1
|
Takahashi M, Yamamoto S, Yamamoto S, Okubo A, Nakagawa Y, Kuwahara K, Matsusaka T, Fukuma S, Yamamoto M, Matsuda M, Yanagita M. ATP dynamics as a predictor of future podocyte structure and function after acute ischemic kidney injury in female mice. Nat Commun 2024; 15:9977. [PMID: 39578451 PMCID: PMC11584722 DOI: 10.1038/s41467-024-54222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Acute kidney injury (AKI), typically caused by ischemia, is a common clinical complication with a poor prognosis. Although proteinuria is an important prognostic indicator of AKI, the underlying causal mechanism remains unclear. In vitro studies suggest that podocytes have high ATP demands to maintain their structure and function, however, analyzing their ATP dynamics in living kidneys has been technically challenging. Here, using intravital imaging to visualize a FRET-based ATP biosensor expressed systemically in female mice due to their suitability for glomerular imaging, we monitor the in vivo ATP dynamics in podocytes during ischemia reperfusion injury. ATP levels decrease during ischemia, but recover after reperfusion in podocytes, exhibiting better recovery than in glomerular endothelial cells. However, prolonged ischemia results in insufficient ATP recovery in podocytes, which is inversely correlated with mitochondrial fragmentation and foot process effacement during the chronic phase. Furthermore, preventing mitochondrial fission via pharmacological inhibition ameliorates podocyte injury in vitro, ex vivo, and in vivo. Thus, these findings provide several insights into how ATP depletion and mitochondrial fragmentation contribute to podocyte injury after ischemic AKI and could potentially be therapeutic targets.
Collapse
Affiliation(s)
- Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Akihiro Okubo
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taiji Matsusaka
- Institute of Medical Science and Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Fukuma
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Epidemiology Infectious Disease Control and Prevention, Hiroshima University Graduate school of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- National Cerebral and Cardiovascular Center Reaesrch Institute, Osaka, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Mukherjee P, Fukuda S, Lukmanto D, Tran TH, Okada K, Makita S, El-Sadek IA, Lim Y, Yasuno Y. Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15324. [PMID: 37714913 PMCID: PMC10504276 DOI: 10.1038/s41598-023-42559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 [Formula: see text]m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Donny Lukmanto
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Thi Hang Tran
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. program in Human Biology, School of Integrative and Global Majors, Univeristy of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517, New Damietta City, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Mukherjee P, Fukuda S, Lukmanto D, Tran TH, Okada K, Makita S, El-sadek IA, Lim Y, Yasuno Y. Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography.. [DOI: 10.1101/2023.05.01.539010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTRenal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT)ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 μm swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric DOCT can be used as a tool to investigate kidney function during kidney diseases.
Collapse
|
4
|
Corridon PR. Capturing effects of blood flow on the transplanted decellularized nephron with intravital microscopy. Sci Rep 2023; 13:5289. [PMID: 37002341 PMCID: PMC10066218 DOI: 10.1038/s41598-023-31747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Collapse
Affiliation(s)
- Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
5
|
Corridon PR. Enhancing the expression of a key mitochondrial enzyme at the inception of ischemia-reperfusion injury can boost recovery and halt the progression of acute kidney injury. Front Physiol 2023; 14:1024238. [PMID: 36846323 PMCID: PMC9945300 DOI: 10.3389/fphys.2023.1024238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrodynamic fluid delivery has shown promise in influencing renal function in disease models. This technique provided pre-conditioned protection in acute injury models by upregulating the mitochondrial adaptation, while hydrodynamic injections of saline alone have improved microvascular perfusion. Accordingly, hydrodynamic mitochondrial gene delivery was applied to investigate the ability to halt progressive or persistent renal function impairment following episodes of ischemia-reperfusion injuries known to induce acute kidney injury (AKI). The rate of transgene expression was approximately 33% and 30% in rats with prerenal AKI that received treatments 1 (T1hr) and 24 (T24hr) hours after the injury was established, respectively. The resulting mitochondrial adaptation via exogenous IDH2 (isocitrate dehydrogenase 2 (NADP+) and mitochondrial) significantly blunted the effects of injury within 24 h of administration: decreased serum creatinine (≈60%, p < 0.05 at T1hr; ≈50%, p < 0.05 at T24hr) and blood urea nitrogen (≈50%, p < 0.05 at T1hr; ≈35%, p < 0.05 at T24hr) levels, and increased urine output (≈40%, p < 0.05 at T1hr; ≈26%, p < 0.05 at T24hr) and mitochondrial membrane potential, Δψm, (≈ by a factor of 13, p < 0.001 at T1hr; ≈ by a factor of 11, p < 0.001 at T24hr), despite elevated histology injury score (26%, p < 0.05 at T1hr; 47%, p < 0.05 at T24hr). Therefore, this study identifies an approach that can boost recovery and halt the progression of AKI at its inception.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
7
|
Arndt P, Sradnick J, Kroeger H, Holtzhausen S, Kessel F, Gerlach M, Todorov V, Hugo C. A quantitative 3D intravital look at the juxtaglomerular renin-cell-niche reveals an individual intra/extraglomerular feedback system. Front Physiol 2022; 13:980787. [PMID: 36237522 PMCID: PMC9550881 DOI: 10.3389/fphys.2022.980787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The juxtaglomerular niche occupied by renin cells (RCN) plays an important role in glomerular repair but the precise temporal and spatial interrelations remain unclear. This study proposes the hypothesis of a local intra-extraglomerular regenerative feedback system and establishes a new quantifiable system for RCN responses in individual glomeruli in vivo. A strictly intraglomerular two-photon laser-induced injury model was established. Labeled renin cells (RC) in transgenic renin reporter mice were fate-traced in healthy and injured glomeruli over several days by intravital microscopy and quantified via new three-dimensional image processing algorithms based on ray tracing. RC in healthy glomeruli demonstrated dynamic extraglomerular protrusions. Upon intraglomerular injury the corresponding RCN first increased in volume and then increased in area of dynamic migration up to threefold compared to their RCN. RC started migration reaching the site of injury within 3 hours and acquired a mesangial cell phenotype without losing physical RCN-contact. During intraglomerular repair only the corresponding RCN responded via stimulated neogenesis, a process of de novo differentiation of RC to replenish the RCN. Repeated continuous intravital microscopy provides a state-of-the-art tool to prove and further study the local intraglomerular RCN repair feedback system in individual glomeruli in vivo in a quantifiable manner.
