1
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Liu B, Liu Y, Yang S, Ye J, Hu J, Chen S, Wu S, Liu Q, Tang F, Liu Y, He Y, Du Y, Zhang G, Guo Q, Yang C. Enhanced desmosome assembly driven by acquired high-level desmoglein-2 promotes phenotypic plasticity and endocrine resistance in ER + breast cancer. Cancer Lett 2024; 600:217179. [PMID: 39154704 DOI: 10.1016/j.canlet.2024.217179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Acquired resistance to endocrine treatments remains a major clinical challenge. In this study, we found that desmoglein-2 (DSG2) plays a major role in acquired endocrine resistance and cellular plasticity in ER+ breast cancer (BC). By analysing the well-established fulvestrant-resistant ER+ BC model using single-cell RNA-seq, we revealed that ER inhibition leads to a specific increase in DSG2 in cancer cell populations, which in turn enhances desmosome formation in vitro and in vivo and cell phenotypic plasticity that promotes resistance to treatment. DSG2 depletion reduced tumorigenesis and metastasis in fulvestrant-resistant xenograft models and promoted fulvestrant efficiency. Mechanistically, DSG2 forms a desmosome complex with JUP and Vimentin and triggers Wnt/PCP signalling. We showed that elevated DSG2 levels, along with reduced ER levels and an activated Wnt/PCP pathway, predicted poor survival, suggesting that a DSG2high signature could be exploited for therapeutic interventions. Our analysis highlighted the critical role of DSG2-mediated desmosomal junctions following antiestrogen treatment.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Yang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Ye
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Hu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyi Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinqing Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Tang
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Dean WF, Nawara TJ, Albert RM, Mattheyses AL. OOPS: Object-Oriented Polarization Software for analysis of fluorescence polarization microscopy images. PLoS Comput Biol 2024; 20:e1011723. [PMID: 39133751 PMCID: PMC11341096 DOI: 10.1371/journal.pcbi.1011723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Most essential cellular functions are performed by proteins assembled into larger complexes. Fluorescence Polarization Microscopy (FPM) is a powerful technique that goes beyond traditional imaging methods by allowing researchers to measure not only the localization of proteins within cells, but also their orientation or alignment within complexes or cellular structures. FPM can be easily integrated into standard widefield microscopes with the addition of a polarization modulator. However, the extensive image processing and analysis required to interpret the data have limited its widespread adoption. To overcome these challenges and enhance accessibility, we introduce OOPS (Object-Oriented Polarization Software), a MATLAB package for object-based analysis of FPM data. By combining flexible image segmentation and novel object-based analyses with a high-throughput FPM processing pipeline, OOPS empowers researchers to simultaneously study molecular order and orientation in individual biological structures; conduct population assessments based on morphological features, intensity statistics, and FPM measurements; and create publication-quality visualizations, all within a user-friendly graphical interface. Here, we demonstrate the power and versatility of our approach by applying OOPS to punctate and filamentous structures.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rose M. Albert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
5
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
6
|
Liu YQ, Xu YW, Zheng ZT, Li D, Hong CQ, Dai HQ, Wang JH, Chu LY, Liao LD, Zou HY, Li EM, Xie JJ, Fang WK. Serine/threonine-protein kinase D2-mediated phosphorylation of DSG2 threonine 730 promotes esophageal squamous cell carcinoma progression. J Pathol 2024; 263:99-112. [PMID: 38411280 DOI: 10.1002/path.6264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Zheng-Tan Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Die Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Hao-Qiang Dai
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Jun-Hao Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, PR China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Shantou Academy Medical Sciences, Shantou, PR China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
7
|
Steinert L, Fuchs M, Sigmund AM, Didona D, Hudemann C, Möbs C, Hertl M, Hashimoto T, Waschke J, Vielmuth F. Desmosomal Hyper-adhesion Affects Direct Inhibition of Desmoglein Interactions in Pemphigus. J Invest Dermatol 2024:S0022-202X(24)00308-7. [PMID: 38677661 DOI: 10.1016/j.jid.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/06/2024] [Accepted: 03/02/2024] [Indexed: 04/29/2024]
Abstract
During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.
Collapse
Affiliation(s)
- Letyfee Steinert
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Fuchs
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna M Sigmund
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka City Metropolitan University, Osaka, Japan
| | - Jens Waschke
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Pasani S, Menon KS, Viswanath S. The molecular architecture of the desmosomal outer dense plaque by integrative structural modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544884. [PMID: 37398295 PMCID: PMC10312763 DOI: 10.1101/2023.06.13.544884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Desmosomes mediate cell-cell adhesion and are prevalent in tissues under mechanical stress. However, their detailed structural characterization is not available. Here, we characterized the molecular architecture of the desmosomal outer dense plaque (ODP) using Bayesian integrative structural modeling via the Integrative Modeling Platform. Starting principally from the structural interpretation of an electron cryo-tomogram, we integrated information from X-ray crystallography, an immuno-electron microscopy study, biochemical assays, in-silico predictions of transmembrane and disordered regions, homology modeling, and stereochemistry information. The integrative structure was validated by information from imaging, tomography, and biochemical studies that were not used in modeling. The ODP resembles a densely packed cylinder with a PKP layer and a PG layer; the desmosomal cadherins and PKP span these two layers. Our integrative approach allowed us to localize disordered regions, such as N-PKP and PG-C. We refined previous protein-protein interactions between desmosomal proteins and provided possible structural hypotheses for defective cell-cell adhesion in several diseases by mapping disease-related mutations on the structure. Finally, we point to features of the structure that could confer resilience to mechanical stress. Our model provides a basis for generating experimentally verifiable hypotheses on the structure and function of desmosomal proteins in normal and disease states.
Collapse
Affiliation(s)
- Satwik Pasani
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Kavya S Menon
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Shruthi Viswanath
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
9
|
Verkerk AJMH, Andrei D, Vermeer MCSC, Kramer D, Schouten M, Arp P, Verlouw JAM, Pas HH, Meijer HJ, van der Molen M, Oberdorf-Maass S, Nijenhuis M, Romero-Herrera PH, Hoes MF, Bremer J, Slotman JA, van den Akker PC, Diercks GFH, Giepmans BNG, Stoop H, Saris JJ, van den Ouweland AMW, Willemsen R, Hublin JJ, Dean MC, Hoogeboom AJM, Silljé HHW, Uitterlinden AG, van der Meer P, Bolling MC. Disruption of TUFT1, a Desmosome-Associated Protein, Causes Skin Fragility, Woolly Hair, and Palmoplantar Keratoderma. J Invest Dermatol 2024; 144:284-295.e16. [PMID: 37716648 DOI: 10.1016/j.jid.2023.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 09/18/2023]
Abstract
Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.
