1
|
Dufour A, Heydari Olya A, Foulon S, Réda C, Mokhtari A, Faivre V, Hua J, Bokobza C, Griffiths AD, Nghe P, Gressens P, Delahaye-Duriez A, Van Steenwinckel J. Neonatal inflammation impairs developmentally-associated microglia and promotes a highly reactive microglial subset. Brain Behav Immun 2024; 123:466-482. [PMID: 39322088 DOI: 10.1016/j.bbi.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Microglia and border-associated macrophages play critical roles in both immunity and neurodevelopment. The disruption of microglial development trajectories by neonatal inflammation is an important issue in research on neurodevelopmental disorders (NDDs), as models have suggested a strong association between inflammation and cognitive deficits. Here, we explored by single-cell RNA sequencing and flow cytometry the impact of neonatal inflammation in a mouse NDD model on brain myeloid cell subsets. A specific subset of microglia expressing the complement receptor C5ar1 has been identified, in which inflammatory pathways are most strongly activated. Based on transcriptional similarity, this subset appears to originate from the most mature and "homeostatic" microglia at this stage of development and demonstrated hypersensitivity to inflammation. Besides that, Spp1-microglia supporting oligodendrocyte differentiation, primitive and proliferative microglia were reduced by inflammation. These findings suggest major changes in microglial subsets developmental trajectories and reactivity contributing to NDDs induced by neonatal inflammation.
Collapse
Affiliation(s)
- Adrien Dufour
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France; Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | | | - Sophie Foulon
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | - Clémence Réda
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | | | - Valérie Faivre
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Jennifer Hua
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Cindy Bokobza
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Andrew D Griffiths
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France; Laboratoire Biophysique et Evolution, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | | | - Andrée Delahaye-Duriez
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France; Unité fonctionnelle de médecine génomique et génétique clinique, Hôpital Jean Verdier, AP-HP, 93140 Bondy, France; Université Sorbonne Paris Nord, UFR de santé, médecine et biologie humaine, 93000 Bobigny, France.
| | | |
Collapse
|
2
|
Shrinivasan R, Wyatt-Johnson SK, Brutkiewicz RR. The MR1/MAIT cell axis in CNS diseases. Brain Behav Immun 2024; 116:321-328. [PMID: 38157945 PMCID: PMC10842441 DOI: 10.1016/j.bbi.2023.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.
Collapse
Affiliation(s)
- Rashmi Shrinivasan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Bernis ME, Zweyer M, Maes E, Schleehuber Y, Sabir H. Neutrophil Extracellular Traps Release following Hypoxic-Ischemic Brain Injury in Newborn Rats Treated with Therapeutic Hypothermia. Int J Mol Sci 2023; 24:3598. [PMID: 36835009 PMCID: PMC9966013 DOI: 10.3390/ijms24043598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The peripheral immune system plays a critical role in neuroinflammation of the central nervous system after an insult. Hypoxic-ischemic encephalopathy (HIE) induces a strong neuroinflammatory response in neonates, which is often associated with exacerbated outcomes. In adult models of ischemic stroke, neutrophils infiltrate injured brain tissue immediately after an ischemic insult and aggravate inflammation via various mechanisms, including neutrophil extracellular trap (NETs) formation. In this study, we used a neonatal model of experimental hypoxic-ischemic (HI) brain injury and demonstrated that circulating neutrophils were rapidly activated in neonatal blood. We observed an increased infiltration of neutrophils in the brain after exposure to HI. After treatment with either normothermia (NT) or therapeutic hypothermia (TH), we observed a significantly enhanced expression level of the NETosis marker Citrullinated H3 (Cit-H3), which was significantly more pronounced in animals treated with TH than in those treated with NT. NETs and NLR family pyrin domain containing 3 (NLRP-3) inflammasome assembly are closely linked in adult models of ischemic brain injury. In this study, we observed an increase in the activation of the NLRP-3 inflammasome at the time points analyzed, particularly immediately after TH, when we observed a significant increase in NETs structures in the brain. Together, these results suggest the important pathological functions of early arriving neutrophils and NETosis following neonatal HI, particularly after TH treatment, which is a promising starting point for the development of potential new therapeutic targets for neonatal HIE.
Collapse
Affiliation(s)
- Maria E. Bernis
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Yvonne Schleehuber
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| |
Collapse
|
4
|
Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res 2022; 91:392-403. [PMID: 34750522 PMCID: PMC8816729 DOI: 10.1038/s41390-021-01818-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. IMPACT: Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.
Collapse
|
5
|
Kurt A, Zenciroğlu A, Akduman H. The impact of therapeutic hypothermia on peripheral blood cell in newborns with hypoxic ischemic encephalopathy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e181053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
7
|
Wintermark P, Mohammad K, Bonifacio SL. Proposing a care practice bundle for neonatal encephalopathy during therapeutic hypothermia. Semin Fetal Neonatal Med 2021; 26:101303. [PMID: 34711527 DOI: 10.1016/j.siny.2021.101303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neonates with neonatal encephalopathy (NE) often present with multi-organ dysfunction that requires multidisciplinary specialized management. Care of the neonate with NE is thus complex with interaction between the brain and various organ systems. Illness severity during the first days of birth, and not only during the initial hypoxia-ischemia event, is a significant predictor of adverse outcomes in neonates with NE treated with therapeutic hypothermia (TH). We thus propose a care practice bundle dedicated to support the injured neonatal brain that is based on the current best evidence for each organ system. The impact of using such bundle on outcomes in NE remains to be demonstrated.
Collapse
Affiliation(s)
- Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| | - Khorshid Mohammad
- Department of Pediatrics, Section of Neonatology, University of Calgary, 28 Oki Drive NW, T3B 6A8, Calgary, AB, Canada.