Collapse
Affiliation(s)
- Patrick Arndt
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jan Sradnick
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Hannah Kroeger
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Dresden University of Technology, Dresden, Germany
| | - Friederike Kessel
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Michael Gerlach
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Vladimir Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- *Correspondence: Christian Hugo,
| |
Collapse
|
8
|
Corridon PR. Intravital microscopy datasets examining key nephron segments of transplanted decellularized kidneys. Sci Data 2022; 9:561. [PMID: 36088356 PMCID: PMC9464233 DOI: 10.1038/s41597-022-01685-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractThis study contains intravital microscopy (IVM) data examining the microarchitecture of acellular kidney scaffolds. Acellular scaffolds are cell-free collagen-based matrices derived from native organs that can be used as templates for regenerative medicine applications. This data set contains in vivo assays that evaluate the effectiveness of decellularization and how these acellular nephron compartments perform in the post-transplantation environment. Qualitative and quantitative assessments of scaffold DNA concentrations, tissue fluorescence signals, and structural and functional integrities of decellularized tubular and peritubular capillary segments were acquired and compared to the native (non-transplanted) organ. Cohorts of 2–3-month-old male Sprague Dawley rats were used: non-transplanted (n = 4), transplanted day 0 (n = 4), transplanted day 1 (n = 4), transplanted day 2 (n = 4), and transplanted day 7 (n = 4). Micrographs and supporting measurements are provided to illustrate IVM processes used to perform this study and are publicly available in a data repository to assist scientific reproducibility and extend the use of this powerful imaging application to analyze other scaffold systems.
Measurements(s)
DNA quantification • tissue fluorescence • microvascular leakage • tubular and peritubular capillary integrity
Technology Type(s)
intravital microscopy • multiphoton microscopy • UV-visible spectroscopy
Sample Characterization(s)
rats • native and decellularized kidneys
Collapse
|
9
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
10
|
Molitoris BA, Sandoval RM, Wagner MC. Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Front Physiol 2022; 13:827280. [PMID: 35399274 PMCID: PMC8988037 DOI: 10.3389/fphys.2022.827280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
Collapse
|
11
|
Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury. Sci Rep 2021; 11:8280. [PMID: 33859322 PMCID: PMC8050301 DOI: 10.1038/s41598-021-87807-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022] Open
Abstract
Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.
Collapse
|
12
|
Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M, Kaneko K, Uchino E, Sato Y, Fukuma S, Imamura H, Matsuda M, Yanagita M. Spatiotemporal ATP Dynamics during AKI Predict Renal Prognosis. J Am Soc Nephrol 2020; 31:2855-2869. [PMID: 33046532 DOI: 10.1681/asn.2020050580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Depletion of ATP in renal tubular cells plays the central role in the pathogenesis of kidney diseases. Nevertheless, inability to visualize spatiotemporal in vivo ATP distribution and dynamics has hindered further analysis. METHODS A novel mouse line systemically expressing an ATP biosensor (an ATP synthase subunit and two fluorophores) revealed spatiotemporal ATP dynamics at single-cell resolution during warm and cold ischemic reperfusion (IR) with two-photon microscopy. This experimental system enabled quantification of fibrosis 2 weeks after IR and assessment of the relationship between the ATP recovery in acute phase and fibrosis in chronic phase. RESULTS Upon ischemia induction, the ATP levels of proximal tubule (PT) cells decreased to the nadir within a few minutes, whereas those of distal tubule (DT) cells decreased gradually up to 1 hour. Upon reperfusion, the recovery rate of ATP in PTs was slower with longer ischemia. In stark contrast, ATP in DTs was quickly rebounded irrespective of ischemia duration. Morphologic changes of mitochondria in the acute phase support the observation of different ATP dynamics in the two segments. Furthermore, slow and incomplete ATP recovery of PTs in the acute phase inversely correlated with fibrosis in the chronic phase. Ischemia under conditions of hypothermia resulted in more rapid and complete ATP recovery with less fibrosis, providing a proof of concept for use of hypothermia to protect kidney tissues. CONCLUSIONS Visualizing spatiotemporal ATP dynamics during IR injury revealed higher sensitivity of PT cells to ischemia compared with DT cells in terms of energy metabolism. The ATP dynamics of PTs in AKI might provide prognostic information.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jin Nakamura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Mii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichi Kaneko
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2020; 17:128-144. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, in particular immunofluorescence microscopy, has been used extensively for the assessment of kidney function and pathology for both research and diagnostic purposes. The development of confocal microscopy in the 1950s enabled imaging of live cells and intravital imaging of the kidney; however, confocal microscopy is limited by its maximal spatial resolution and depth. More recent advances in fluorescence microscopy techniques have enabled increasingly detailed assessment of kidney structure and provided extraordinary insights into kidney function. For example, nanoscale precise imaging by rapid beam oscillation (nSPIRO) is a super-resolution microscopy technique that was originally developed for functional imaging of kidney microvilli and enables detection of dynamic physiological events in the kidney. A variety of techniques such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) enable assessment of interaction between proteins. The emergence of other super-resolution techniques, including super-resolution stimulated emission depletion (STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM), has enabled functional imaging of cellular and subcellular organelles at ≤50 nm resolution. The deep imaging via emission recovery (DIVER) detector allows deep, label-free and high-sensitivity imaging of second harmonics, enabling assessment of processes such as fibrosis, whereas fluorescence lifetime imaging microscopy (FLIM) enables assessment of metabolic processes.
Collapse
Affiliation(s)
- Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA. .,Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
14
|
Sokullu E, Pinsard M, Zhang J, Plathier J, Kolhatkar G, Blum AS, Légaré F, Ruediger A, Ozaki T, Gauthier MA. Plasmonic Enhancement of Two-Photon Excitation Fluorescence by Colloidal Assemblies of Very Small AuNPs Templated on M13 Phage. Biomacromolecules 2020; 21:2705-2713. [PMID: 32551601 DOI: 10.1021/acs.biomac.0c00401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, an engineered M13 bacteriophage was examined as a biological template to create a well-defined spacing between very small gold nanoparticles (AuNPs 3-13 nm). The effect of the AuNP particle size on the enhancement of the nonlinear process of two-photon excitation fluorescence (2PEF) was investigated. Compared to conventional (one-photon) microscopy techniques, such nonlinear processes are less susceptible to scattering given that the density of background-scattered photons is too low to generate a detectable signal. Besides this, the use of very small AuNPs in 2PEF microscopy becomes more advantageous because individual "isolated" AuNPs of this size do not sufficiently enhance 2PEF to produce a detectable signal, resulting in even less background signal. To investigate the 2PEF of the AuNP-M13 assemblies, a variety of sample preparation approaches are tested, and surface-enhanced Raman spectroscopy (SERS) is employed to study the strength of plasmon coupling within the gaps of AuNPs assembled on the M13 template. Results indicate that assemblies prepared with 9-13 nm AuNP were able to clearly label Escherichia coli cells and produce a 2PEF signal that was orders of magnitude higher than the isolated AuNP (below the threshold of detection). This study thus provides a better understanding of the opportunities and limitations relevant to the use of such small AuNPs within colloidal plasmonic assemblies, for applications in biodetection or as imaging contrast agents.