Collapse
Affiliation(s)
- Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marloes Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost A M Verlouw
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Hillegonda J Meijer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Silke Oberdorf-Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Pedro H Romero-Herrera
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Chaire de Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, Paris, France
| | - M Christopher Dean
- Centre for Human Origins Research, Natural History Museum, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
10
|
Piccinno E, Scalavino V, Labarile N, Bianco G, Savino MT, Armentano R, Giannelli G, Serino G. Downregulation of γ-Catenin by miR-195-5p Inhibits Colon Cancer Progression, Regulating Desmosome Function. Int J Mol Sci 2023; 25:494. [PMID: 38203664 PMCID: PMC10779266 DOI: 10.3390/ijms25010494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Desmosomes are essential structures for ensuring tissue functions, and their deregulation is involved in the development of colorectal cancer (CRC). JUP (γ-catenin) is a desmosome adhesion component that also acts as a signaling hub, suggesting its potential involvement in CRC progression. In this context, we recently demonstrated that miR-195-5p regulated JUP and desmosome cadherins expression. In addition, miR-195-5p gain of function indirectly modulated the expression of key effectors of the Wnt pathway involved in JUP-dependent signaling. Here, our purpose was to demonstrate the aberrant expression of miR-195-5p and JUP in CRC patients and to functionally characterize the role of miR-195-5p in the regulation of desmosome function. First, we showed that miR-195-5p was downregulated in CRC tumors compared to adjacent normal tissue. Then, we demonstrated that JUP expression was significantly increased in CRC tissues compared to adjacent normal tissues. The effects of miR-195-5p on CRC progression were assessed using in vitro transient transfection experiments and in vivo miRNA administration. Increased miR-195-5p in colonic epithelial cells strongly inhibits cell proliferation, viability, and invasion via JUP. In vivo gain of function of miR-195-5p reduced the numbers and sizes of tumors and significantly ameliorated the histopathological changes typical of CRC. In conclusion, our findings indicate a potential pharmacological target based on miR-195-5p replacement as a new therapeutic approach in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (N.L.); (G.B.); (M.T.S.); (R.A.); (G.G.)
| |
Collapse
|
11
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
12
|
Varani J, McClintock SD, Nadeem DM, Harber I, Zeidan D, Aslam MN. A multi-mineral intervention to counter pro-inflammatory activity and to improve the barrier in human colon organoids. Front Cell Dev Biol 2023; 11:1132905. [PMID: 37476158 PMCID: PMC10354648 DOI: 10.3389/fcell.2023.1132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Ulcerative colitis is a chronic inflammatory condition, and continuous inflammatory stimulus may lead to barrier dysfunction. The goal of this study was to assess barrier proteomic expression by a red algae-derived multi-mineral intervention in the absence or presence of pro-inflammatory insult. Methods: Human colon organoids were maintained in a control culture medium alone or exposed to lipopolysaccharide with a combination of three pro-inflammatory cytokines [tumor necrosis factor-α, interleukin-1β and interferon-γ (LPS-cytokines)] to mimic the environment in the inflamed colon. Untreated organoids and those exposed to LPS-cytokines were concomitantly treated for 14 days with a multi-mineral product (Aquamin®) that has previously been shown to improve barrier structure/function. The colon organoids were subjected to proteomic analysis to obtain a broad view of the protein changes induced by the two interventions alone and in combination. In parallel, confocal fluorescence microscopy, tissue cohesion and transepithelial electrical resistance (TEER) measurements were used to assess barrier structure/function. Results: The LPS-cytokine mix altered the expression of multiple proteins that influence innate immunity and promote inflammation. Several of these were significantly decreased with Aquamin® alone but only a modest decrease in a subset of these proteins was detected by Aquamin® in the presence of LPS-cytokines. Among these, a subset of inflammation-related proteins including fibrinogen-β and -γ chains (FGB and FGG), phospholipase A2 (PLA2G2A) and SPARC was significantly downregulated in the presence of Aquamin® (alone and in combination with LPS-cytokines); another subset of proteins with anti-inflammatory, antioxidant or anti-microbial activity was upregulated by Aquamin® treatment. When provided alone, Aquamin® strongly upregulated proteins that contribute to barrier formation and tissue strength. Concomitant treatment with LPS-cytokines did not inhibit barrier formation in response to Aquamin®. Confocal microscopy also displayed increased expression of desmoglein-2 (DSG2) and cadherin-17 (CDH17) with Aquamin®, either alone or in the presence of the pro-inflammatory stimulus. Increased cohesion and TEER with Aquamin® (alone or in the presence of LPS-cytokines) indicates improved barrier function. Conclusion: Taken together, these findings suggest that multi-mineral intervention (Aquamin®) may provide a novel approach to combating inflammation in the colon by improving barrier structure/function as well as by directly altering the expression of certain pro-inflammatory proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Cook I, Leyh TS. Sulfotransferase 2B1b, Sterol Sulfonation, and Disease. Pharmacol Rev 2023; 75:521-531. [PMID: 36549865 PMCID: PMC10158503 DOI: 10.1124/pharmrev.122.000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid β (Aβ) plaques and tau fibrils while simultaneously stimulating Aβ plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Ishii N. Significance of anti-desmocollin autoantibodies in pemphigus. J Dermatol 2023; 50:132-139. [PMID: 36578135 PMCID: PMC10107560 DOI: 10.1111/1346-8138.16660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/30/2022]
Abstract
The major autoantigens for pemphigus are desmogleins (Dsgs), cell-cell adhesive structure proteins, one of the desmosomal cadherins. Recent progress in molecular biology has revealed that IgG autoantibodies of classical pemphigus react with Dsg1 or Dsg3. Desmocollins (Dscs) also belong to the cadherin supergene family that provides structure to the desmosomes and play an important role in cell-to-cell adhesion. In addition to the presence of four desmosomal Dsg isoforms, i.e. Dsg1-4, Dsc1, 2 and 3, all of which are derived from different genes, Dsc1 has been previously identified as the target antigen of IgA autoantibodies in the subcorneal pustular dermatosis (SPD)-type of intercellular IgA dermatosis. In addition to the IgA anti-Dsc1 autoantiboides, the presence of IgG anti-Dsc autoantibodies is described in patients of some autoimmune bullous diseases. In particular, the current pemphigus detecting autoantibodies to Dscs has shown a tendency in atypical variants of pemphigus. Therefore, autoantibodies against Dscs alone may cause detachment of cell-cell adhesion in the epidermis in some pemphigus. However, except for the findings of a few in vitro and in vivo studies, there is currently no clear evidence for the pathogenicity of anti-Dsc autoantibodies in pemphigus, whereas significance of anti-Dsg autoantibodies is well established. This article describes the structure and function of the Dscs, and explores the evidence regarding the pathogenic role of anti-Dsc autoantibodies in pemphigus.
Collapse
Affiliation(s)
- Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
15
|
Müller L, Keil R, Hatzfeld M. Plakophilin 3 facilitates G1/S phase transition and enhances proliferation by capturing RB protein in the cytoplasm and promoting EGFR signaling. Cell Rep 2023; 42:112031. [PMID: 36689330 DOI: 10.1016/j.celrep.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.
Collapse
Affiliation(s)
- Lisa Müller
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| | - René Keil
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| |
Collapse
|
16
|
Dean WF, Mattheyses AL. Defining domain-specific orientational order in the desmosomal cadherins. Biophys J 2022; 121:4325-4341. [PMID: 36225113 PMCID: PMC9703042 DOI: 10.1016/j.bpj.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.