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, 94304, Palo Alto, CA, USA.
| | -
- Newborn Brain Society, PO Box 200783, Roxbury Crossing, 02120, MA, USA
| |
Collapse
|
8
|
Isweisi E, Moore CM, Hurley T, Sola-Visner M, McCallion N, Ainle FN, Zareen Z, Sweetman DU, Curley AE, Molloy EJ. Haematological issues in neonates with neonatal encephalopathy treated with hypothermia. Semin Fetal Neonatal Med 2021; 26:101270. [PMID: 34330681 DOI: 10.1016/j.siny.2021.101270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neonatal encephalopathy (NE) is associated with abnormality of neurological function and involves multiorgan dysfunction. There are long-term complications such as cerebral palsy and developmental delay. Cardiac, renal, neurological and other organ dysfunctions are well described. Haematological dysfunction is relatively common and includes anaemia, thrombocytopenia, monocyte and neutrophil activation, hypofibrinogenemia and coagulopathy. There is a lack of consensus definitions of hematological parameters and optimal levels for intervention due to the lack of interventional studies in term neonates and the lack of knowledge of the optimal values during therapeutic hypothermia. However, derangements in hematological values are also associated with neurodevelopmental outcomes. This article outlines the different hematological complications associated with NE and therapeutic hypothermia and suggests a framework for management.
Collapse
Affiliation(s)
- Eman Isweisi
- Paediatrics, Trinity College, The University of Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), Trinity College Dublin & Trinity Research in Childhood Centre (TRiCC), Ireland.
| | - Carmel Maria Moore
- Department of Neonatology, National Maternity Hospital, Holles Street, Dublin 2, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College, The University of Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), Trinity College Dublin & Trinity Research in Childhood Centre (TRiCC), Ireland.
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Naomi McCallion
- Department of Paediatrics, Rotunda Hospital & Department of Paediatrics, Royal College of Surgeons in Ireland, Ireland.
| | - Fionnuala Ni Ainle
- Departments of Haematology, Mater Misericordiae University Hospitals, Dublin & University College Dublin School of Medicine, Dublin, Ireland.
| | - Zunera Zareen
- Paediatrics, Trinity College, The University of Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), Trinity College Dublin & Trinity Research in Childhood Centre (TRiCC), Ireland; Departments of Haematology, Mater Misericordiae University Hospitals, Dublin & University College Dublin School of Medicine, Dublin, Ireland; Paediatrics, St Michaels House, Dublin, Ireland.
| | - Deirdre U Sweetman
- Department of Neonatology, National Maternity Hospital, Holles Street, Dublin 2, Dublin, Ireland.
| | - Anna E Curley
- Department of Neonatology, National Maternity Hospital, Holles Street, Dublin 2, Dublin, Ireland.
| | - Eleanor J Molloy
- Paediatrics, Trinity College, The University of Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), Trinity College Dublin & Trinity Research in Childhood Centre (TRiCC), Ireland; Neonatology, Children's Health Ireland (CHI) at Crumlin & Tallaght, Dublin, Ireland; Neonatology, Coombe Women and Infants University Hospital Dublin, Ireland.
| | | |
Collapse
|
9
|
Neonatal encephalopathy: Focus on epidemiology and underexplored aspects of etiology. Semin Fetal Neonatal Med 2021; 26:101265. [PMID: 34305025 DOI: 10.1016/j.siny.2021.101265] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal Encephalopathy (NE) is a neurologic syndrome in term and near-term infants who have depressed consciousness, difficulty initiating and maintaining respiration, and often abnormal tone, reflexes and neonatal seizures in varying combinations. Moderate/severe NE affects 0.5-3/1000 live births in high-income countries, more in low- and middle-income countries, and carries high risk of mortality or disability, including cerebral palsy. Reduced blood flow and/or oxygenation around the time of birth, as with ruptured uterus, placental abruption or umbilical cord prolapse can cause NE. This subset of NE, with accompanying low Apgar scores and acidemia, is termed Hypoxic-Ischemic Encephalopathy. Other causes of NE that can present similarly, include infections, inflammation, toxins, metabolic disease, stroke, placental disease, and genetic disorders. Aberrant fetal growth and congenital anomalies are strongly associated with NE, suggesting a major role for maldevelopment. As new tools for differential diagnosis emerge, their application for prevention, individualized treatment and prognostication will require further systematic studies of etiology of NE.
Collapse
|
10
|
Taher NAB, Kelly LA, Al-Harbi AI, O'Dea MI, Zareen Z, Ryan E, Molloy EJ, Doherty DG. Altered distributions and functions of natural killer T cells and γδ T cells in neonates with neonatal encephalopathy, in school-age children at follow-up, and in children with cerebral palsy. J Neuroimmunol 2021; 356:577597. [PMID: 33964735 DOI: 10.1016/j.jneuroim.2021.577597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
We enumerated conventional and innate lymphocyte populations in neonates with neonatal encephalopathy (NE), school-age children post-NE, children with cerebral palsy and age-matched controls. Using flow cytometry, we demonstrate alterations in circulating T, B and natural killer cell numbers. Invariant natural killer T cell and Vδ2+ γδ T cell numbers and frequencies were strikingly higher in neonates with NE, children post-NE and children with cerebral palsy compared to age-matched controls, whereas mucosal-associated invariant T cells and Vδ1 T cells were depleted from children with cerebral palsy. Upon stimulation ex vivo, T cells, natural killer cells and Vδ2 T cells from neonates with NE more readily produced inflammatory cytokines than their counterparts from healthy neonates, suggesting that they were previously primed or activated. Thus, innate and conventional lymphocytes are numerically and functionally altered in neonates with NE and these changes may persist into school-age.