Collapse
Affiliation(s)
- Esen Sokullu
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Maxime Pinsard
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Jiawei Zhang
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Julien Plathier
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Gitanjali Kolhatkar
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | | | - François Légaré
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Andreas Ruediger
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Tsuneyuki Ozaki
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| | - Marc A Gauthier
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|
15
|
De Niz M, Carvalho T, Penha-Gonçalves C, Agop-Nersesian C. Intravital imaging of host-parasite interactions in organs of the thoracic and abdominopelvic cavities. Cell Microbiol 2020; 22:e13201. [PMID: 32149435 DOI: 10.1111/cmi.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
16
|
Wu S, Guo H, Horng H, Liu Y, Li H, Daneshpajouhnejad P, Rosenberg A, Albanese C, Ranjit S, Andrews PM, Levi M, Tang Q, Chen Y. Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e201900246. [PMID: 31688977 DOI: 10.1002/jbio.201900246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
Age-related kidney disease, which is chronic and naturally occurring, is a general term for a set of heterogeneous disorders affecting kidney structures and characterized by a decline in renal function. Age-related renal insufficiency has important implications with regard to body homeostasis, drug toxicity and renal transplantation. In our study, two-photon microscopy was used to image kidney morphological and functional characteristics in an age-related rat model in vivo. The changes in morphology are analyzed based on autofluorescence and Hoechst 33342 labeling in rats with different ages. Structural parameters including renal tubular diameter, cell nuclei density, size and shape are studied and compared with Hematoxylin and Eosin histological analysis. Functional characteristics, such as blood flow, and glomerular filtration rate are studied with high-molecular weight (MW) 500-kDa dextran-fluorescein and low-MW 10-kDa dextran-rhodamine. Results indicate that morphology changes significantly and functional characteristics deteriorate with age. These parameters are potential indicators for evaluating age-related renal morphology and function changes. Combined analyses of these parameters could provide a quantitative, novel method for monitoring kidney diseases and/or therapeutic effects of kidney drugs.
Collapse
Affiliation(s)
- Shulian Wu
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hengchang Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hannah Horng
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hui Li
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
| | | | - Avi Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Albanese
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Peter M Andrews
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Yu Chen
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
17
|
Rowland R, Ponticorvo A, Jarrin Lopez A, Li S, Li X, Ichii H, Durkin AJ. Monitoring kidney optical properties during cold storage preservation with spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31777223 PMCID: PMC6882458 DOI: 10.1117/1.jbo.24.11.116003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/11/2019] [Indexed: 05/18/2023]
Abstract
Transplantation of kidneys results in delayed graft function in as many as 40% of cases. During the organ transplantation process, donor kidneys undergo a period of cold ischemic time (CIT), where the organ is preserved with a cold storage solution to maintain tissue viability. Some complications observed after grafting may be due to damage sustained to the kidney during CIT. However, the effects due to this damage are not apparent until well after transplant surgery has concluded. To this end, we have used spatial frequency domain imaging (SFDI) to measure spatially resolved optical properties of porcine kidneys over the course of 80-h CIT. During this time, we observed an increase in both reduced scattering (μ s& ' ) and absorption (μa) coefficients. The measured scattering b parameter increased until 24 h of CIT, then returned toward baseline during the remaining duration of the imaging sequence. These results show that the optical properties of kidney tissue change with increasing CIT and suggest that continued investigation into the application of SFDI to kidneys under CIT may lead to the development of a noninvasive method for assessing graft viability.
Collapse
Affiliation(s)
- Rebecca Rowland
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Adrien Ponticorvo
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alberto Jarrin Lopez
- University of California, Irvine, Department of Surgery, UC Irvine Division of Transplantation, Orange, California, United States
| | - Shiri Li
- University of California, Irvine, Department of Surgery, UC Irvine Division of Transplantation, Orange, California, United States
| | - Xiaodong Li
- UC Irvine Health Douglas Hospital, Department of Pathology, Orange, California, United States
| | - Hirohito Ichii
- University of California, Irvine, Department of Surgery, UC Irvine Division of Transplantation, Orange, California, United States
| | - Anthony J. Durkin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| |
Collapse
|
18
|
Press AT, Butans MJ, Haider TP, Weber C, Neugebauer S, Kiehntopf M, Schubert US, Clemens MG, Bauer M, Kortgen A. Fast simultaneous assessment of renal and liver function using polymethine dyes in animal models of chronic and acute organ injury. Sci Rep 2017; 7:15397. [PMID: 29133918 PMCID: PMC5684357 DOI: 10.1038/s41598-017-14987-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
Simultaneous assessment of excretory liver and kidney function is still an unmet need in experimental stress models as well as in critical care. The aim of the study was to characterize two polymethine-dyes potentially suitable for this purpose in vivo. Plasma disappearance rate and elimination measurements of simultaneously injected fluorescent dyes DY-780 (hepato-biliary elimination) and DY-654(renal elimination) were conducted using catheter techniques and intravital microscopy in animals subjected to different organ injuries, i.e. polymicrobial sepsis by peritoneal contamination and infection, ischemia-reperfusion-injury and glycerol-induced acute kidney-injury. DY-780 and DY-654 showed organ specific and determined elimination routes in both healthy and diseased animals. They can be measured simultaneously using near-infrared imaging and spectrophotometry. Plasma-disappearance rates of DY-780 and DY-654 are superior to conventional biomarkers in indicating hepatic or kidney dysfunction in different animal models. Greatest impact on liver function was found in animals with polymicrobial sepsis whereas glomerular damage due to glycerol-induced kidney-injury had strongest impact on DY-654 elimination. We therefore conclude that hepatic elimination and renal filtration can be assessed in rodents measuring plasma-disappearance rates of both dyes. Further, assessment of organ dysfunction by polymethine dyes correlates with, but outperforms conventional biomarkers regarding sensitivity and the option of spatial resolution if biophotonic strategies are applied. Polymethine-dye clearance thereby allows sensitive point-of-care assessment of both organ functions simultaneously.