Collapse
Affiliation(s)
- William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
17
|
Zhai H, Jin X, Minnick G, Rosenbohm J, Hafiz MAH, Yang R, Meng F. Spatially Guided Construction of Multilayered Epidermal Models Recapturing Structural Hierarchy and Cell-Cell Junctions. SMALL SCIENCE 2022; 2:2200051. [PMID: 36590765 PMCID: PMC9799093 DOI: 10.1002/smsc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A current challenge in three-dimensional (3D) bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and to promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell-cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, we develop a method that combines 3D bioprinting and spatially guided self-reorganization of keratinocytes to recapture the fine structural hierarchy that lies in the deep layers of the epidermis. Here, keratinocyte-laden fibrin hydrogels are bioprinted to create geographical cues, guiding dynamic self-reorganization of cells through collective migration, keratinocyte differentiation and vertical expansion. This process results in a region of self-organized multilayers (SOMs) that contain the basal to suprabasal transition, marked by the expressed levels of different types of keratins that indicate differentiation. Finally, we demonstrate the reconstructed skin tissue as an in vitro platform to study the pathogenic effects of PV and observe a significant difference in cell-cell junction dissociation from PV antibodies in different epidermis layers, indicating their applications in the preclinical test of possible therapies.
Collapse
Affiliation(s)
- Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
18
|
Calaf GM, Crispin LA, Muñoz JP, Aguayo F, Narayan G, Roy D. Cell Adhesion Molecules Affected by Ionizing Radiation and Estrogen in an Experimental Breast Cancer Model. Int J Mol Sci 2022; 23:12674. [PMID: 36293530 PMCID: PMC9604318 DOI: 10.3390/ijms232012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer develops in a multi-step process where environmental carcinogenic exposure is a primary etiological component, and where cell-cell communication governs the biological activities of tissues. Identifying the molecular genes that regulate this process is essential to targeting metastatic breast cancer. Ionizing radiation can modify and damage DNA, RNA, and cell membrane components such as lipids and proteins by direct ionization. Comparing differential gene expression can help to determine the effect of radiation and estrogens on cell adhesion. An in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line MCF-10F to low doses of high linear energy transfer α particle radiation and subsequent growth in the presence of 17β-estradiol. The MCF-10F cell line was analyzed in different stages of transformation that showed gradual phenotypic changes including altered morphology, increase in cell proliferation relative to the control, anchorage-independent growth, and invasive capability before becoming tumorigenic in nude mice. This model was used to determine genes associated with cell adhesion and communication such as E-cadherin, the desmocollin 3, the gap junction protein alpha 1, the Integrin alpha 6, the Integrin beta 6, the Keratin 14, Keratin 16, Keratin 17, Keratin 6B, and the laminin beta 3. Results indicated that most genes had greater expression in the tumorigenic cell line Tumor2 derived from the athymic animal than the Alpha3, a non-tumorigenic cell line exposed only to radiation, indicating that altered expression levels of adhesion molecules depended on estrogen. There is a significant need for experimental model systems that facilitate the study of cell plasticity to assess the importance of estrogens in modulating the biology of cancer cells.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
19
|
Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F, Aydin M, Naumova EA, Lieber A, Ehrhardt A, Zhang W. Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy. Viruses 2022; 14:v14081835. [PMID: 36016457 PMCID: PMC9412290 DOI: 10.3390/v14081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.
Collapse
Affiliation(s)
- Nora A. Bahlmann
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Raphael L. Tsoukas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sebastian Erkens
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Franziska Jönsson
- Institute of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| |
Collapse
|
20
|
Dellambra E, Cordisco S, Delle Monache F, Bondanza S, Teson M, Nicodemi EM, Didona B, Condorelli AG, Camerino G, Castiglia D, Guerra L. RSPO1-mutated keratinocytes from palmoplantar keratoderma display impaired differentiation, alteration of cell-cell adhesion, EMT-like phenotype and invasiveness properties: implications for squamous cell carcinoma susceptibility in patients with 46XX disorder of sexual development. Orphanet J Rare Dis 2022; 17:275. [PMID: 35854363 PMCID: PMC9295301 DOI: 10.1186/s13023-022-02434-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Secreted R-spondin (RSPO) proteins play a key role in reproductive organ development, epithelial stem cell renewal and cancer induction by reinforcing canonical Wnt signaling. We have previously reported that palmoplantar keratoderma (PPK), predisposition to cutaneous squamous cell carcinoma (SCC) development and sex reversal segregate as autosomal recessive trait in patients carrying RSPO1-mutations. Although our previous findings suggested that RSPO1 secreted from fibroblasts regulates keratinocyte growth or differentiation, the role of this protein in the epidermis remains largely unexplored. Our study was aimed at expanding the phenotypic, molecular and functional characterization of RSPO1-mutated skin and keratinocytes. Results Cultured primary keratinocytes from PPK skin of a RSPO1-mutated XX-sex reversed patient displayed highly impaired differentiation and epithelial-mesenchymal transition (EMT)-like phenotype. Interestingly, RSPO1-mutated PPK skin expressed markers of increased proliferation, dedifferentiation and altered cell–cell adhesion. Furthermore, all these signs were more evident in SCC specimens of the patient. Cultured PPK patient’s keratinocytes exhibited increased expression of cell‒matrix adhesion proteins and extracellular matrix remodeling enzymes. Moreover, they showed invasiveness properties in an organotypic skin model in presence of PPK fibroblasts, which behave like cancer-associated fibroblasts. However, the co-culture with normal fibroblasts or treatment with the recombinant RSPO1 protein did not revert or reduce the EMT-like phenotype and invasion capability of PPK keratinocytes. Notably, RSPO1-mutated PPK fibroblasts induced a hyperproliferative and dedifferentiated phenotype of age-matched normal control plantar keratinocytes. Wnt signaling has a key role in both PPK promotion and SCC development. Accordingly, Wnt mediators were differentially expressed in both PPK keratinocytes and skin specimens of RSPO1-mutated patient compared to control. Conclusions Altogether our data indicate that the absence of RSPO1 in patients with 46XX disorder of sexual development affects the skin microenvironment and epidermal integrity, thus contributing to the risk of SCC tumorigenesis in palmoplantar regions exposed to major frictional stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02434-2.
Collapse
Affiliation(s)
- Elena Dellambra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Sonia Cordisco
- Advent SRL, Via Pontina KM 30.600, Pomezia, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Delle Monache
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Sergio Bondanza
- Center for Regenerative Medicine Stefano Ferrari, Holostem Terapie Avanzate S.R.L., 41125, Modena, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Plastic Surgery Division, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Biagio Didona
- Rare Skin Disease Center, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giovanna Camerino
- Dipartimento di Patologia Umana ed Ereditaria, Sezione di Biologia Generale e Genetica Medica, Università Di Pavia, Via Forlanini 14, 27100, Pavia, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
21
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
22
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes. Biophys J 2022; 121:1013-1028. [PMID: 35151631 PMCID: PMC8943749 DOI: 10.1016/j.bpj.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
23
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations. Biophys J 2022; 121:991-1012. [PMID: 35150618 PMCID: PMC8943820 DOI: 10.1016/j.bpj.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingenieria y Tecnologia, Universidad San Sebastian, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
24
|
Varani J, McClintock SD, Aslam MN. Cell-Matrix Interactions Contribute to Barrier Function in Human Colon Organoids. Front Med (Lausanne) 2022; 9:838975. [PMID: 35360746 PMCID: PMC8960989 DOI: 10.3389/fmed.2022.838975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of cell-matrix adhesion to barrier control in the colon is unclear. The goals of the present study were to: (i) determine if disruption of colon epithelial cell interactions with the extracellular matrix alters permeability control measurement and (ii) determine if increasing the elaboration of protein components of cell-matrix adhesion complexes can mitigate the effects of cell-matrix disruption. Human colon organoids were interrogated for transepithelial electrical resistance (TEER) under control conditions and in the presence of Aquamin®, a multi-mineral product. A function-blocking antibody directed at the C-terminal region of the laminin α chain was used in parallel. The effects of Aquamin® on cell-matrix adhesion protein expression were determined in a proteomic screen and by Western blotting. Aquamin® increased the expression of multiple basement membrane, hemidesmosomal and focal adhesion proteins as well as keratin 8 and 18. TEER values were higher in the presence of Aquamin® than they were under control conditions. The blocking antibody reduced TEER values under both conditions but was most effective in the absence of Aquamin®, where expression of cell-matrix adhesion proteins was lower to begin with. These findings provide evidence that cell-matrix interactions contribute to barrier control in the colon.
