the ventilatory loop, i.e., on the influence of natural variations in end-tidal carbon dioxide (Pet(CO(2))) on ventilatory variability, which was assessed by tidal volume (Vt) and breath-to-breath ventilation (i.e., the ratio of tidal volume over total breath time Vt/Ttot), and vice versa. Breath-by-breath recordings of expired CO(2) and respiration were made during a target-controlled infusion of remifentanil for 15 min at estimated effect site (i.e., brain tissue) concentrations of 0, 0.7, 1.1, and 1.5 ng/ml, respectively. Remifentanil caused a profound increase in the duration of expiration. The obtained models revealed a decrease in the strength of the dynamic effect of Pet(CO(2)) variability on Vt (the "controller" part of the ventilatory loop) and a more pronounced increase in the effect of Vt variability on Pet(CO(2)) (the "plant" part of the loop). Nonlinear models explained these dynamic interrelationships better than linear models. Our approach allows detailed investigation of drug effects in the resting state at the systems level using noninvasive and minimally perturbing experimental protocols, which can closely represent real-life clinical situations.
Collapse
Affiliation(s)
- G D Mitsis
- Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
39
|
Qiu M, Ramani R, Swetye M, Rajeevan N, Constable RT. Anesthetic effects on regional CBF, BOLD, and the coupling between task-induced changes in CBF and BOLD: an fMRI study in normal human subjects. Magn Reson Med 2009; 60:987-96. [PMID: 18816821 DOI: 10.1002/mrm.21759] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functional MR imaging was performed in sixteen healthy human subjects measuring both regional cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) signal when visual and auditory stimuli were presented to subjects in the presence or absence of anesthesia. During anesthesia, 0.25 mean alveolar concentration (MAC) sevoflurane was administrated. We found that low-dose sevoflurane decreased the task-induced changes in both BOLD and CBF. Within the visual and auditory regions of interest inspected, both baseline CBF and the task-induced changes in CBF decreased significantly during anesthesia. Low-dose sevoflurane significantly altered the task-induced CBF-BOLD coupling; for a unit change of CBF, a larger change in BOLD was observed in the anesthesia condition than in the anesthesia-free condition. Low-dose sevoflurane was also found to have significant impact on the spatial nonuniformity of the task-induced coupling. The alteration of task-induced CBF-BOLD coupling by low-dose sevoflurane introduces ambiguity to the direct interpretation of functional MRI (fMRI) data based on only one of the indirect measures-CBF or BOLD. Our observations also indicate that the manipulation of the brain with an anesthetic agent complicates the model-based quantitative interpretation of fMRI data, in which the relative task-induced changes in oxidative metabolism are calculated by means of a calibrated model given the relative changes in the indirect vascular measures, usually CBF and BOLD.
Collapse
Affiliation(s)
- Maolin Qiu
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-2048, USA.
| | | | | | | | | |
Collapse
|
40
|
Zappe AC, Uludağ K, Oeltermann A, Uğurbil K, Logothetis NK. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex 2008; 18:2666-73. [PMID: 18326521 PMCID: PMC2567427 DOI: 10.1093/cercor/bhn023] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hypercapnia is often used as vasodilatory challenge in clinical applications and basic research. In functional magnetic resonance imaging (fMRI), elevated CO(2) is applied to derive stimulus-induced changes in the cerebral rate of oxygen consumption (CMRO(2)) by measuring cerebral blood flow and blood-oxygenation-level-dependent (BOLD) signal. Such methods, however, assume that hypercapnia has no direct effect on CMRO(2). In this study, we used combined intracortical recordings and fMRI in the visual cortex of anesthetized macaque monkeys to show that spontaneous neuronal activity is in fact significantly reduced by moderate hypercapnia. As expected, measurement of cerebral blood volume using an exogenous contrast agent and of BOLD signal showed that both are increased during hypercapnia. In contrast to this, spontaneous fluctuations of local field potentials in the beta and gamma frequency range as well as multiunit activity are reduced by approximately 15% during inhalation of 6% CO(2) (pCO(2) = 56 mmHg). A strong tendency toward a reduction of neuronal activity was also found at CO(2) inhalation of 3% (pCO(2) = 45 mmHg). This suggests that CMRO(2) might be reduced during hypercapnia and caution must be exercised when hypercapnia is applied to calibrate the BOLD signal.