Collapse
Affiliation(s)
- A T Press
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M J Butans
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - T P Haider
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - C Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - S Neugebauer
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Department for Clinical chemistry and Laboratory Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M Kiehntopf
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Department for Clinical chemistry and Laboratory Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - U S Schubert
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - M G Clemens
- Department of Biological Sciences and Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - M Bauer
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - A Kortgen
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
19
|
Multi-modality Optical Imaging of Rat Kidney Dysfunction: In Vivo Response to Various Ischemia Times. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 27526162 DOI: 10.1007/978-3-319-38810-6_45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
We observed in vivo kidney dysfunction with various ischemia times at 30, 75, 90, and 120 min using multi-modality optical imaging: optical coherence tomography (OCT), Doppler OCT (DOCT), and two-photon microscopy (TPM). We imaged the renal tubule lumens and glomerulus at several areas of each kidney before, during, and after ischemia of 5-month-old female Munich-Wistar rats. For animals with 30 and 75 min ischemia times, we observed that all areas were recovered after ischemia, that tubule lumens were re-opened and the blood flow of the glomerulus was re-established. For animals with 90 and 120 min ischemia times, we observed unrecovered areas, and that tubule lumens remained close after ischemia. TPM imaging verified the results of OCT and provided higher resolution images than OCT to visualize renal tubule lumens and glomerulus blood flow at the cellular level.
Collapse
|
20
|
Activated Renal Dendritic Cells Cross Present Intrarenal Antigens After Ischemia-Reperfusion Injury. Transplantation 2017; 101:1013-1024. [PMID: 27495751 DOI: 10.1097/tp.0000000000001427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The healthy kidney contains an extensive population of renal mononuclear phagocytes (RMPs), with substantial phenotypic and functional diversity. However, how this diverse population is affected by ischemia-reperfusion injury (IRI), an obligate part of renal transplantation, is not yet well understood. The aim of this study was to characterize the phenotypic and functional alterations in RMPs induced by IRI. METHODS Renal mononuclear phagocytes were studied 24 and 72 hours after 30 minutes of renal ischemia or sham operation. Kidneys were digested and the phenotypes of renal leukocyte populations were analyzed via flow cytometry. Multiphoton microscopy was used to image renal dendritic cells (DCs) in vivo using CD11c reporter mice. The capacity of renal DCs to present antigen was examined by assessment of proliferation of ovalbumin-specific T cells in rat insulin promoter-membrane-bound ovalbumin transgenic mice after sham or IRI procedures. RESULTS Ischemia-reperfusion injury induced influx of monocytes, DCs, macrophages, and neutrophils into the kidney. Classification of RMP subpopulations based on CD11b/CD11c expression demonstrated that the RMPs that increased in response to IRI were predominantly newly recruited monocyte-derived inflammatory DCs. In vivo multiphoton imaging of CD11c-EYFP mice revealed that intrarenal DCs exhibited increased number and activity of dendrites in the postischemic period. Ischemia-reperfusion injury also promoted DC-dependent cross-presentation of renal antigens to CD8 T cells in the draining lymph node. CONCLUSIONS In response to renal IRI, RMP populations are skewed toward those derived from inflammatory monocyte precursors. In addition, renal DCs undergo functional activation, increasing their capacity to activate antigen-specific CD8 T cells in renal draining lymph nodes.
Collapse
|
21
|
Hall AM, Schuh CD, Haenni D. New frontiers in intravital microscopy of the kidney. Curr Opin Nephrol Hypertens 2017; 26:172-178. [DOI: 10.1097/mnh.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Intravital imaging of the kidney. Methods 2017; 128:33-39. [PMID: 28410977 DOI: 10.1016/j.ymeth.2017.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The review aims to provide a brief summary and evaluation of the current state of research that uses multiphoton fluorescence microscopy for intravital kidney imaging. RECENT FINDINGS Direct visualization of the glomerular filter, proximal and distal tubule segments, and the renal vasculature in the living, intact kidney in zebrafish, mouse, and rat models with high temporal and spatial resolution provided new insights into the function of the normal and diseased kidney. New technical developments in fluorescence excitation and detection, in combination with transgenic animal models for cell function and fate mapping, and serial imaging of the same glomerulus in the same animal over several days further advanced the field of nephrology research, and the understanding of disease mechanisms. SUMMARY Intravital multiphoton imaging has solved many critical technical barriers in kidney research and allowed the dynamic portrayal of the structure and function of various renal cell types in vivo. It has become a widely used research technique, with significant past achievements, and tremendous potential for future development and applications for the study and better understanding of kidney diseases.
Collapse
|
24
|
Yao S, Kim B, Yue X, Colon Gomez MY, Bondar MV, Belfield KD. Synthesis of Near-Infrared Fluorescent Two-Photon-Absorbing Fluorenyl Benzothiadiazole and Benzoselenadiazole Derivatives. ACS OMEGA 2016; 1:1149-1156. [PMID: 31457186 PMCID: PMC6640770 DOI: 10.1021/acsomega.6b00289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/17/2016] [Indexed: 05/09/2023]
Abstract
A series of dyes 2-5 based on 5-thienyl-2,1,3-benzothiadiazole and 5-thienyl-2,1,3-benzoselenadiazole cores were synthesized as near-infrared-emitting two-photon-absorbing fluorophores. Fluorescence maxima wavelengths as long as 714 nm and quantum yields as high as 0.67 were realized. The fluorescence quantum yields of dyes 2-4 were nearly constant, regardless of solvent polarity. These diazoles exhibited large Stokes shifts (>110 nm) and high two-photon figure of merit. Cells incubated on a 3D scaffold with probe 4 (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 μm.