Collapse
|
25
|
Yang T, Sim KY, Ko GH, Ahn JS, Kim HJ, Park SG. FAM167A is a key molecule to induce BCR-ABL-independent TKI resistance in CML via noncanonical NF-κB signaling activation. J Exp Clin Cancer Res 2022; 41:82. [PMID: 35241148 PMCID: PMC8892744 DOI: 10.1186/s13046-022-02298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND BCR-ABL-independent drug resistance is a barrier to curative treatment of chronic myeloid leukemia (CML). However, the molecular pathways underlying BCR-ABL-independent tyrosine kinase inhibitor (TKI) resistance remain unclear. METHODS In silico bioinformatic analysis was performed to identify the most active transcription factor and its inducer that contribute to BCR-ABL-independent TKI resistance. Tandem mass spectrometry analysis was performed to identify the receptor for the noncanonical NF-κB activator FAM167A. In vitro and in vivo mouse experiments revealed detailed molecular insights into the functional role of the FAM167A-desmoglein-1 (DSG1) axis in BCL-ABL-independent TKI resistance. CML cells derived from CML patients were analyzed using quantitative reverse transcription PCR and flow cytometry. RESULTS We found that NF-κB had the greatest effect on differential gene expression of BCR-ABL-independent TKI-resistant CML cells. Moreover, we found that the previously uncharacterized protein FAM167A activates the noncanonical NF-κB pathway and induces BCR-ABL-independent TKI resistance. Molecular analyses revealed that FAM167A activates the noncanonical NF-κB pathway by binding to the cell adhesion protein DSG1 to upregulate NF-κB-inducing kinase (NIK) by blocking its ubiquitination. Neutralization of FAM167A in a mouse tumor model reduced noncanonical NF-κB activity and restored sensitivity of cells to TKIs. Furthermore, FAM167A and surface DSG1 levels were highly upregulated in CD34+ CML cells from patients with BCR-ABL-independent TKI-resistant disease. CONCLUSIONS These results reveal that FAM167A acts as an essential factor for BCR-ABL-independent TKI resistance in CML by activating the noncanonical NF-κB pathway. In addition, FAM167A may serve as an important target and biomarker for BCR-ABL-independent TKI resistance.
Collapse
MESH Headings
- Animals
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- NF-kappa B/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteins/metabolism
Collapse
Affiliation(s)
- Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Gwang-Hoon Ko
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
26
|
Pitfalls in the Application of Dispase-Based Keratinocyte Dissociation Assay for In Vitro Analysis of Pemphigus Vulgaris. Vaccines (Basel) 2022; 10:vaccines10020208. [PMID: 35214667 PMCID: PMC8878461 DOI: 10.3390/vaccines10020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pemphigus vulgaris (PV) is a chronic, life-altering autoimmune disease due to the production of anti-desmoglein antibodies causing the loss of cell–cell adhesion in keratinocytes (acantholysis) and blister formation in both skin and mucous membranes. The dispase-based keratinocyte dissociation assay (DDA) is the method of choice to examine the pathogenic effect of antibodies and additional co-stimuli on cell adhesion in vitro. Despite its widespread use, there is a high variability of experimental conditions, leading to inconsistent results. In this paper, we identify and discuss pitfalls in the application of DDA, including generation of a monolayer with optimized density, appropriate culturing conditions to obtain said monolayer, application of mechanical stress in a standardized manner, and performing consistent data processing. Importantly, we describe a detailed protocol for a successful and reliable DDA and the respective ideal conditions for three different types of human keratinocytes: (1) primary keratinocytes, (2) the HaCaT spontaneously immortalized keratinocyte cell line, and (3) the recently characterized HaSKpw spontaneously immortalized keratinocyte cell line. Our study provides detailed protocols which guarantee intra- and inter-experimental comparability of DDA.
Collapse
|
27
|
Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal Cadherins in Health and Disease. ANNUAL REVIEW OF PATHOLOGY 2022; 17:47-72. [PMID: 34425055 PMCID: PMC8792335 DOI: 10.1146/annurev-pathol-042320-092912] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sophia A. Svoboda
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,Department of Dermatology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
28
|
Kim J, Kim MG, Jeong SH, Kim HJ, Son SW. STAT3 maintains skin barrier integrity by modulating SPINK5 and KLK5 expression in keratinocytes. Exp Dermatol 2021; 31:223-232. [PMID: 34378233 DOI: 10.1111/exd.14445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022]
Abstract
Skin barrier dysfunction induces skin inflammation. Signal transducer and activator of transcription 3 (STAT3) is known to be involved in Th17-mediated immune responses and barrier integrity in the cornea and intestine; however, its role in the skin barrier remains largely unknown. In this study, we elucidated the potential role of STAT3 in the skin barrier and its effect on kallikrein-related peptidase 5 (KLK5) and serine protease inhibitor Kazal-type 5 (SPINK5) expression using a mouse model with keratinocyte-specific ablation of STAT3. Keratinocyte-specific loss of STAT3 induced a cutaneous inflammatory phenotype with pruritus and intense scratching behaviour in mice. Transcriptomic analysis revealed that the genes associated with impaired skin barrier function, including KLK5, were upregulated. The effect of STAT3 on KLK5 expression in keratinocytes was not only substantiated by the increase in KLK5 expression following treatment with STAT3 siRNA but also by its decreased expression following STAT3 overexpression. Overexpression and IL-17A-mediated stimulation of STAT3 increased the expression of SPINK5, which was blocked by STAT3 siRNA. These results suggest that the expression of SPINK5 and KLK5 in keratinocytes could be dependent on STAT3 and that STAT3 might play an essential role in the maintenance of skin barrier homeostasis.