Collapse
Affiliation(s)
- Nawal A B Taher
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Alhanouf I Al-Harbi
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Mary I O'Dea
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Zunera Zareen
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland
| | - Emer Ryan
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
11
|
Mülling K, Fischer AJ, Siakaeva E, Richter M, Bordbari S, Spyra I, Köster C, Hermann DM, Gunzer M, Felderhoff-Müser U, Bendix I, Jablonska J, Herz J. Neutrophil dynamics, plasticity and function in acute neurodegeneration following neonatal hypoxia-ischemia. Brain Behav Immun 2021; 92:234-244. [PMID: 33333168 DOI: 10.1016/j.bbi.2020.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Neonatal encephalopathy following hypoxia-ischemia (HI) is a major cause of long-term morbidity and mortality in children. Even though HI-induced neuroinflammation, involving infiltration of peripheral immune cells into the CNS has been associated with disease pathogenesis, the specific role of neutrophils is highly debated. Due to immaturity of the neonatal immune system, it has been assumed that neutrophils are less clinically relevant in neonatal HI-induced brain injury. In the present study, we demonstrate that neutrophils are rapidly activated in the neonatal brain after exposure to experimental HI, revealed by an enhanced proportion of CD86+ cells and an increased expression of CD11b compared to splenic and blood neutrophils. Furthermore, production of reactive oxygen species and the proportion of hyperactivated/aged (CXCR4+CD62L-) cells was enhanced in brain compared to peripheral neutrophils. Delayed neutrophil depletion, initiated 12 h after HI resulted in reduced cellular neurodegeneration, associated with reduced micro- and astroglial activation. In the present study, we uncovered a new complex switch of the phenotype in brain neutrophils, which may offer new possibilities for the development of selective therapeutic approaches by modulation of neutrophils in the early post-hypoxic disease phase.
Collapse
Affiliation(s)
- Kerstin Mülling
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexa Josephine Fischer
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, Translational Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, Translational Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, Translational Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, Translational Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Munteanu AI, Manea AM, Jinca CM, Boia M. Basic biochemical and hematological parameters in perinatal asphyxia and their correlation with hypoxic ischemic encephalopathy. Exp Ther Med 2021; 21:259. [PMID: 33603866 DOI: 10.3892/etm.2021.9690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) represents a major cause of neonatal death or long-term disability. Inflammation plays an important role in mediating brain damage induced by neonatal hypoxic-ischemic encephalopathy. The mechanisms underlying the inflammatory response in hypoxia and ischemia are complex and are still being extensively researched. The objective of this study was to determine the predictive value of peak lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin (PCT) and of the evolution of leukocytes, neutrophils and lymphocytes in the first 96 h after birth for the grade of encephalopathy and neurodevelopmental outcome in newborns with HIE. In order to reveal this relationship we used comparisons between the above mention parameters. The observed hematological changes were nonspecific. The vast majority of the 78 newborns included in the study had PCT values above normal in the first 24 h, contrasting with CRP values that were positive in only 15.8% of the patients. A total of 76.9% of the patients had LDH values higher than the upper limit of normal values. The mean LDH values in patients with an unfavorable prognosis were 1,235 U/l. We can conclude that LDH is a good predictor of HIE in the first 12/24 h after birth.
Collapse
Affiliation(s)
- Andrei Ioan Munteanu
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Aniko-Maria Manea
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Cristian Marius Jinca
- Department of Pediatrics, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| | - Marioara Boia
- Department of Puericulture and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara , Romania
| |
Collapse
|
13
|
Kuan CY, Chen HR, Gao N, Kuo YM, Chen CW, Yang D, Kinkaid MM, Hu E, Sun YY. Brain-targeted hypoxia-inducible factor stabilization reduces neonatal hypoxic-ischemic brain injury. Neurobiol Dis 2020; 148:105200. [PMID: 33248237 PMCID: PMC10111204 DOI: 10.1016/j.nbd.2020.105200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF1α) is a major regulator of cellular adaptation to hypoxia and oxidative stress, and recent advances of prolyl-4-hydroxylase (P4H) inhibitors have produced powerful tools to stabilize HIF1α for clinical applications. However, whether HIF1α provokes or resists neonatal hypoxic-ischemic (HI) brain injury has not been established in previous studies. We hypothesize that systemic and brain-targeted HIF1α stabilization may have divergent effects. To test this notion, herein we compared the effects of GSK360A, a potent P4H inhibitor, in in-vitro oxygen-glucose deprivation (OGD) and in in-vivo neonatal HI via intracerebroventricular (ICV), intraperitoneal (IP), and intranasal (IN) drug-application routes. We found that GSK360A increased the erythropoietin (EPO), heme oxygenase-1 (HO1) and glucose transporter 1 (Glut1) transcripts, all HIF1α target-genes, and promoted the survival of neurons and oligodendrocytes after OGD. Neonatal HI insult stabilized HIF1α in the ipsilateral hemisphere for up to 24 h, and either ICV or IN delivery of GSK360A after HI increased the HIF1α target-gene transcripts and decreased brain damage. In contrast, IP-injection of GSK360A failed to reduce HI brain damage, but elevated the risk of mortality at high doses, which may relate to an increase of the kidney and plasma EPO, leukocytosis, and abundant vascular endothelial growth factor (VEGF) mRNAs in the brain. These results suggest that brain-targeted HIF1α-stabilization is a potential treatment of neonatal HI brain injury, while systemic P4H-inhibition may provoke unwanted adverse effects.