Collapse
Affiliation(s)
- Sheng Yao
- Department
of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, Florida 32816-2366, United States
| | - Bosung Kim
- Department
of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, Florida 32816-2366, United States
| | - Xiling Yue
- Department
of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, Florida 32816-2366, United States
| | - Maria Y. Colon Gomez
- Department
of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, Florida 32816-2366, United States
| | | | - Kevin D. Belfield
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, 323 MLK Blvd.,
University Heights, Newark, New Jersey 07102, United States
- School
of Chemistry and Chemical Engineering, Shaanxi
Normal University, Xi’an 710062, P. R. China
- E-mail: (K.D.B.)
| |
Collapse
|
25
|
Ranjit S, Dobrinskikh E, Montford J, Dvornikov A, Lehman A, Orlicky DJ, Nemenoff R, Gratton E, Levi M, Furgeson S. Label-free fluorescence lifetime and second harmonic generation imaging microscopy improves quantification of experimental renal fibrosis. Kidney Int 2016; 90:1123-1128. [PMID: 27555119 DOI: 10.1016/j.kint.2016.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/07/2016] [Accepted: 06/23/2016] [Indexed: 01/13/2023]
Abstract
All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. Here we develop a fast and operator-independent method to measure fibrosis utilizing the murine unilateral ureteral obstruction model which manifests a time-dependent fibrotic increase in obstructed kidneys while the contralateral kidneys are used as controls. After ureteral obstruction, kidneys were analyzed at 7, 14, and 21 days. Fibrosis was quantified using fluorescence lifetime imaging (FLIM) and second harmonic generation (SHG) in a Deep Imaging via Enhanced photon Recovery deep tissue imaging microscope. This microscope was developed for deep tissue along with second and third harmonic generation imaging and has extraordinary sensitivity toward harmonic generation. SHG data suggest the presence of more fibrillar collagen in the obstructed kidneys. The combination of short-wavelength FLIM and SHG analysis results in a robust assessment procedure independent of observer interpretation and let us create criteria to quantify the extent of fibrosis directly from the image. Thus, the FLIM-SHG technique shows remarkable improvement in quantification of renal fibrosis compared to standard histological techniques.
Collapse
Affiliation(s)
- Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - John Montford
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander Dvornikov
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Allison Lehman
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raphael Nemenoff
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, USA.
| | - Moshe Levi
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Seth Furgeson
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Abstract
This article summarizes the past, present, and future promise of multiphoton excitation fluorescence microscopy for intravital kidney imaging. During the past 15years, several high-power visual research approaches have been developed using multiphoton imaging to study the normal functions of the healthy, intact, living kidney, and the various molecular and cellular mechanisms of the development of kidney diseases. In this review, the main focus will be on intravital multiphoton imaging of the glomerulus, the structure and function of the glomerular filtration barrier, especially the podocyte. Examples will be given for the combination of two powerful research tools, in vivo multiphoton imaging and mouse genetics using commercially available whole animal models for the detailed characterization of glomerular cell types, their function and fate, and for the better understanding of the molecular mechanisms of glomerular pathologies. One of the new modalities of multiphoton imaging, serial imaging of the same glomerulus in the same animal over several days will be emphasized for its potential for further advancing the field of nephrology research.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics, and Medicine, Zilkha Neurogenetic Institute, ZNI355, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
Schuh C, Haenni D, Craigie E, Ziegler U, Weber B, Devuyst O, Hall AM. Long wavelength multiphoton excitation is advantageous for intravital kidney imaging. Kidney Int 2016; 89:712-9. [DOI: 10.1038/ki.2015.323] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022]
|
28
|
Raghavan V, Weisz OA. Discerning the role of mechanosensors in regulating proximal tubule function. Am J Physiol Renal Physiol 2015; 310:F1-5. [PMID: 26662200 DOI: 10.1152/ajprenal.00373.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study.
Collapse
Affiliation(s)
- Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Sancey L, Kotb S, Truillet C, Appaix F, Marais A, Thomas E, van der Sanden B, Klein JP, Laurent B, Cottier M, Antoine R, Dugourd P, Panczer G, Lux F, Perriat P, Motto-Ros V, Tillement O. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS NANO 2015; 9:2477-88. [PMID: 25703068 DOI: 10.1021/acsnano.5b00552] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.
Collapse
Affiliation(s)
- Lucie Sancey
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Shady Kotb
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Charles Truillet
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | | | - Arthur Marais
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Eloïse Thomas
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | | | - Jean-Philippe Klein
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Blandine Laurent
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Michèle Cottier
- §LINA EA 4624-Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, Saint Etienne, 42023, France
| | - Rodolphe Antoine
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Philippe Dugourd
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Gérard Panczer
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - François Lux
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Pascal Perriat
- ∥MATEIS, UMR 5510 INSA Lyon-CNRS, INSA Lyon, 69621 Villeurbanne, France
| | - Vincent Motto-Ros
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Olivier Tillement
- †Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| |
Collapse
|
30
|
Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG, Rhodes G, Sandoval RM, Kleyman TR, Lee FYI, Molitoris B, Satlin LM, Rohatgi R. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). Am J Physiol Renal Physiol 2014; 307:F195-204. [PMID: 24872319 DOI: 10.1152/ajprenal.00634.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm(2) of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.
Collapse
Affiliation(s)
| | - Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York
| | - Cindy Else
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Heon Goo Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - George Rhodes
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Francis Young-In Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - Bruce Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York;
| |
Collapse
|
31
|
Abstract
Techniques to evaluate renal function at the single nephron level have been instrumental and indispensible in furthering our understanding of the mammalian kidney. Techniques that were first introduce in the 1920s, and later refined in the 1950s and 1960s, permit sophisticated interrogation of glomerular filtration and hemodynamics, and tubular epithelial transport activity. Much of what we know about the physiology and pathophysiology of the kidney has been produced or, to some degree, confirmed by renal micropuncture. While micropuncture is perhaps not as widely employed as before, it remains an essential tool for comprehensive evaluation of kidney function, particularly in this age of genetically pliable experimental models. This review aims to provide a introduction to common methodologies and approaches used to conduct micropuncture experiments. Topics covered include instrumentation and equipment, pipet fabrication techniques, animal preparation, and experimental procedures for evaluating single nephron hemodynamics and tubular function.
Collapse
Affiliation(s)
- John N Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
32
|
Nhan T, Burgess A, Hynynen K. Transducer design and characterization for dorsal-based ultrasound exposure and two-photon imaging of in vivo blood-brain barrier disruption in a rat model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1376-1385. [PMID: 25004505 DOI: 10.1109/tuffc.2013.2710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Focused ultrasound (FUS) and microbubbles have been used effectively for transient, noninvasive blood¿ brain barrier disruption (BBBD). The use of two-photon microscopy (2PM) imaging of BBBD can provide valuable insights into the associated cellular mechanisms and fundamental biological effects. Coupling a thin ring-shaped transducer to a coverslip offers a robust solution for simultaneous dorsal application of FUS for BBBD and in vivo 2PM imaging of the cerebral microvasculature under treatment conditions. Two modes of vibration (thickness and height) from the transducer configuration were investigated for BBBD in an animal model. With the transducer operating in the thickness mode at 1.2 MHz frequency, shallow and localized BBBD near the cortical surface of animal brain was detected via 2PM and confirmed by Evans blue (EB) extravasation. Acoustic pressures ranging from 0.2 to 0.8 MPa were tested and the probability for successful BBBD was identified. Two distinct types of disruption characterized by different leakage kinetics were observed and appeared to be dependent on acoustic pressure.