Collapse
Affiliation(s)
- Jaehyung Kim
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Min-Gyu Kim
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, Korea
| | - Hee Joo Kim
- Department of Dermatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sang Wook Son
- BK21 Graduate Program, Department of Biomedical Sciences and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Kim YB, Hlavaty D, Maycock J, Lechler T. Roles for Ndel1 in keratin organization and desmosome function. Mol Biol Cell 2021; 32:ar2. [PMID: 34319758 PMCID: PMC8684757 DOI: 10.1091/mbc.e21-02-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Keratin intermediate filaments form dynamic polymer networks that organize in specific ways dependent on the cell type, the stage of the cell cycle, and the state of the cell. In differentiated cells of the epidermis, they are organized by desmosomes, cell–cell adhesion complexes that provide essential mechanical integrity to this tissue. Despite this, we know little about how keratin organization is controlled and whether desmosomes locally regulate keratin dynamics in addition to binding preassembled filaments. Ndel1 is a desmosome-associated protein in the differentiated epidermis, though its function at these structures has not been examined. Here, we show that Ndel1 binds directly to keratin subunits through a motif conserved in all intermediate filament proteins. Further, Ndel1 was necessary for robust desmosome–keratin association and sufficient to reorganize keratins at distinct cellular sites. Lis1, a Ndel1 binding protein, was required for desmosomal localization of Ndel1, but not for its effects on keratin filaments. Finally, we use mouse genetics to demonstrate that loss of Ndel1 results in desmosome defects in the epidermis. Our data thus identify Ndel1 as a desmosome-associated protein that promotes local assembly/reorganization of keratin filaments and is essential for robust desmosome formation.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Present Address - Institute of Immuno-Metabolic Disorders, ReCerise Therapeutics Inc., Seoul 07573, Republic of Korea
| | - Daniel Hlavaty
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| | - Jeff Maycock
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA
| | - Terry Lechler
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| |
Collapse
|
30
|
Myasnikov R, Brodehl A, Meshkov A, Kulikova O, Kiseleva A, Pohl GM, Sotnikova E, Divashuk M, Klimushina M, Zharikova A, Pokrovskaya M, Koretskiy S, Kharlap M, Mershina E, Sinitsyn V, Basargina E, Gandaeva L, Barskiy V, Boytsov S, Milting H, Drapkina O. The Double Mutation DSG2-p.S363X and TBX20-p.D278X Is Associated with Left Ventricular Non-Compaction Cardiomyopathy: Case Report. Int J Mol Sci 2021; 22:ijms22136775. [PMID: 34202524 PMCID: PMC8268202 DOI: 10.3390/ijms22136775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Left ventricular non-compaction cardiomyopathy (LVNC) is a rare heart disease, with or without left ventricular dysfunction, which is characterized by a two-layer structure of the myocardium and an increased number of trabeculae. The study of familial forms of LVNC is helpful for risk prediction and genetic counseling of relatives. Here, we present a family consisting of three members with LVNC. Using a next-generation sequencing approach a combination of two (likely) pathogenic nonsense mutations DSG2-p.S363X and TBX20-p.D278X was identified in all three patients. TBX20 encodes the cardiac T-box transcription factor 20. DSG2 encodes desmoglein–2, which is part of the cardiac desmosomes and belongs to the cadherin family. Since the identified nonsense variant (DSG2-p.S363X) is localized in the extracellular domain of DSG2, we performed in vitro cell transfection experiments. These experiments revealed the absence of truncated DSG2 at the plasma membrane, supporting the pathogenic relevance of DSG2-p.S363X. In conclusion, we suggest that in the future, these findings might be helpful for genetic screening and counseling of patients with LVNC.
Collapse
Affiliation(s)
- Roman Myasnikov
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany; (G.M.P.); (H.M.)
- Correspondence: (A.B.); (A.K.)
| | - Alexey Meshkov
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Olga Kulikova
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Anna Kiseleva
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
- Correspondence: (A.B.); (A.K.)
| | - Greta Marie Pohl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany; (G.M.P.); (H.M.)
| | - Evgeniia Sotnikova
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Mikhail Divashuk
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Marina Klimushina
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Anastasia Zharikova
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lomonosovsky Prospect 27, Building 10, 119991 Moscow, Russia
| | - Maria Pokrovskaya
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Sergey Koretskiy
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Maria Kharlap
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| | - Elena Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, Lomonosovsky Prospect 27, Building 10, 119991 Moscow, Russia; (E.M.); (V.S.)
| | - Valentin Sinitsyn
- Medical Research and Educational Center, Lomonosov Moscow State University, Lomonosovsky Prospect 27, Building 10, 119991 Moscow, Russia; (E.M.); (V.S.)
| | - Elena Basargina
- National Medical Research Center for Children’s Health, Lomonosovsky Prospect 2, Building 1, 119991 Moscow, Russia; (E.B.); (L.G.); (V.B.)
| | - Leila Gandaeva
- National Medical Research Center for Children’s Health, Lomonosovsky Prospect 2, Building 1, 119991 Moscow, Russia; (E.B.); (L.G.); (V.B.)
| | - Vladimir Barskiy
- National Medical Research Center for Children’s Health, Lomonosovsky Prospect 2, Building 1, 119991 Moscow, Russia; (E.B.); (L.G.); (V.B.)
| | - Sergey Boytsov
- National Medical Research Center for Cardiology, 3-ya Cherepkovskaya Street, 15A, 121552 Moscow, Russia;
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany; (G.M.P.); (H.M.)
| | - Oxana Drapkina
- National Research Center for Therapy and Preventive Medicine, Petroverigskiy Lane 10, 101990 Moscow, Russia; (R.M.); (A.M.); (O.K.); (E.S.); (M.D.); (M.K.); (A.Z.); (M.P.); (S.K.); (M.K.); (O.D.)
| |
Collapse
|
31
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
32
|
Bu T, Wang L, Wu X, Li L, Mao B, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. A laminin-based local regulatory network in the testis that supports spermatogenesis. Semin Cell Dev Biol 2021; 121:40-52. [PMID: 33879391 DOI: 10.1016/j.semcdb.2021.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.
Collapse
Affiliation(s)
- Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, La Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| |
Collapse
|
33
|
Raya-Sandino A, Luissint AC, Kusters DHM, Narayanan V, Flemming S, Garcia-Hernandez V, Godsel LM, Green KJ, Hagen SJ, Conway DE, Parkos CA, Nusrat A. Regulation of intestinal epithelial intercellular adhesion and barrier function by desmosomal cadherin desmocollin-2. Mol Biol Cell 2021; 32:753-768. [PMID: 33596089 PMCID: PMC8108520 DOI: 10.1091/mbc.e20-12-0775] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.
Collapse
Affiliation(s)
- Arturo Raya-Sandino
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dennis H. M. Kusters
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Sven Flemming
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | - Lisa M. Godsel
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
| | - Susan J. Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Charles A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
34
|
Rab13 and Desmosome Redistribution in Uterine Epithelial Cells During Early Pregnancy. Reprod Sci 2021; 28:1981-1988. [PMID: 33527312 DOI: 10.1007/s43032-021-00478-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The luminal uterine epithelial cells are the first point of contact with the implanting blastocyst. Dramatic changes occur in the structure and function of these cells at the time of receptivity including changes in the lateral junctional complex. While these morphological changes are important for uterine receptivity, currently there is no known mechanism of regulation of the lateral junctional complexes. Rab13, a member of the Rab (Ras-related in the brain) family of GTPases has a critical role in endosomal trafficking to the lateral plasma membrane and is involved in modulation of the tight junction in several cell types. The aim of this study is to investigate the role of Rab13 in changes to the lateral junctional complex at the time of receptivity. Immunofluorescence microscopy demonstrated no association between Rab13 and ZO-1 (a tight junction protein) or Rab13 and E-cadherin (an integral component of adherens junctions). Co-localisation was demonstrated between Rab 13 and desmoglein-2 at the time of fertilization and also at receptivity suggesting involvement of Rab13 in relocalisation of desmoglein-2 and formation of giant desmosomes in the apical part of the lateral plasma membrane at the time of uterine receptivity. We suggest that despite the loss of the adherens junction at the time of receptivity, the presently reported redistribution of desmosomes regulated by Rab13 allows the uterine epithelium to maintain structural integrity.