Collapse
Affiliation(s)
- Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America.
| | - Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Ning Gao
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Dianer Yang
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Melissa M Kinkaid
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Erding Hu
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, United States of America
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
14
|
Yao HW, Kuan CY. Early neutrophil infiltration is critical for inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Cereb Blood Flow Metab 2020; 40:2188-2200. [PMID: 31842667 PMCID: PMC7585929 DOI: 10.1177/0271678x19891839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
Abstract
Neutrophils are the most abundant leukocytes and usually the first immune cell-type recruited to a site of infection or tissue damage. In asphyxiated neonates, elevated peripheral neutrophil counts are associated with poorer neurological outcomes. Induced neutropenia provides brain protection in animal models of neonatal hypoxic-ischemic (HI) injury, but the anti-neutrophil serum used in past studies heavily cross-reacts with monocytes, thus complicating the interpretation of results. Here we examined neutrophil influx and extravasation, and used a specific anti-Ly6G antibody for induced neutropenia against lipopolysaccharide (LPS)-pretreated HI injury in murine neonates, a model for inflammation-sensitized hypoxic-ischemic encephalopathy (HIE). As early as 6 h after the LPS/HI insult, the mRNAs for neutrophil-recruiting and mitogenic chemokines ascended in the ipsilateral hemisphere, coinciding with immuno-detection of neutrophils. However, neutrophils mainly resided within blood vessels, exhibiting signs for neutrophil extracellular traps (NETs), before 48 h post-LPS/HI. Prophylactic anti-Ly6G treatment blocked the brain infiltration of neutrophils, but not monocytes or lymphocytes, and markedly decreased LPS/HI-induced pro-inflammatory cytokines, matrix metalloproteinase 9 (MMP-9), and brain tissue loss. In contrast, anti-Ly6G treatment at 4 h post-LPS/HI failed to prevent the influx of neutrophils and brain damage. Together, these results suggest important pathological functions for early-arriving neutrophils in inflammation-sensitized HIE.
Collapse
Affiliation(s)
- Hui-Wen Yao
- Department of Neuroscience and the Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chia-Yi Kuan
- Department of Neuroscience and the Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
15
|
O'Dea M, Sweetman D, Bonifacio SL, El-Dib M, Austin T, Molloy EJ. Management of Multi Organ Dysfunction in Neonatal Encephalopathy. Front Pediatr 2020; 8:239. [PMID: 32500050 PMCID: PMC7243796 DOI: 10.3389/fped.2020.00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal Encephalopathy (NE) describes neonates with disturbed neurological function in the first post-natal days of life. NE is an overall term that does not specify the etiology of the encephalopathy although it often involves hypoxia-ischaemia. In NE, although neurological dysfunction is part of the injury and is most predictive of long-term outcome, these infants may also have multiorgan injury and compromise, which further contribute to neurological impairment and long-term morbidities. Therapeutic hypothermia (TH) is the standard of care for moderate to severe NE. Infants with NE may have co-existing immune, respiratory, endocrine, renal, hepatic, and cardiac dysfunction that require individualized management and can be impacted by TH. Non-neurological organ dysfunction not only has a negative effect on long term outcome but may also influence the efficacy of treatments in the acute phase. Post resuscitative care involves stabilization and decisions regarding TH and management of multi-organ dysfunction. This management includes detailed neurological assessment, cardio-respiratory stabilization, glycaemic and fluid control, sepsis evaluation and antibiotics, seizure identification, and monitoring and responding to biochemical and coagulation derangements. The emergence of new biomarkers of specific organ injury may have predictive value and improve the definition of organ injury and prognosis. Further evidence-based research is needed to optimize management of NE, prevent further organ dysfunction and reduce neurodevelopmental impairment.
Collapse
Affiliation(s)
- Mary O'Dea
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
| | - Deirdre Sweetman
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
| | - Sonia Lomeli Bonifacio
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mohamed El-Dib
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Eleanor J. Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
- Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
- Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
16
|
Sweetman DU, Strickland T, Melo AM, Kelly LA, Onwuneme C, Watson WR, Murphy JFA, Slevin M, Donoghue V, O'Neill A, Molloy EJ. Neonatal Encephalopathy Is Associated With Altered IL-8 and GM-CSF Which Correlates With Outcomes. Front Pediatr 2020; 8:556216. [PMID: 33628760 PMCID: PMC7899044 DOI: 10.3389/fped.2020.556216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate the relationship between cytokines associated with innate immune cell activation and brain injury and outcome in infants with NE compared to neonatal controls. Methods: Serum and CSF biomarkers associated with activated neutrophils and monocytes [Interleukin-8 (IL-8) and Granulocyte-Macrophage-Colony-Stimulating-Factor (GM-CSF)] were serially measured using duplex immunoassays on days 1, 3 and 7 in term newborns with NE and controls. Results were compared to grade of encephalopathy, seizures, MRI brain imaging, mortality and Bayley Score of Infant and Toddler Development (Bayley-III) at 2 years of age. Results: Ninety-four infants had serum samples collected with 34 CSF samples. NE Grade II/III was significantly associated with elevated on day 2 serum IL-8. Mortality was best predicted by elevated day 1 IL-8. GM-CSF was initially elevated on day 1 and abnormal MRI imaging was associated with decreased day 2 GM-CSF. Elevated GM-CSF at day of life 6-7 correlated negatively with composite cognitive, language and motor Bayley-III scores at 2 years. Conclusion: Moderate or severe NE and mortality was associated with elevated IL-8. Day 2 GM-CSF could predict abnormal MRI results in NE and Bayley-III. Therefore, these cytokines are altered in NE and may predict early outcomes and further implicate inflammatory processes in NE.