Collapse
Affiliation(s)
- A C Zappe
- Max-Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
41
|
Pattinson KTS, Rogers R, Mayhew SD, MacIntosh BJ, Lee MC, Wise RG. Remifentanil-induced cerebral blood flow effects in normal humans: dose and ApoE genotype. Anesth Analg 2008; 106:347; author reply 347-8. [PMID: 18165607 DOI: 10.1213/01.ane.0000297279.12358.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Pollock JM, Deibler AR, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol 2008; 30:378-85. [PMID: 18854443 DOI: 10.3174/ajnr.a1316] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The incidence of cerebral hyperperfusion and hypoperfusion, respectively, resulting from hypercapnia and hypocapnia in hospitalized patients is unknown but is likely underrecognized by radiologists and clinicians without routine performance of quantitative perfusion imaging. Our purpose was to report the clinical and perfusion imaging findings in a series of patients confirmed to have hypercapnic cerebral hyperperfusion and hypocapnic hypoperfusion. MATERIALS AND METHODS Conventional cerebral MR imaging examination was supplemented with arterial spin-labeled (ASL) MR perfusion imaging in 45 patients during a 16-month period at a single institution. Patients presented with an indication of altered mental status, metastasis, or suspected stroke. Images were reviewed and correlated with arterial blood gas (ABG) analysis and clinical history. RESULTS Patients ranged in age from 1.5 to 85 years. No significant acute findings were identified on conventional MR imaging. Patients with hypercapnia showed global hyperperfusion on ASL cerebral blood flow (CBF) maps, respiratory acidosis on ABG, and diffuse air-space abnormalities on same-day chest radiographs. Regression analysis revealed a significant positive linear relationship between cerebral perfusion and the partial pressure of carbon dioxide (pCO(2); beta, 4.02; t, 11.03; P < .0005), such that rates of cerebral perfusion changed by 4.0 mL/100 g/min for each 1-mm Hg change in pCO(2). CONCLUSIONS With the inception of ASL as a routine perfusion imaging technique, hypercapnic-associated cerebral hyperperfusion will be recognized more frequently and may provide an alternative cause of unexplained neuropsychiatric symptoms in hospitalized patients. In a similar fashion, hypocapnia may account for a subset of patients with normal MR imaging examinations with poor ASL perfusion signal.
Collapse
Affiliation(s)
- J M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Volunteer studies in pain research — Opportunities and challenges to replace animal experiments. Neuroimage 2008; 42:467-73. [DOI: 10.1016/j.neuroimage.2008.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/19/2008] [Accepted: 05/21/2008] [Indexed: 12/29/2022] Open
|
44
|
MacIntosh BJ, Pattinson KTS, Gallichan D, Ahmad I, Miller KL, Feinberg DA, Wise RG, Jezzard P. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab 2008; 28:1514-22. [PMID: 18506198 DOI: 10.1038/jcbfm.2008.46] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arterial spin labelling (ASL) has proved to be a promising magnetic resonance imaging (MRI) technique to measure brain perfusion. In this study, volumetric three-dimensional (3D) gradient and spin echo (GRASE) ASL was used to produce cerebral blood flow (CBF) and arterial arrival time (AAT) maps during rest and during an infusion of remifentanil. Gradient and spin echo ASL perfusion-weighted images were collected at multiple inflow times (500 to 2,500 ms in increments of 250 ms) to accurately fit an ASL perfusion model. Fit estimates were assessed using z-statistics, allowing voxels with a poor fit to be excluded from subsequent analyses. Nonparametric permutation testing showed voxels with a significant difference in CBF and AAT between conditions across a group of healthy participants (N=10). Administration of remifentanil produced an increase in end-tidal CO(2), an increase in CBF from 57+/-12.0 to 77+/-18.4 mL/100 g tissue per min and a reduction in AAT from 0.73+/-0.073 to 0.64+/-0.076 sec. Within grey matter, remifentanil produced a cerebrovascular response of 5.7+/-1.60 %CBF per mm Hg. Significant differences between physiologic conditions were observed in both CBF and AAT maps, indicating that 3D GRASE-ASL has the sensitivity to study changes in physiology at a voxel level.