Collapse
|
35
|
Quispe Calla NE, Vicetti Miguel RD, Aceves KM, Huang H, Howitt B, Cherpes TL. Ovariectomized mice and postmenopausal women exhibit analogous loss of genital epithelial integrity. Tissue Barriers 2021; 9:1865760. [PMID: 33427560 DOI: 10.1080/21688370.2020.1865760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Roughly half of all postmenopausal women are affected by the genitourinary syndrome of menopause (GSM). Symptoms of GSM, including vaginal irritation and dyspareunia, occur as reduced estrogen (E) production elicits loss of elasticity and other changes in genital tract tissue. While the use of the injectable contraceptive depot-medroxyprogesterone acetate (DMPA) likewise lowers serum E concentrations in reproductive age women and is associated with decreased genital levels of the cell-cell adhesion molecules desmoglein-1 (DSG1) and desmocollin-1 (DSC1) and impaired genital epithelial barrier function, the relevance of these findings to women in menopause is uncertain. Exploring the impact of menopause on genital epithelial integrity herein, we detected significantly lower levels of DSG1 and DSC1 in ectocervical tissue from menopausal and postmenopausal vs premenopausal women. Using ovariectomized (OVX) mice as a menopause model, we comparably saw significantly lower vaginal tissue levels of DSG1 and DSC1 in OVX mice vs. mice in estrus. Compared to estrus-stage mice and E-treated OVX mice, DMPA-treated ovary-intact mice and OVX mice also exhibited significantly reduced genital epithelial barrier function, greater susceptibility to genital herpes simplex virus type 2 infection, and delayed clearance of genital Chlamydia trachomatis infection. Current studies thus identify analogous loss of genital epithelial integrity in OVX mice and menopausal and postmenopausal women. By showing that loss of genital epithelial integrity is associated with increased mouse susceptibility to bacterial and viral pathogens, our findings also prioritize the need to resolve if reduced genital epithelial integrity in postmenopausal women is a significant risk factor for genital infection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kristen M Aceves
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Huijie Huang
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Organoid culture to study epithelial cell differentiation and barrier formation in the colon: bridging the gap between monolayer cell culture and human subject research. In Vitro Cell Dev Biol Anim 2021; 57:174-190. [PMID: 33403624 DOI: 10.1007/s11626-020-00534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Organoid culture provides a powerful technology that can bridge the gap between monolayer cell culture on the one hand and whole animal or human subject research on the other. Tissues from many different organs from multiple species, including human, have already been successfully adapted to organoid growth. While optimal culture conditions have not yet been established for all tissue types, it seems that most tissues will, ultimately, be amenable to this type of culture. The colon is one of the tissues in which organoid culture was first established as a technology and which has been most successfully employed. The ready availability of histologically normal tissue as well as both premalignant and malignant tissue (often from the same individual) makes this possible. While individual tumors are highly variable relative to one another in organoid culture, a high degree of genotypic consistency exists between the tumor tissue and the histologically normal counterpart from a given source. Further, source material and tumor tissue in organoid culture demonstrate a high degree of genotypic consistency. Even after 6-9 mo in continuous culture, drift in the mutational profile has been shown to be minimal. Colon tissue maintained in organoid culture, thus, provides a good surrogate for the tissue of origin-a surrogate, however, that is as amenable to intervention with molecular, pharmacological, and immunological approaches as are more-traditionally studied cell lines.
Collapse
|
37
|
Jin X, Rosenbohm J, Kim E, Esfahani AM, Seiffert-Sinha K, Wahl JK, Lim JY, Sinha AA, Yang R. Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell-Cell Adhesion. Adv Biol (Weinh) 2021; 5:e2000159. [PMID: 33724731 PMCID: PMC7993752 DOI: 10.1002/adbi.202000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell-cell attachment under physiological conditions. Targeted disruption of cell-cell junctions leads to multiple pathological conditions, among them the life-threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell-cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell-cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody-induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti-Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody-induced cell-cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
38
|
Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:133-151. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine interacts with a diverse community of antigens and bacteria. To keep its homeostasis, the gut has evolved with a complex defense system, including intestinal microbiota, epithelial layer and lamina propria. Various factors (e.g., nutrients) affect the intestinal defensive system and progression of intestinal diseases. This review highlights the current understanding about the role of amino acids (AAs) in protecting the intestine from harm. Amino acids (e.g., arginine, glutamine and tryptophan) are essential for the function of intestinal microbiota, epithelial cells, tight junction, goblet cells, Paneth cells and immune cells (e.g., macrophages, B cells and T cells). Through the modulation of the intestinal defensive system, AAs maintain the integrity and function of the intestinal mucosa and inhibit the progression of various intestinal diseases (e.g., intestinal infection and intestinal colitis). Thus, adequate intake of functional AAs is crucial for intestinal and whole-body health in humans and other animals.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
39
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. HIV, progestins, genital epithelial barrier function, and the burden of objectivity†. Biol Reprod 2020; 103:318-322. [PMID: 32561906 PMCID: PMC7401028 DOI: 10.1093/biolre/ioaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Contributions from a diverse set of scientific disciplines will be needed to help individuals make fully informed decisions regarding contraceptive choices least likely to promote HIV susceptibility. This commentary recaps contrasting interpretations of results from the Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial, a study that compared HIV risk in women using the progestin-only injectable contraceptive depot medroxyprogesterone acetate (DMPA) vs. two other contraceptive choices. It also summarizes results from basic and translational research that establish biological plausibility for earlier clinical studies that identified enhanced HIV susceptibility in women using DMPA.
Collapse
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Linek M, Doelle M, Leeb T, Bauer A, Leuthard F, Henkel J, Bannasch D, Jagannathan V, Welle MM. ATP2A2 SINE Insertion in an Irish Terrier with Darier Disease and Associated Infundibular Cyst Formation. Genes (Basel) 2020; 11:genes11050481. [PMID: 32354065 PMCID: PMC7291265 DOI: 10.3390/genes11050481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
A 4-month-old female Irish Terrier presented with a well demarcated ulcerative and crusting lesion in the right ear canal. Histological analysis revealed epidermal hyperplasia with severe acantholysis affecting all suprabasal layers of the epidermis, which prompted a presumptive diagnosis of canine Darier disease. The lesion was successfully treated by repeated laser ablation of the affected epidermis. Over the course of three years, the dog additionally developed three dermal nodules of up to 4 cm in diameter that were excised and healed without complications. Histology of the excised tissue revealed multiple infundibular cysts extending from the upper dermis to the subcutis. The cysts were lined by squamous epithelium, which presented with abundant acantholysis of suprabasal keratinocytes. Infundibular cysts represent a novel finding not previously reported in Darier patients. Whole genome sequencing of the affected dog was performed, and the functional candidate genes for Darier disease (ATP2A2) and Hailey-Hailey disease (ATP2C1) were investigated. The analysis revealed a heterozygous SINE insertion into the ATP2A2 gene, at the end of intron 14, close to the boundary of exon 15. Analysis of the ATP2A2 mRNA from skin of the affected dog demonstrated a splicing defect and marked allelic imbalance, suggesting nonsense-mediated decay of the resulting aberrant transcripts. As Darier disease in humans is caused by haploinsufficiency of ATP2A2, our genetic findings are in agreement with the clinical and histopathological data and support the diagnosis of canine Darier disease.