Collapse
Affiliation(s)
- Deirdre U Sweetman
- Neonatology, National Maternity Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tammy Strickland
- Discipline of Paediatrics, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Paediatrics, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Lynne A Kelly
- National Children's Research Centre, Dublin, Ireland.,Discipline of Paediatrics, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chike Onwuneme
- Neonatology, National Maternity Hospital, Dublin, Ireland.,UCD School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - William R Watson
- UCD School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - John F A Murphy
- Neonatology, National Maternity Hospital, Dublin, Ireland.,Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marie Slevin
- Neonatology, National Maternity Hospital, Dublin, Ireland
| | - Veronica Donoghue
- Radiology Department, Children's University Hospital, Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- National Children's Research Centre, Dublin, Ireland.,Discipline of Paediatrics, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Childrens University Hospital (CHI) at Tallght, Tallaght University Hospital, Dublin, Ireland.,Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland.,Neonatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
17
|
Tsafaras GP, Ntontsi P, Xanthou G. Advantages and Limitations of the Neonatal Immune System. Front Pediatr 2020; 8:5. [PMID: 32047730 PMCID: PMC6997472 DOI: 10.3389/fped.2020.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
During early post-natal life, neonates must adjust to the transition from the sheltered intra-uterine environment to the microbe-laden external world, wherein they encounter a constellation of antigens and the colonization by the microbiome. At this vulnerable stage, neonatal immune responses are considered immature and present significant differences to those of adults. Pertinent to innate immunity, functional and quantitative deficiencies in antigen-presenting cells and phagocytes are often documented. Exposure to environmental antigens and microbial colonization is associated with epigenetic immune cell reprogramming and activation of effector and regulatory mechanisms that ensure age-depended immune system maturation and prevention of tissue damage. Moreover, neonatal innate immune memory has emerged as a critical mechanism providing protection against infectious agents. Still, in neonates, inexperience to antigenic exposure, along with enhancement of tissue-protective immunosuppressive mechanisms are often associated with severe immunopathological conditions, including sepsis and neurodevelopmental disorders. Despite significant advances in the field, adequate vaccination in newborns is still in its infancy due to elemental restrictions associated also with defective immune responses. In this review, we provide an overview of neonatal innate immune cells, highlighting phenotypic and functional disparities with their adult counterparts. We also discuss the effects of epigenetic modifications and microbial colonization on the regulation of neonatal immunity. A recent update on mechanisms underlying dysregulated neonatal innate immunity and linked infectious and neurodevelopmental diseases is provided. Understanding of the mechanisms that augment innate immune responsiveness in neonates may facilitate the development of improved vaccination protocols that can protect against pathogens and organ damage.
Collapse
Affiliation(s)
- George P Tsafaras
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polyxeni Ntontsi
- Second Respiratory Medicine Department, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
18
|
Barrios-Anderson A, Chen X, Nakada S, Chen R, Lim YP, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers After Hypoxia-Ischemia in Neonatal Rats. J Neuropathol Exp Neurol 2019; 78:742-755. [PMID: 31274164 PMCID: PMC6640908 DOI: 10.1093/jnen/nlz051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation contributes to hypoxic-ischemic (HI) brain injury. Inter-alpha inhibitor proteins (IAIPs) have important immunomodulatory properties. Human (h) plasma-derived IAIPs reduce brain injury and improve neurobehavioral outcomes after HI. However, the effects of hIAIPs on neuroinflammatory biomarkers after HI have not been examined. We determined whether hIAIPs attenuated HI-related neuroinflammation. Postnatal day-7 rats exposed to sham-placebo, or right carotid ligation and 8% oxygen for 90 minutes with placebo, and hIAIP treatment were studied. hIAIPs (30 mg/kg) or PL was injected intraperitoneally immediately, 24, and 48 hours after HI. Rat complete blood counts and sex were determined. Brain tissue and peripheral blood were prepared for analysis 72 hours after HI. The effects of hIAIPs on HI-induced neuroinflammation were quantified by image analysis of positively stained astrocytic (glial fibrillary acid protein [GFAP]), microglial (ionized calcium binding adaptor molecule-1 [Iba-1]), neutrophilic (myeloperoxidase [MPO]), matrix metalloproteinase-9 (MMP9), and MMP9-MPO cellular markers in brain regions. hIAIPs reduced quantities of cortical GFAP, hippocampal Iba-1-positive microglia, corpus callosum MPO, and cortical MMP9-MPO cells and the percent of neutrophils in peripheral blood after HI in male, but not female rats. hIAIPs modulate neuroinflammatory biomarkers in the neonatal brain after HI and may exhibit sex-related differential effects.
Collapse
Affiliation(s)
- Adriel Barrios-Anderson
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Ray Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Yow-Pin Lim
- ProThera Biologics, Inc
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| |
Collapse
|
19
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Povroznik JM, Engler-Chiurazzi EB, Nanavati T, Pergami P. Absolute lymphocyte and neutrophil counts in neonatal ischemic brain injury. SAGE Open Med 2018; 6:2050312117752613. [PMID: 29375880 PMCID: PMC5777550 DOI: 10.1177/2050312117752613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n = 12), acute ischemic stroke (n = 15), and transient tachypnea of the newborn (n = 48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0–12, 12–36, and 36–60 h after birth) were collected, and neutrophil-to-lymphocyte ratio was calculated. Results: Hypoxic-ischemic encephalopathy + total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy + total-body cooling) revealed that absolute lymphocyte count changes occurring at 0–12 h are likely due to disease progression, rather than total-body cooling treatment. Conclusion: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic-ischemic encephalopathy in neonates is warranted.
Collapse
Affiliation(s)
- Jessica M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Tania Nanavati
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, USA.,Child Neurology, Department of Pediatrics, West Virginia University, Morgantown, WV, USA
| | - Paola Pergami
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
21
|
Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017; 159:50-68. [PMID: 29111451 PMCID: PMC5831511 DOI: 10.1016/j.pneurobio.2017.10.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
Abstract
Perinatal hypoxia-ischemia remains the primary cause of acute neonatal brain injury, leading to a high mortality rate and long-term neurological deficits, such as behavioral, social, attentional, cognitive and functional motor deficits. An ever-increasing body of evidence shows that the immune response to acute cerebral hypoxia-ischemia is a major contributor to the pathophysiology of neonatal brain injury. Hypoxia-ischemia provokes an intravascular inflammatory cascade that is further augmented by the activation of resident immune cells and the cerebral infiltration of peripheral immune cells response to cellular damages in the brain parenchyma. This prolonged and/or inappropriate neuroinflammation leads to secondary brain tissue injury. Yet, the long-term effects of immune activation, especially the adaptive immune response, on the hypoxic-ischemic brain still remain unclear. The focus of this review is to summarize recent advances in the understanding of post-hypoxic-ischemic neuroinflammation triggered by the innate and adaptive immune responses and to discuss how these mechanisms modulate the brain vulnerability to injury. A greater understanding of the reciprocal interactions between the hypoxic-ischemic brain and the immune system will open new avenues for potential immunomodulatory therapy in the treatment of neonatal brain injury.