Collapse
Affiliation(s)
- Bradley J MacIntosh
- FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rapidly developing, non-invasive, neuroimaging methods provide increasingly detailed structural and functional information about the nervous system, helping advance our understanding of pain processing, chronic pain conditions and the mechanisms of analgesia. However, effective treatment for many chronic pain conditions remains a large, unmet medical need. Neuroimaging techniques may enhance our understanding of why currently available analgesics are ineffective for so many patients and aid in identifying new neural targets for pharmacological interventions of pain. This review examines how neuroimaging has enhanced our understanding of the mechanisms of chronic pain, the neural correlates of pharmacological modulation of pain, and the role of neuroimaging in analgesic development. Rather than focusing on one method, we discuss the advantages and limitations of several techniques that may each serve a unique role in aiding drug development, and we discuss current issues that exist in the design and implementation of pharmacological neuroimaging studies. Particularly, experimental design must be carefully considered as there are limitations in terms of the pharmacokinetics of the drug of interest as well as in respect to the capabilities of the neuroimaging method in use. Finally, we identify future directions including novel approaches that may also play a role in furthering our knowledge of the neural basis of analgesia. In the future, neuroimaging will certainly impact the methodology of analgesic drug development as it may lead to quicker and more efficient methods of evaluating the neural modulation of chronic pain.
Collapse
Affiliation(s)
- Jane Lawrence
- Department of Anesthesia, Stanford University, Stanford, California 94304, USA
| | | |
Collapse
|
46
|
Wise RG, Pattinson KTS, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, O'Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P. Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. J Cereb Blood Flow Metab 2007; 27:1521-32. [PMID: 17406659 DOI: 10.1038/sj.jcbfm.9600465] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Investigations into the blood oxygenation level-dependent (BOLD) functional MRI signal have used respiratory challenges with the aim of probing cerebrovascular physiology. Such challenges have altered the inspired partial pressures of either carbon dioxide or oxygen, typically to a fixed and constant level (fixed inspired challenge (FIC)). The resulting end-tidal gas partial pressures then depend on the subject's metabolism and ventilatory responses. In contrast, dynamic end-tidal forcing (DEF) rapidly and independently sets end-tidal oxygen and carbon dioxide to desired levels by altering the inspired gas partial pressures on a breath-by-breath basis using computer-controlled feedback. This study implements DEF in the MRI environment to map BOLD signal reactivity to CO(2). We performed BOLD (T2(*)) contrast FMRI in four healthy male volunteers, while using DEF to provide a cyclic normocapnic-hypercapnic challenge, with each cycle lasting 4 mins (PET(CO(2)) mean+/-s.d., from 40.9+/-1.8 to 46.4+/-1.6 mm Hg). This was compared with a traditional fixed-inspired (FI(CO(2))=5%) hypercapnic challenge (PET(CO(2)) mean+/-s.d., from 38.2+/-2.1 to 45.6+/-1.4 mm Hg). Dynamic end-tidal forcing achieved the desired target PET(CO(2)) for each subject while maintaining PET(O(2)) constant. As a result of CO(2)-induced increases in ventilation, the FIC showed a greater cyclic fluctuation in PET(O(2)). These were associated with spatially widespread fluctuations in BOLD signal that were eliminated largely by the control of PET(O(2)) during DEF. The DEF system can provide flexible, convenient, and physiologically well-controlled respiratory challenges in the MRI environment for mapping dynamic responses of the cerebrovasculature.