Collapse
|
33
|
Intravital imaging of neutrophil recruitment in hepatic ischemia-reperfusion injury in mice. Transplantation 2013; 95:551-8. [PMID: 23423266 DOI: 10.1097/tp.0b013e31827d62b5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neutrophils are considered responsible for the pathophysiologic changes during hepatic ischemia-reperfusion (I/R) injury; however, few studies have examined real-time intravital neutrophil recruitment. Here, we show a method for imaging the neutrophil recruitment in hepatic I/R injury using two-photon laser scanning microscopy (TPLSM). METHODS LysM-eGFP mice were subjected to 45 min of partial warm hepatic ischemia followed by reperfusion. Mice received an intravenous injection of tetramethylrhodamine isothiocyanate-labeled albumin to visualize the microvasculature. Using time-lapse TPLSM technique, we directly observed the behavior of neutrophils in I/R injury. RESULTS At low magnification, four to six hepatic lobules could be visualized. The number of adherent neutrophils continued to increase for 4 hr after reperfusion, whereas their crawling velocity reached a maximum of 2 hr after reperfusion and then decreased gradually. High-magnification images revealed the presence or absence of blood circulation in sinusoids. Six hours after control operation or reperfusion, circulation was maintained in all sinusoids in the control group, whereas spotty nonperfused areas accompanied by neutrophil infiltration could be observed in the I/R group. Adherent neutrophils in perfused areas in the I/R group had more elongated shapes and moved more quickly than those in nonperfused areas and in the control group. Some hepatocytes affected by I/R injury showed the changes in their size and fluorescent intensity, which could attract neutrophils. CONCLUSIONS TPLSM was successfully used for intravital imaging of hepatic I/R injury in mice and has potential for a wide range of applications to investigate the mechanism of I/R injury.
Collapse
|
34
|
Corridon PR, Rhodes GJ, Leonard EC, Basile DP, Gattone VH, Bacallao RL, Atkinson SJ. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am J Physiol Renal Physiol 2013; 304:F1217-29. [PMID: 23467422 DOI: 10.1152/ajprenal.00070.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10-50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys.
Collapse
Affiliation(s)
- Peter R Corridon
- Biomolecular Imaging and Biophysics Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Aoki K, Kamioka Y, Matsuda M. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing. Dev Growth Differ 2013; 55:515-22. [PMID: 23387795 DOI: 10.1111/dgd.12039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
The progress in imaging technology with fluorescent proteins has uncovered a wide range of biological processes in developmental biology. In particular, genetically-encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) have been used to visualize spatial and temporal dynamics of intracellular signaling in living cells. However, development of sensitive FRET biosensors and their application to developmental biology remain challenging tasks, which has prevented their widespread use in developmental biology. In this review, we first overview general procedures and tips of imaging with FRET biosensors. We then describe recent advances in FRET imaging - namely, the use of optimized backbones for intramolecular FRET biosensors and transposon-mediated gene transfer to generate stable cell lines and transgenic mice expressing FRET biosensors. Finally, we discuss future perspectives of FRET imaging in developmental biology.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | | | | |
Collapse
|
36
|
Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 2013; 83:72-83. [PMID: 22992467 PMCID: PMC4136483 DOI: 10.1038/ki.2012.328] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of acute kidney injury due to ischemia and toxic drugs. Methods for imaging mitochondrial function in cells using confocal microscopy are well established; more recently, it was shown that these techniques can be utilized in ex vivo kidney tissue using multiphoton microscopy. We extended this approach in vivo and found that kidney mitochondrial structure and function can be imaged in anesthetized rodents using multiphoton excitation of endogenous and exogenous fluorophores. Mitochondrial nicotinamide adenine dinucleotide increased markedly in rat kidneys in response to ischemia. Following intravenous injection, the mitochondrial membrane potential-dependent dye TMRM was taken up by proximal tubules; in response to ischemia, the membrane potential dissipated rapidly and mitochondria became shortened and fragmented in proximal tubules. In contrast, the mitochondrial membrane potential and structure were better maintained in distal tubules. Changes in mitochondrial structure, nicotinamide adenine dinucleotide, and membrane potential were found in the proximal, but not distal, tubules after gentamicin exposure. These changes were sporadic, highly variable among animals, and were preceded by changes in non-mitochondrial structures. Thus, real-time changes in mitochondrial structure and function can be imaged in rodent kidneys in vivo using multiphoton excitation of endogenous and exogenous fluorophores in response to ischemia-reperfusion injury or drug toxicity.
Collapse
MESH Headings
- Acute Kidney Injury/etiology
- Acute Kidney Injury/pathology
- Acute Kidney Injury/physiopathology
- Animals
- Gentamicins/adverse effects
- Glutathione/metabolism
- Ischemia/complications
- Kidney/blood supply
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/pathology
- Kidney Tubules, Distal/physiopathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/physiopathology
- Male
- Membrane Potential, Mitochondrial/physiology
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence, Multiphoton/methods
- Mitochondria/pathology
- Mitochondria/physiology
- NAD/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Andrew M Hall
- University College London Centre for Nephrology, Royal Free Hospital, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Khoury CC, Khayat MF, Yeo TK, Pyagay PE, Wang A, Asuncion AM, Sharma K, Yu W, Chen S. Visualizing the mouse podocyte with multiphoton microscopy. Biochem Biophys Res Commun 2012; 427:525-30. [PMID: 23022193 DOI: 10.1016/j.bbrc.2012.09.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/14/2012] [Indexed: 01/05/2023]
Abstract
The podocyte is a highly specialized kidney glomerular epithelial cell that plays an essential role in glomerular filtration and is believed to be the target of numerous glomerular diseases leading to proteinuria. Despite the leaps in our understanding of podocyte biology, new methodologies are needed to facilitate research into the cell. Multiphoton microscopy (MPM) was used to image the nephrin knockout/green fluorescent protein (GFP) knock-in heterozygote (Nphs1(tm1Rkl)/J) mouse. The nephrin promoter restricts GFP expression to the podocytes that fluoresce green under excitation. From the exterior of an intact kidney, MPM can peer into the renal parenchyma and visualize the podocytes that outline the globular shape of the glomeruli. Details as fine as the podocyte's secondary processes can be resolved. In contrast, podocytes exhibit no fluorescence in the wildtype mouse and are invisible to MPM. Phenotypically, there are no significant differences between wildtype and Nphs1(tm1Rkl)/J mice in body weight, urinary albumin excretion, creatinine clearance, or glomerular depth. Interestingly, the glomeruli are closer to the kidney capsule in female mice, making the gender the preferred choice for MPM. For the first time, green fluorescent podocytes in a mouse model free of confounding phenotypes can be visualized unequivocally and in the "positive" by MPM, facilitating intravital studies of the podocyte.