Collapse
Affiliation(s)
- Bo Li
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Katherine Concepcion
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xianmei Meng
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
22
|
Min Y, Li H, Xu K, Huang Y, Xiao J, Wang W, Li L, Yang T, Huang L, Yang L, Jiang H, Wang Q, Zhao M, Hua H, Mei R, Li F. Minocycline-Suppression of Early Peripheral Inflammation Reduces Hypoxia-Induced Neonatal Brain Injury. Front Neurosci 2017; 11:511. [PMID: 28955196 PMCID: PMC5600962 DOI: 10.3389/fnins.2017.00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
While extensive studies report that neonatal hypoxia-ischemia (HI) induces long-term cognitive impairment via inflammatory responses in the brain, little is known about the role of early peripheral inflammation response in HI injury. Here we used a neonatal hypoxia rodent model by subjecting postnatal day 0 (P0d) rat pups to systemic hypoxia (3.5 h), a condition that is commonly seen in clinic neonates, Then, an initial dose of minocycline (45 mg/kg) was injected intraperitoneally (i.p.) 2 h after the hypoxia exposure ended, followed by half dosage (22.5 mg/kg) minocycline treatment for next 6 consecutive days daily. Saline was injected as vehicle control. To examine how early peripheral inflammation responded to hypoxia and whether this peripheral inflammation response was associated to cognitive deficits. We found that neonatal hypoxia significantly increased leukocytes not only in blood, but also increased the monocytes in central nervous system (CNS), indicated by presence of C-C chemokine receptor type 2 (CCR2+)/CD11b+CD45+ positive cells and CCR2 protein expression level. The early onset of peripheral inflammation response was followed by a late onset of brain inflammation that was demonstrated by level of cytokine IL-1β and ionized calcium binding adapter molecule 1(Iba-1; activated microglial cell marker). Interrupted blood-brain barrier (BBB), hypomyelination and learning and memory deficits were seen after hypoxia. Interestingly, the cognitive function was highly correlated with hypoxia-induced leukocyte response. Notably, administration of minocycline even after the onset of hypoxia significantly suppressed leukocyte-mediated inflammation as well as brain inflammation, demonstrating neuroprotection in systemic hypoxia-induced brain damage. Our data provided new insights that systemic hypoxia induces cognitive dysfunction, which involves the leukocyte-mediated peripheral inflammation response.
Collapse
Affiliation(s)
- Yingjun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Hongchun Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Kaiyu Xu
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Yilong Huang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Jie Xiao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Weizhou Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Longjun Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Ting Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Lixuan Huang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Ling Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Hong Jiang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Qian Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Min Zhao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - HaiRong Hua
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| | - Rong Mei
- Department of Neurology, Yunnan First People's HospitalKunming, China
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical UniversityKunming, China
| |
Collapse
|
23
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
24
|
Schiavone S, Riezzo I, Turillazzi E, Trabace L. Involvement of the NADPH Oxidase NOX2-Derived Brain Oxidative Stress in an Unusual Fatal Case of Cocaine-Related Neurotoxicity Associated With Excited Delirium Syndrome. J Clin Psychopharmacol 2016; 36:513-7. [PMID: 27533346 DOI: 10.1097/jcp.0000000000000560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Here, we investigated the possible role of the Nicotinamide Adenine Dinucleotide Phosphate oxidase NOX2-derived brain oxidative stress in a fatal case of cocaine-related neurotoxicity, associated to excited delirium syndrome. We detected a strong NOX2 immunoreactivity, mainly in cortical GABAergic neurons and astrocytes, with a minor presence in microglia, glutamatergic and dopaminergic neurons as well as a significant immunostaining for other markers of oxidative stress (8OhDG, HSP70, HSP90, and NF-κB) and apoptotic phenomena. These results support a crucial role of NOX2-derived brain oxidative stress in cocaine-induced brain dysfunctions and neurotoxicity.
Collapse
Affiliation(s)
- Stefania Schiavone
- From the Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | | | | |
Collapse
|
25
|
Boskabadi H, Zakerihamidi M, Heidarzadeh M, Avan A, Ghayour-Mobarhan M, Ferns GA. The value of serum pro-oxidant/antioxidant balance in the assessment of asphyxia in term neonates. J Matern Fetal Neonatal Med 2016; 30:1556-1561. [PMID: 27377567 DOI: 10.1080/14767058.2016.1209655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Asphyxia is a major cause of disabilities in term-born infants. Here we have explored the value in HIE (hypoxic-ischemic-encephalopathy) of using a combination of serum pro-oxidant/antioxidant balance (PAB) assay for predicting the prognosis of asphyxia. METHOD Ninety term neonates with asphyxia were enrolled and followed up for two years. Serum PAB, demographic/biochemical characteristics of mothers, and their neonates were determined. The Denver II test was used to assess outcomes. RESULTS Of the 90 asphyxiated neonates, 47 (52.2%) had a normal outcome and 43 babies (47.8%) had abnormal outcome. Serum PAB levels in neonates with normal and abnormal outcomes were 17.1 ± 9.23 and 48.27 ± 41.30 HK, respectively. A combination of HIE intensity and PAB, compared to other indicators, had a higher predictive-value (95.2%) for outcomes in asphyxiated babies. CONCLUSION We demonstrate that PAB in combination with HIE grade may have a better predictive value for the prognosis of asphyxiated babies and predicting future neurologic problems in asphyxiated term infants.