Collapse
Affiliation(s)
- Richard G Wise
- Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Iannetti GD, Wise RG. BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 2007; 25:978-88. [PMID: 17499469 DOI: 10.1016/j.mri.2007.03.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In the past decade the use of blood oxygen level-dependent (BOLD) fMRI to investigate the effect of diseases and pharmacological agents on brain activity has increased greatly. BOLD fMRI does not measure neural activity directly, but relies on a cascade of physiological events linking neural activity to the generation of MRI signal. However, most of the disease and pharmacological studies performed so far have interpreted changes in BOLD fMRI as "brain activation," ignoring the potential confounds that can arise through drug- or disease-induced modulation of events downstream of the neural activity. This issue is especially serious in diseases (like multiple sclerosis, brain tumours and stroke) and drugs (like anaesthetics or those with a vascular action) that are known to influence these physiological events. Here we provide evidence that, to extract meaningful information on brain activity in patient and pharmacological BOLD fMRI studies, it is important to identify, characterise and possibly correct these influences that potentially confound the results. We suggest a series of experimental measures to improve the interpretability of BOLD fMRI studies. We have ranked these according to their potential information and current practical feasibility. First-line, necessary improvements consist of (1) the inclusion of one or more control tasks, and (2) the recording of physiological parameters during scanning and subsequent correction of possible between-group differences. Second-line, highly recommended important aim to make the results of a patient or drug BOLD study more interpretable and include the assessment of (1) baseline brain perfusion, (2) vascular reactivity, (3) the inclusion of stimulus-related perfusion fMRI and (4) the recording of electrophysiological responses to the stimulus of interest. Finally, third-line, desirable improvements consist of the inclusion of (1) simultaneous EEG-fMRI, (2) cerebral blood volume and (3) rate of metabolic oxygen consumption measurements and, when relevant, (4) animal studies investigating signalling between neural cells and blood vessels.
Collapse
Affiliation(s)
- G D Iannetti
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX, Oxford, UK
| | | |
Collapse
|
48
|
Ersche KD, Fletcher PC, Roiser JP, Fryer TD, London M, Robbins TW, Sahakian BJ. Differences in orbitofrontal activation during decision-making between methadone-maintained opiate users, heroin users and healthy volunteers. Psychopharmacology (Berl) 2006; 188:364-73. [PMID: 16953385 PMCID: PMC1903380 DOI: 10.1007/s00213-006-0515-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Previously, we reported that opiate users enrolled in methadone treatment made 'risky' choices on a decision-making task following a loss of points compared with heroin users and healthy volunteers. One possible explanation for this behaviour is that methadone users were less sensitive to punishment on immediately preceding unsuccessful trials. METHODS We sought to explore this finding from a neural perspective by performing a post hoc analysis of data from a previous [see text] positron emission tomography study. We restricted the analysis to the opiate groups and controls, assessing differences between opiate users on methadone and those on heroin. RESULTS We found significant over-activation in the lateral orbitofrontal cortex (OFC) in methadone users compared with both heroin users and controls concomitant with the greatest overall tendency to 'play risky'. Heroin users showed significant under-activation in this area compared with the other two groups whilst exhibiting the greatest overall tendency to 'play safe'. Correlational analysis revealed that abnormal task-related activation of the left OFC was associated with the dose of methadone in methadone users and with the duration of intravenous heroin use in heroin users. 'Playing safe' following a loss of points was also negatively correlated with the activation of pregenual anterior cingulate and insula cortex in controls, but not in opiate users. CONCLUSION Our findings suggest that the interplay between processes involved in integrating penalty information for the purpose of response selection may be altered in opiate users. This change was reflected differentially in task-related pattern of OFC activation depending on the opiate used.
Collapse
Affiliation(s)
- Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Brain Mapping Unit, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|