Collapse
Affiliation(s)
- Charbel C Khoury
- Division of Nephrology/Hypertension, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Richter-Dahlfors A, Rhen M, Udekwu K. Tissue microbiology provides a coherent picture of infection. Curr Opin Microbiol 2012; 15:15-22. [DOI: 10.1016/j.mib.2011.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/26/2022]
|
40
|
Camirand G, Li Q, Demetris AJ, Watkins SC, Shlomchik WD, Rothstein DM, Lakkis FG. Multiphoton intravital microscopy of the transplanted mouse kidney. Am J Transplant 2011; 11:2067-74. [PMID: 21834913 DOI: 10.1111/j.1600-6143.2011.03671.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Graft outcomes after kidney transplantation continue to be adversely affected by ischemia-reperfusion injury and rejection. High-resolution, real-time imaging of the transplanted kidney could shed valuable insights into these dynamic processes, but such methodology has not been established. Here we describe a technique for intravital imaging of the transplanted mouse kidney using multiphoton fluorescence microscopy. The technique enabled real-time, high-resolution imaging and quantitation of renal filtration, cell death, leukocyte adhesion and capillary blood flow after transplantation. Using this technique, we found that brief graft ischemia associated with the transplantation procedure led to a rapid decline in renal filtration accompanied by a significant increase in microvascular leakage and renal tubular epithelial cell death within the first 3 h after transplantation. No significant changes in leukocyte adhesion or capillary blood flow were observed during the same time period. This report establishes multiphoton fluorescence microscopy as a sensitive tool for simultaneously studying functional and structural perturbations that occur in the mouse kidney after transplantation and for investigating the migration of leukocytes to the graft.
Collapse
Affiliation(s)
- G Camirand
- Surgery Pathology Medicine Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hall AM, Crawford C, Unwin RJ, Duchen MR, Peppiatt-Wildman CM. Multiphoton imaging of the functioning kidney. J Am Soc Nephrol 2011; 22:1297-304. [PMID: 21719788 DOI: 10.1681/asn.2010101054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translating discoveries made in isolated renal cells and tubules to the in vivo situation requires the assessment of cellular function in intact live organs. Multiphoton imaging is a form of fluorescence microscopy that is ideally suited to working with whole tissues and organs, but adequately loading cells with fluorescence dyes in vivo remains a challenge. We found that recirculation of fluorescence dyes in the rat isolated perfused kidney (IPK) resulted in levels of intracellular loading that would be difficult to achieve in vivo. This technique allowed the imaging of tubular cell structure and function with multiphoton microscopy in an intact, functioning organ. We used this approach to follow processes in real time, including (1) relative rates of reactive oxygen species (ROS) production in different tubule types, (2) filtration and tubular uptake of low-molecular-weight dextrans and proteins, and (3) the effects of ischemia-reperfusion injury on mitochondrial function and cell structure. This study demonstrates that multiphoton microscopy of the isolated perfused kidney is a powerful technique for detailed imaging of cell structure and function in an intact organ.
Collapse
Affiliation(s)
- Andrew M Hall
- University College London Centre for Nephrology, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
Collapse
|
43
|
Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, Richter-Dahlfors A. Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 2011; 7:e1001298. [PMID: 21383970 PMCID: PMC3044688 DOI: 10.1371/journal.ppat.1001298] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/18/2011] [Indexed: 12/03/2022] Open
Abstract
The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis. When bacteria such as uropathogenic Escherichia coli (UPEC) infect a living kidney, they face numerous physiological challenges such as the flow of urine. Bacteria need to attach themselves to the epithelial linings of the kidney to withstand this flow. In this work we use a live animal imaging model to study how UPEC colonize a living kidney despite the physiological challenges they face. We show that P and Type 1 fimbriae, two of the most well described UPEC adhesion factors, work together to promote successful bacterial colonization. P fimbriae mediate binding between the bacteria and the epithelial cells lining the tubules, while Type 1 appears to play a role in inter-bacterial binding and biofilm formation in the center parts of the lumen. The heterogeneous bacterial community which filled the tubule was subsequently shown to effect nephron filtration and resulted in a total loss of filtrate flow i.e. obstruction. This work demonstrates the interplay between the bacterial and host aspects, indicating how factors such as filtration may affect bacterial adhesion and vice versa. It also highlights the multifactorial basis of kidney infection, demonstrating how physiological injuries such as obstruction may contribute towards the full pathophysiology of pyelonephritis.
Collapse
Affiliation(s)
- Keira Melican
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Abdul Kader
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Lina Josefsson
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - George A. Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
44
|
Boekel J, Källskog O, Rydén-Aulin M, Rhen M, Richter-Dahlfors A. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection. BMC Genomics 2011; 12:123. [PMID: 21338499 PMCID: PMC3047304 DOI: 10.1186/1471-2164-12-123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/21/2011] [Indexed: 12/22/2022] Open
Abstract
Background Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards in vitro studies. To detail the local in vivo genetic response to infection, we here profiled host gene expression in a recent experimental model that assures high spatial and temporal control of uropathogenic Escherichia coli (UPEC) infection within the kidney of a live rat. Results Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology (GO) analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online available studies of early local infection and inflammation defined a core of 80 genes constituting a "General tissue response to early local bacterial infections". Among these, 25% were annotated as interferon-γ (IFN-γ) regulated. Subsequent experimental analyses confirmed a systemic increase of IFN-γ in rats with an ongoing local kidney infection, correlating to splenic, rather than renal Ifng induction and suggested this inter-organ communication to be mediated by interleukin (IL)-23. The use of comparative transcriptomics allowed expansion of the statistical data handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially expressed core genes, some represented specific 5 h responses, illustrating the value of comparative transcriptomics when studying the dynamic nature of gene regulation in response to infections. Conclusion Our hypothesis-free approach identified components of infection-associated multi-cellular tissue responses and demonstrated how a comparative analysis allows retrieval of relevant information from lower-quality data sets. The data further define marked representation of IFN-γ responsive genes and a prompt inter-organ communication as a hallmark of an early local tissue response to infection.