Collapse
Affiliation(s)
- Monika Linek
- AniCura Tierärztliche Spezialisten, 22043 Hamburg, Germany; (M.L.); (M.D.)
| | - Maren Doelle
- AniCura Tierärztliche Spezialisten, 22043 Hamburg, Germany; (M.L.); (M.D.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-23-26
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Fabienne Leuthard
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Jan Henkel
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Danika Bannasch
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Monika M. Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
41
|
Badu-Nkansah KA, Lechler T. Proteomic analysis of desmosomes reveals novel components required for epidermal integrity. Mol Biol Cell 2020; 31:1140-1153. [PMID: 32238101 PMCID: PMC7353166 DOI: 10.1091/mbc.e19-09-0542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Desmosomes are cell–cell adhesions necessary for the maintenance of tissue integrity in the skin and heart. While the core components of desmosomes have been identified, peripheral components that modulate canonical or noncanonical desmosome functions still remain largely unexplored. Here we used targeted proximity labeling approaches to further elaborate the desmosome proteome in epidermal keratinocytes. Quantitative mass spectrometry analysis identified all core desmosomal proteins while uncovering a diverse array of new constituents with broad molecular functions. By individually targeting the inner and outer dense plaques, we defined proteins enriched within these subcompartments. We validated a number of these novel desmosome-associated proteins and find that many are membrane proximal proteins that show a dependence on functional desmosomes for their cortical localization. We further explored the mechanism of localization and function of two novel desmosome-associated adaptor proteins enriched in the desmosome proteome, Crk and Crk-like (CrkL). These proteins interacted with Dsg1 and rely on Dsg1 and desmoplakin for robust cortical localization. Epidermal deletion of both Crk and CrkL resulted in perinatal lethality with defects in desmosome morphology and keratin organization, thus demonstrating the utility of this dataset in identifying novel proteins required for desmosome-dependent epidermal integrity.
Collapse
Affiliation(s)
- Kwabena A Badu-Nkansah
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| |
Collapse
|
42
|
McClintock SD, Attili D, Dame MK, Richter A, Silvestri SS, Berner MM, Bohm MS, Karpoff K, McCarthy CL, Spence JR, Varani J, Aslam MN. Differentiation of human colon tissue in culture: Effects of calcium on trans-epithelial electrical resistance and tissue cohesive properties. PLoS One 2020; 15:e0222058. [PMID: 32134920 PMCID: PMC7058309 DOI: 10.1371/journal.pone.0222058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background and aims Human colonoid cultures maintained under low-calcium (0.25 mM) conditions undergo differentiation spontaneously and, concomitantly, express a high level of tight junction proteins, but not desmosomal proteins. When calcium is included to a final concentration of 1.5–3.0 mM (provided either as a single agent or as a combination of calcium and additional minerals), there is little change in tight junction protein expression but a strong up-regulation of desmosomal proteins and an increase in desmosome formation. The aim of this study was to assess the functional consequences of calcium-mediated differences in barrier protein expression. Methods Human colonoid-derived epithelial cells were interrogated in transwell culture under low- or high-calcium conditions for monolayer integrity and ion permeability by measuring trans-epithelial electrical resistance (TEER) across the confluent monolayer. Colonoid cohesiveness was assessed in parallel. Results TEER values were high in the low-calcium environment but increased in response to calcium. In addition, colonoid cohesiveness increased substantially with calcium supplementation. In both assays, the response to multi-mineral intervention was greater than the response to calcium alone. Consistent with these findings, several components of tight junctions were expressed at 0.25 mM calcium but these did not increase substantially with supplementation. Cadherin-17 and desmoglein-2, in contrast, were weakly-expressed under low calcium conditions but increased with intervention. Conclusions These findings indicate that low ambient calcium levels are sufficient to support the formation of a permeability barrier in the colonic epithelium. Higher calcium levels promote tissue cohesion and enhance barrier function. These findings may help explain how an adequate calcium intake contributes to colonic health by improving barrier function, even though there is little change in colonic histological features over a wide range of calcium intake levels.
Collapse
Affiliation(s)
- Shannon D. McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Durga Attili
- Department of Cell & Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael K. Dame
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Aliah Richter
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sabrina S. Silvestri
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Maliha M. Berner
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Margaret S. Bohm
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kateryna Karpoff
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Caroline L. McCarthy
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason R. Spence
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mokhtar DM, Hussien MM. Cellular elements organization in the trachea of mallard (Anas platyrhynchos) with a special reference to its local immunological role. PROTOPLASMA 2020; 257:407-420. [PMID: 31724070 DOI: 10.1007/s00709-019-01444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Many studies have been carried out to investigate the histological structure of the trachea in many species of birds. However, the cellular organization of the trachea in the mallard duck is still unclear. This study was performed on 12 sexually mature male Mallard duck to demonstrate the cellular organization of the trachea using light and electron microscopy. The tracheal epithelium is considered the first line of defense against airborne pathogens. The mallard trachea was lined by a pseudostratified ciliated columnar epithelium that contained many morphologically distinct cell types: ciliated, non-ciliated, basal cells that encircled by a population of sub-epithelial immune cells, fibroblasts, and telocytes (TCs). Telocytes were first recorded in duck trachea in this study and showed a wide variety of staining affinity. They presented two long telopodes that made up frequent close contacts with epithelium, tracheal cartilages, and other neighboring TCs, immune cells, blood capillaries, and nerve fibers. TCs express VEGF and S-100 protein. The immune cells include mast cells, eosinophils, basophils, lymphocytes, plasma cells, and dendritic reticular cells. The ciliated tracheal epithelium was interrupted by numerous intraepithelial mucous glands and solitary goblet cells. This mucociliary apparatus constitutes the major defense mechanism against inhaled foreign materials. The cellular organization of the duck trachea and its relation to the immunity was discussed.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt.
| | - Marwa M Hussien
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt
| |
Collapse
|
44
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Rehorek SJ, Stimmelmayr R, George JC, Suydam R, McBurney DL, Thewissen JGM. The role of desmosomes in the ear plug formation in the bowhead whale (Balaena mysticetus). Anat Rec (Hoboken) 2019; 303:3035-3043. [PMID: 31854140 DOI: 10.1002/ar.24338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
The external acoustic meatus (EAM) of most baleen whales accumulates cellular debris annually in the lumen as whales age, forming a lamellated ear plug. The bowhead whale ear plug is formed from annually molting lining of the EAM as the entire epithelium releases at the level of the stratum basale during the spring migration. Epithelial regeneration is mostly completed by the fall migration, remaining intact for 6-7 months before being torn off the following spring. Desmosomes are integral to cell-cell adhesion with connecting desmosomal cadherins desmoglein (dsg) and desmocollin (dsc). Paraffin sections of the oral cavity and EAM lining of spring and fall adult bowhead whales, as well as the EAM of spring-caught juvenile, were immunohistochemically examined for the presence of these cadherins. In all fall specimens, both cadherins occurred in all layers except the superficial keratinous layer of the oral cavity. In spring, three different conditions existed: (a) oral cavity of spring-caught adults had reduced cadherins, with superficial fissuring in its keratinized layer and vacuolation in the upper stratum spinosum; (b) EAM of juvenile spring-caught whales displayed fissuring with accompanying reduction of both cadherins in its superficial lining; and (c) EAM lining of spring-caught adults displayed deep fissures, reduced cadherins, and absence of dsc1 in the fissuring zone. These results suggest that shedding of skin layers in mammals, whether normal molting, pathological, or the result of injury and wound repair all revolve around desmosome function. The specific role, structure, and location of these two cadherins need to be further addressed.