Collapse
Affiliation(s)
- Hassan Boskabadi
- a Department of Pediatrics , Neonatal Research Center, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS) , Mashhad , Iran
| | - Maryam Zakerihamidi
- b Reproductive Health, Department of Midwifery, School of Medicine, Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Mohammad Heidarzadeh
- c Department of Pediatrics , Community Medicine and Public Health, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amir Avan
- d Department of Modern Sciences and Technologies , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Majid Ghayour-Mobarhan
- e Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - Gordon A Ferns
- f Division of Medical Education , Brighton and Sussex Medical School , Brighton , UK
| |
Collapse
|
26
|
Schiavone S, Neri M, Mhillaj E, Morgese MG, Cantatore S, Bove M, Riezzo I, Tucci P, Pomara C, Turillazzi E, Cuomo V, Trabace L. The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post mortem brain samples. Transl Psychiatry 2016; 6:e813. [PMID: 27187235 PMCID: PMC5070044 DOI: 10.1038/tp.2016.76] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/26/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022] Open
Abstract
Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention.
Collapse
Affiliation(s)
- S Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy,Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy. E-mail:
| | - M Neri
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Mhillaj
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - M G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - S Cantatore
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - M Bove
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - I Riezzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - P Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - C Pomara
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Turillazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V Cuomo
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - L Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
27
|
Abstract
Neonatal encephalopathy (NE) is a major contributor to neurodevelopmental deficits including cerebral palsy in term and near-term infants. The long-term neurodevelopmental outcome is difficult to predict with certainty in first few days of life. Multiorgan involvement is common but not part of the diagnostic criteria for NE. The most frequently involved organs are the heart, liver, kidneys and hematological system. Cerebral and organ involvement is associated with the release of organ specific biomarkers in cerebrospinal fluid, urine and blood. These biomarkers may have a role in the assessment of the severity of asphyxia and long-term outcome in neonates with NE.
Collapse
Affiliation(s)
- Saima Aslam
- Department of Paediatrics, National Maternity Hospital, Holles Street, Dublin, Ireland
| | | |
Collapse
|
28
|
Eliwan HO, Watson RWG, Aslam S, Regan I, Philbin B, O'Hare FM, O'Neill A, Preston R, Blanco A, Grant T, Nolan B, Smith O, Molloy EJ. Neonatal brain injury and systemic inflammation: modulation by activated protein C ex vivo. Clin Exp Immunol 2015; 179:477-84. [PMID: 25204207 DOI: 10.1111/cei.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 01/04/2023] Open
Abstract
Infection and inflammation can be antecedents of neonatal encephalopathy (NE) and increase the risk of neurological sequelae. Activated protein C (APC) has anti-coagulant and anti-inflammatory effects and provides neuroprotection in brain and spinal cord injury. We examined neutrophil and monocyte responses to lipopolysaccharide (LPS) in infants with NE compared with healthy adult and neonatal controls, and also studied the effect of APC. Whole blood was incubated with LPS and APC and Toll-like receptor (TLR)-4 (LPS recognition), CD11b expression (activation) and intracellular reactive oxygen intermediate (ROI; function) release from neutrophils and monocytes was examined by flow cytometry serially from days 1 to 7. We found a significant increase in neutrophil ROI in infants with NE on day 3 following LPS compared to neonatal controls and this augmented response was reduced significantly by APC. Neutrophil and monocyte CD11b expression was increased significantly on day 1 in infants with NE compared to neonatal controls. LPS-induced neutrophil TLR-4 expression was increased significantly in infants with NE on days 3 and 7 and was reduced by APC. LPS-induced monocyte TLR-4 was increased significantly in infants with NE on day 7. Neutrophil and monocyte activation and production of ROIs may mediate tissue damage in infants with NE. APC modified LPS responses in infants with NE. APC may reduce the inflammatory responses in NE and may ameliorate multi-organ dysfunction. Further study of the immunomodulatory effects of protein C may be warranted using mutant forms with decreased bleeding potential.
Collapse
Affiliation(s)
- H O Eliwan
- Paediatrics, National Maternity Hospital, Dublin, Ireland; UCD School of Medicine and Medical Science and Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; National Children Research Centre, Dublin, Ireland; Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Umbilical neutrophil gelatinase-associated lipocalin level as an early predictor of acute kidney injury in neonates with hypoplastic left heart syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:360209. [PMID: 25699275 PMCID: PMC4324892 DOI: 10.1155/2015/360209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is a primarily described complication after unbalanced systemic perfusion in neonates with congenital heart defects, including hypoplastic left heart syndrome (HLHS). The aim of the study was to compare the umbilical NGAL concentrations between neonates born with HLHS and healthy infants, as well as to analyze whether the determination of NGAL level could predict AKI in neonates with prenatally diagnosed HLHS. Twenty-one neonates with prenatally diagnosed HLHS were enrolled as study group and 30 healthy neonates served as controls. Perinatal characteristics and postnatal parameters were extracted from the hospital neonatal database. In umbilical cord blood, we determined plasma NGAL concentrations, acid base balance, and lactate and creatinine levels. In neonates with HLHS, complications (respiratory insufficiency, circulatory failure, NEC, IVH, and AKI) were recorded until the day of cardiosurgery. We observed in neonates with HLHS higher umbilical NGAL levels compared to controls. Among 8 neonates with HLHS and diagnosed AKI stage 1, we observed elevated NGAL levels in comparison to those newborns without AKI. Umbilical NGAL could predict, with high sensitivity and specificity, AKI development in study neonates. We suggest that the umbilical blood NGAL concentration may be an early marker to predict AKI in neonates with HLHS.