Collapse
Affiliation(s)
- Jorrit Boekel
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Retzius väg 8,Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Imamura R, Isaka Y, Sandoval RM, Ori A, Adamsky S, Feinstein E, Molitoris BA, Takahara S. Intravital Two-Photon Microscopy Assessment of Renal Protection Efficacy of siRNA for p53 in Experimental Rat Kidney Transplantation Models. Cell Transplant 2010; 19:1659-70. [DOI: 10.3727/096368910x516619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury, which is unavoidable in renal transplantation, frequently influences both short- and long-term allograft survival. Despite decades of laboratory and clinical investigations, and the advent of renal replacement therapy, the overall mortality rate due to acute tubular injury has changed little. I/R-induced DNA damage results in p53 activation in proximal tubule cells (PTC), leading to their apoptosis. Therefore, we examined the therapeutic effect of temporary p53 inhibition in two rat renal transplantation models on structural and functional aspects of injury using intravital two-photon microscopy. Nephrectomized Sprague-Dawley rats received syngeneic left kidney transplantation either after 40 min of intentional warm ischemia or after combined 5-h cold and 30-min warm ischemia of the graft. Intravenously administrated siRNA for p53 (siP53) has previously been shown to be filtered and reabsorbed by proximal tubular epithelial cells following the warm ischemia/reperfusion injury in a renal clamp model. Here, we showed that it was also taken up by PTC following 5 h of cold ischemia. Compared to saline-treated recipients, treatment with siP53 resulted in conservation of renal function and significantly suppressed the I/R-induced increase in serum creatinine in both kidney transplantation models. Intravital two-photon microscopy revealed that siP53 significantly ameliorated structural and functional damage to the kidney assessed by quantification of tubular cast formation and the number of apoptotic and necrotic tubular cells and by evaluation of blood flow rate. In conclusion, systemic administration of siRNA for p53 is a promising new approach to protect kidneys from I/R injury in renal transplantation.
Collapse
Affiliation(s)
- Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ruben M. Sandoval
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Asaf Ori
- Quark Pharmaceuticals Inc., Fremont, CA, USA
| | | | | | - Bruce A. Molitoris
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Abstract
Studying the events that occur when a pathogen comes into contact with its host is the basis of the field of infection biology. Over the years, work in this area has revealed many facets of the infection process, including attachment, invasion and colonization by the pathogen, and of the host responses, such as the triggering of the immune system. Recent advancements in imaging technologies, such as multiphoton microscopy (MPM), mean that the field is in the process of taking another big leap forward. MPM allows for cellular-level visualization of the real-time dynamics of infection within the living host. The use of live animal models means that all the interplaying factors of an infection, such as the influences of the immune, lymphatic and vascular systems, can be accounted for. This review outlines the developing field of MPM in pathogen-host interactions, highlighting a number of new insights that have been 'brought to light' using this technique.
Collapse
Affiliation(s)
- Keira Melican
- Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
47
|
Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 2009; 20:1754-64. [PMID: 19470675 PMCID: PMC2723992 DOI: 10.1681/asn.2008111204] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 01/11/2023] Open
Abstract
Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. PTCs were the primary site for siRNA uptake within the kidney and body. Following glomerular filtration, endocytic uptake of Cy3-siRNA by PTCs was rapid and extensive, and significantly reduced ischemia-induced p53 upregulation. The duration of the siRNA effect in PTCs was 24 to 48 h, determined by levels of p53 mRNA and protein expression. Both Cy3 fluorescence and in situ hybridization of siRNA corroborated a short t(1/2) for siRNA. The extent of renoprotection, decrease in cellular p53 and attenuation of p53-mediated apoptosis by siRNA were dose- and time-dependent. Analysis of renal histology and apoptosis revealed improved injury scores in both cortical and corticomedullary regions. siRNA to p53 was also effective in a model of cisplatin-induced kidney injury. Taken together, these data indicate that rapid delivery of siRNA to proximal tubule cells follows intravenous administration. Targeting siRNA to p53 leads to a dose-dependent attenuation of apoptotic signaling, suggesting potential therapeutic benefit for ischemic and nephrotoxic kidney injury.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Pierre C. Dagher
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M. Sandoval
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Silvia B. Campos
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Hagit Ashush
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Eduard Fridman
- Department of Pathology, Sheba Medical Center, Sackler School of Medicine, Tel Ha-Shomer, Israel
| | - Anat Brafman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Alexander Faerman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Simon J. Atkinson
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Hagar Kalinski
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Rami Skaliter
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Shai Erlich
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| |
Collapse
|
48
|
Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 2009; 20:1293-302. [PMID: 19470684 PMCID: PMC2689904 DOI: 10.1681/asn.2008070759] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 01/22/2009] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial dysfunction may play a role in the pathogenesis of several renal diseases. Although functional roles and metabolic demands differ among tubule segments, relatively little is known about the properties of mitochondria in different parts of the nephron. Clinically, the proximal tubule seems particularly vulnerable to mitochondrial toxicity. In this study, we used multiphoton imaging of live rat kidney slices to investigate differences in mitochondrial function along the nephron. The mitochondrial membrane potential was markedly higher in distal than proximal tubules. Inhibition of respiration rapidly collapsed the membrane potential in proximal tubules, but potential was better maintained in distal tubules. Inhibition of the F1F(o)-ATPase abolished this difference, suggesting that maintenance of potential via ATPase activity is more effective in distal than proximal tubules. Immunostaining revealed that the ratio of the expression of ATPase to IF1, an endogenous inhibitor of the mitochondrial ATPase, was lower in proximal tubules than in distal tubules. Production of reactive oxygen species was higher in proximal than distal cells, but inhibition of NADPH oxidase eliminated this difference. Glutathione levels were higher in proximal tubules. Overall, mitochondria in the proximal tubules were in a more oxidized state than those in the distal tubules. In summary, there are axial differences in mitochondrial function along the nephron, which may contribute to the pattern and pathophysiology of some forms of renal injury.
Collapse
Affiliation(s)
- Andrew M Hall
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
49
|
Weinberg JM, Molitoris BA. Illuminating mitochondrial function and dysfunction using multiphoton technology. J Am Soc Nephrol 2009; 20:1164-6. [PMID: 19470668 DOI: 10.1681/asn.2009040419] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Heyman SN, Rosen S, Rosenberger C. Animal models of renal dysfunction: acute kidney injury. Expert Opin Drug Discov 2009; 4:629-41. [DOI: 10.1517/17460440902946389] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|