Collapse
Affiliation(s)
- Susan J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Raphaela Stimmelmayr
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska.,Department of Wildlife Management, North Slope Borough, Alaska
| | | | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Alaska
| | - Denise L McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
46
|
Civciristov S, Huang C, Liu B, Marquez EA, Gondin AB, Schittenhelm RB, Ellisdon AM, Canals M, Halls ML. Ligand-dependent spatiotemporal signaling profiles of the μ-opioid receptor are controlled by distinct protein-interaction networks. J Biol Chem 2019; 294:16198-16213. [PMID: 31515267 PMCID: PMC6827304 DOI: 10.1074/jbc.ra119.008685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/26/2019] [Indexed: 12/25/2022] Open
Abstract
Ligand-dependent differences in the regulation and internalization of the μ-opioid receptor (MOR) have been linked to the severity of adverse effects that limit opiate use in pain management. MOR activation by morphine or [d-Ala2,N-MePhe4, Gly-ol]enkephalin (DAMGO) causes differences in spatiotemporal signaling dependent on MOR distribution at the plasma membrane. Morphine stimulation of MOR activates a Gαi/o–Gβγ–protein kinase C (PKC) α phosphorylation pathway that limits MOR distribution and is associated with a sustained increase in cytosolic extracellular signal-regulated kinase (ERK) activity. In contrast, DAMGO causes a redistribution of the MOR at the plasma membrane (before receptor internalization) that facilitates transient activation of cytosolic and nuclear ERK. Here, we used proximity biotinylation proteomics to dissect the different protein-interaction networks that underlie the spatiotemporal signaling of morphine and DAMGO. We found that DAMGO, but not morphine, activates Ras-related C3 botulinum toxin substrate 1 (Rac1). Both Rac1 and nuclear ERK activity depended on the scaffolding proteins IQ motif-containing GTPase-activating protein-1 (IQGAP1) and Crk-like (CRKL) protein. In contrast, morphine increased the proximity of the MOR to desmosomal proteins, which form specialized and highly-ordered membrane domains. Knockdown of two desmosomal proteins, junction plakoglobin or desmocolin-1, switched the morphine spatiotemporal signaling profile to mimic that of DAMGO, resulting in a transient increase in nuclear ERK activity. The identification of the MOR-interaction networks that control differential spatiotemporal signaling reported here is an important step toward understanding how signal compartmentalization contributes to opioid-induced responses, including anti-nociception and the development of tolerance and dependence.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, Victoria, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Elsa A Marquez
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, Victoria, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Andrew M Ellisdon
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
47
|
Nguyen BT, Pyun JC, Lee SG, Kang MJ. Identification of new binding proteins of focal adhesion kinase using immunoprecipitation and mass spectrometry. Sci Rep 2019; 9:12908. [PMID: 31501460 PMCID: PMC6733923 DOI: 10.1038/s41598-019-49145-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125 kDa protein recruited as a participant in focal adhesion dynamics and serves as a signaling scaffold for the assembly and subsequent maturation of focal contact. Identification of new FAK binding proteins could reveal potential signaling targets and contribute to further development of therapeutic drugs in the treatment of colon cancer. Here, we applied a functional proteomic strategy to identify proteins that interact with FAK in human colon cancer cell line HCT-116. Proteins were targeted by coimmunoprecipitation with an anti-FAK antibody and resolved on 1D-SDS-PAGE. The gel was excised, reduced, alkylated, and trypsin digested. Tryptic peptides were separated by nano-LC-MS/MS by an LTQ-Orbitrap-Velos spectrometer. We identified 101 proteins in the immunocomplex under epithelial growth factor (EGF) stimulation. Three proteins, zyxin, nesprin-1, and desmoplakin, were discovered and validated using reciprocal immunoprecipitation and Western blot analysis. Then, we sought to study the biological relevance of these proteins by siRNA transfection of HCT-116 cells. According to the results, zyxin might play a central role as an upstream regulator to mediate critical cancer-related signaling pathways. Zyxin and nesprin-1 depletion significantly impaired cell migration and invasion capabilities. Additionally, we performed ELISA assays on serum samples from patients with colon cancer instead of cell models to quantify the protein levels of zyxin and nesprin-1. Our results suggested that zyxin and nesprin-1 are not only promising therapeutic targets but also potential diagnostic biomarkers for colon cancer.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jae-Chul Pyun
- Department of Materials and Sciences, Yonsei University, Seoul, 120-749, South Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Severance Hospital, Seoul, 120-752, South Korea. .,Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea. .,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
48
|
Novak TE, Rodriguez-Zas SL, Southey BR, Starkey JD, Stockler RM, Alfaro GF, Moisá SJ. Jersey steer ruminal papillae histology and nutrigenomics with diet changes. J Anim Physiol Anim Nutr (Berl) 2019; 103:1694-1707. [PMID: 31483547 PMCID: PMC6899929 DOI: 10.1111/jpn.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
The transition from a high forage to a high concentrate diet is an important milestone for beef cattle moving from a stocker system to the feedlot. However, little is known about how this transition affects the rumen epithelial gene expression. This study assessed the effects of the transition from a high forage to a high concentrate diet as well as the transition from a high concentrate to a high forage diet on a variety of genes as well as ruminal papillae morphology in rumen fistulated Jersey steers. Jersey steers (n = 5) were fed either a high forage diet (80% forage and 20% grain) and transitioned to a high concentrate diet (20% forage and 80% grain) or a high concentrate diet (40% forage and 60% grain) and transitioned to a high forage diet (100% forage). Papillae from the rumen were collected for histology and RT‐qPCR analysis. Body weight had a tendency for significant difference (p = .08). Histological analysis did not show changes in papillae length or width in steers transitioning from a high forage to a high concentrate diet or vice versa (p > .05). Genes related to cell membrane structure (CLDN1, CLDN4, DSG1), fatty acid metabolism (CPT1A, ACADSB), glycolysis (PFKL), ketogenesis (HMGCL, HMGCS2, ACAT1), lactate/pyruvate (LDHA), oxidative stress (NQO1), tissue growth (AKT3, EGFR, EREG, IGFBP5, IRS1) and the urea cycle (SLC14A1) were considered in this study. Overall, genes related to fatty acid metabolism (ACADSB) and growth and development (AKT3 and IGFBP5) had a tendency for a treatment × day on trial interaction effect. These profiles may be indicators of rumen epithelial adaptations in response to changes in diet. In conclusion, these results indicate that changes in the composition of the diet can alter the expression of genes with specific functions in rumen epithelial metabolism.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | | | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | - Gastón F Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Sonia J Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
49
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
50
|
Sun C, Wang L, Yang XX, Jiang YH, Guo XL. The aberrant expression or disruption of desmocollin2 in human diseases. Int J Biol Macromol 2019; 131:378-386. [DOI: 10.1016/j.ijbiomac.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
|