Collapse
|
30
|
Chakkarapani E, Davis J, Thoresen M. Therapeutic hypothermia delays the C-reactive protein response and suppresses white blood cell and platelet count in infants with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed 2014; 99:F458-63. [PMID: 24972990 DOI: 10.1136/archdischild-2013-305763] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Therapeutic hypothermia (HT) delays the cytokine response in infants with neonatal encephalopathy (NE). OBJECTIVE To determine if HT delayed the C-reactive protein (CRP) response and altered white blood cell (WBC), neutrophil and platelet count course during the first week of life in infants with NE. DESIGN Retrospective cohort study. SETTING Regional neonatal intensive care unit, UK. PATIENTS 104 term infants with NE (38 normothermia (NT) and 66 HT) born between 1998 and 2010. Infants not exposed to prenatal sepsis risk factors were classified as group 'A' and exposed infants to group 'B'. CRP >10 mg/L was defined as significant response. MAIN OUTCOME MEASURES Time to CRP >10 mg/L, peak CRP, WBC, neutrophil and platelet count. RESULTS Blood cultures were negative in all the infants. In babies who had CRP response, HT delayed time to CRP >10 mg/L (median (95% CI): group A, HT: 36 h (28.3 to 48.0); NT: 24 h (0.0 to 24.0); p=0.001; group B, HT: 30 h (15.2 to 56.8); NT: 12 h (0.0 to 24.0); p=0.009) and time to peak CRP (median (95% CI): group A, HT: 60 h (60.0 to 72.0); NT: 36 h (0.0 to 48.0); p=0.001; group B, HT: 84 h (62.1 to 120.0); NT: 24 h (0.0 to 36.0); p=0.001). Compared with NT, HT was associated with reduction in slope of CRP elevation by 0.5 (95% CI 0.04 to 0.97), WBC by 2.18×10(9)/L (95% CI 0.002 to 4.35) and platelet count by 32.3×10(9)/L (95% CI 2.75 to 61.8) independent of exposure to sepsis risk, meconium aspiration and severity of asphyxia. CONCLUSIONS Therapeutic hypothermia delayed the initiation of CRP and its peak response, and depressed the WBC and platelet count compared with NT.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Neonatal Neuroscience, School of Clinical Medicine, St Michael's Hospital, University of Bristol, Bristol, UK
| | - Jonathan Davis
- Neonatal Neuroscience, School of Clinical Medicine, St Michael's Hospital, University of Bristol, Bristol, UK
| | - Marianne Thoresen
- Neonatal Neuroscience, School of Clinical Medicine, St Michael's Hospital, University of Bristol, Bristol, UK Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Early assessment of the severity of asphyxia in term newborns using parameters of blood count. Interdiscip Toxicol 2011; 1:211-3. [PMID: 21218117 PMCID: PMC2994022 DOI: 10.2478/v10102-010-0043-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 11/21/2022] Open
Abstract
Acute perinatal asphyxia is a major cause of death and neurological injury in newborn infants. Severe asphyxia can occur in infants around the time of birth for several reasons. The aim of our study was to find the most sensitive, easily obtainable and fast assessable parameter of the presence and quantification of asphyxia. In our study 39 term newborns (15 healthy term newborns and 24 asphyxial term newborns), from vaginal deliveries admitted within 24 hours of life were monitored and parameters of blood count from venous blood were assessed. Laboratory findings of blood count parameters revealed significant differences between term asphyxial and healthy newborns in erythrocyte count and hemoglobin and hematocrit values. Hematological changes observed early after delivery can determine the duration of hypoxemia (acute vs. chronic) and asphyxia of short duration may be accompanied without occurrence of polyglobulia.
Collapse
|
32
|
Expression of T subsets and mIL-2R in peripheral blood of newborns with hypoxic ischemic encephalopathy. World J Pediatr 2008; 4:140-4. [PMID: 18661772 DOI: 10.1007/s12519-008-0028-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Infantile and undifferentiated immune cells in the pathogenesis of neonates with HIE have been studied in recent years. This study was undertaken to observe the expression level of T subsets and membrane interleukin-2 receptor (mIL-2R) in the peripheral blood of newborns with hypoxic ischemic encephalopathy (HIE) and its clinical manifestations. METHODS The peripheral blood mononuclear cells (PBMCs) of newborns with HIE and normal controls were isolated by the routine Ficoll-Hypaque method, and the rates of CD3+, CD4+, CD8+, CD4+/CD8+ and mIL-2R induced and not induced by phytohemagglutinin (PHA) were detected by biotin-streptavidin (BSA) at the first, third and seventh day after birth. RESULTS At the first day after birth, the positive rates of CD3+, CD4+, CD8+, CD4+/CD8+ and mIL-2R induced and not induced by PHA were (37.4+/-6.7)%, (29.4+/-6.9)%, (16.7+/-3.3)%, 1.8+/-0.5, (3.6+/-1.1)% and (20.9+/-4.8)%, respectively. Significant differences were observed between the HIE group and the normal controls (P<0.01-P<0.05). At the third day after birth, the positive rates of CD3+, CD4+, CD8+, CD4+/CD*+ and mIL-2R induced and not induced by PHA were (41.0+/-7.4)%, (35.8+/-6.9)%, (22.6+/-4.5)%, (1.7+/-0.5), (3.9+/-1.2)%, and (22.8+/-5.1)%, respectively. There were significant differences between the HIE group and the normal controls (P<0.05). At the seventh day after birth, the positive rates of CD3+, CD4+, CD8+ were (41.8+/-6.1)%, (36.4+/-5.1)% and (25.6+/-4.3)%, respectively. There was significant difference between the HIE group and the normal controls (P<0.05). The ratio of CD4+/CD8+ and the expression level of mIL-2R induced and not induced by PHA were 1.5+/-0.3, (4.1+/-1.2)% and (23.8+/-5.2)%, respectively. There was no significant difference between the HIE group and the normal controls (P>0.05). CONCLUSIONS Peripheral blood mononuclear cells of newborns are immature and undifferentiated with a very low expression level of surface markers. The changes of cell immunity involve in the pathogenesis of HIE. The disorder of cellular immune function exists in newborns with HIE. Cell immunity and immune regulative response in newborns are gradually improved or mature during the period of growing, facilitating the recovery from brain injury caused by HIE.
Collapse
|
33
|
Are elevated peripheral leukocytes markers of septic etiology in asphyxiated infants with neurological disability? J Perinatol 2008; 28:85; author reply 85-6. [PMID: 18165837 DOI: 10.1038/sj.jp.7211855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|