1
|
Chen X, Xu Z, Gao Y, Chen Y, Yin W, Liu Z, Cui W, Li Y, Sun J, Yang Y, Ma W, Zhang T, Tian T, Lin Y. Framework Nucleic Acid-Based Selective Cell Catcher for Endogenous Stem Cell Recruitment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406118. [PMID: 39543443 DOI: 10.1002/adma.202406118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Cell-surface engineering holds great promise in boosting endogenous stem cell attraction for tissue regeneration. However, challenges such as cellular internalization of ligand and the dynamic nature of cell membranes often complicate ligand-receptor interactions. The aim of this study is to harness the innovative potential of programmable tetrahedral framework nucleic acid (tFNA) to enable precise, tunable ligand-receptor interactions, thereby improving stem cell recruitment efficiency. This approach involves experimental screening and theoretical analysis using dissipative particle dynamics. The results demonstrate that altering the flexibility and topology of ligands on tFNA changes their cellular internalization and membrane binding efficiency. Furthermore, optimizing the distribution of the mesenchymal stem cell (MSC)-binding aptamer 19S (Apt19S) on the tFNA enhances the stem cell capture efficiency. Following successful in vitro MSC capture, Apt19S-modified tFNA is chemically linked to a hyaluronic acid hydrogel, forming an efficient "stem cell catcher" system. Subsequent in vivo experiments demonstrate that this system effectively promotes early stem cell recruitment and accelerates bone regeneration in different bone healing scenarios, including cranial and maxillary defects.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Zhu F, Ji L, Dai K, Deng S, Wang J, Liu C. In situ licensing of mesenchymal stem cell immunomodulatory function via BMP-2 induced developmental process. Proc Natl Acad Sci U S A 2024; 121:e2410579121. [PMID: 39565311 PMCID: PMC11621467 DOI: 10.1073/pnas.2410579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The immunomodulatory function of mesenchymal stem cells (MSCs) is plastic and susceptible to resident microenvironment in vivo or inflammatory factors in vitro. We propose a unique method to enhance the immunoregulatory functions of mesenchymal stem cells (MSCs) through an artificially controllable in vivo inflammatory microenvironment generated by biomaterials loaded with BMP-2 that induce bone development. MSCs activated through this method effectively induce M1 macrophage polarization toward the M2 phenotype, promote differentiation of naïve T cells into regulatory T cells, and inhibit the proliferation of activated T cells via prostaglandin E2 (PGE2) secretion. This in vivo licensing not only preserves the immunogenicity of MSCs but also alters DNA methylation patterns, enabling MSCs to exhibit immunoregulatory effects with epigenetic memory. Validation in a mouse colitis model demonstrated their therapeutic efficacy and long-term viability. Furthermore, we found that the material composition influences the inflammatory response during development, with polysaccharide-based biomaterials proving advantageous over protein-based materials in establishing an inflammatory niche conducive to MSC activity. These findings underscore the potential of tissue engineering to create in vivo environments that license MSCs, offering a strategic avenue to enhance MSC-based therapies for addressing significant immune disorders.
Collapse
Affiliation(s)
- Fuwei Zhu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shunshu Deng
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Changsheng Liu
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
3
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
4
|
Modirrousta Y, Akbari S. Amine-terminated dendrimers: A novel method for diagnose, control and treatment of cancer. CANCER EPIGENETICS AND NANOMEDICINE 2024:333-379. [DOI: 10.1016/b978-0-443-13209-4.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
6
|
Zhang X, Yi Y, Jiang Y, Liao J, Yang R, Deng X, Zhang L. Targeted Therapy of Acute Liver Injury via Cryptotanshinone-Loaded Biomimetic Nanoparticles Derived from Mesenchymal Stromal Cells Driven by Homing. Pharmaceutics 2023; 15:2764. [PMID: 38140104 PMCID: PMC10747007 DOI: 10.3390/pharmaceutics15122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Acute liver injury (ALI) has the potential to compromise hepatic function rapidly, with severe cases posing a considerable threat to human health and wellbeing. Conventional treatments, such as the oral administration of antioxidants, can inadvertently lead to liver toxicity and other unwanted side effects. Mesenchymal stromal cells (MSCs) can target therapeutic agents directly to inflammatory sites owing to their homing effect, and they offer a promising avenue for the treatment of ALI. However, the efficacy and feasibility of these live cell products are hampered by challenges associated with delivery pathways and safety concerns. Therefore, in this work, MSC membranes were ingeniously harnessed as protective shells to encapsulate synthesized PLGA nanoparticle cores (PLGA/MSCs). This strategic approach enabled nanoparticles to simulate endogenous substances and yielded a core-shell nano-biomimetic structure. The biomimetic nanocarrier remarkably maintained the homing ability of MSCs to inflammatory sites. In this study, cryptotanshinone (CPT)-loaded PLGA/MSCs (CPT@PLGA/MSC) were prepared. These nanoparticles can be effectively internalized by LO2 cells. They reduced cellular oxidative stress and elevated inflammatory levels. In vivo results suggested that, after intravenous administration, CPT@PLGA/MSCs significantly reduced uptake by the reticuloendothelial system and immune recognition compared to PLGA nanoparticles without MSC membrane coatings, subsequently resulting in their targeted and enhanced accumulation in the liver. The effectiveness of CPT@PLGA/MSCs in alleviating carbon tetrachloride-induced oxidative stress and inflammation in a mouse model was unequivocally demonstrated through comprehensive histological examination and liver function tests. This study introduces a pioneering strategy with substantial potential for ALI treatment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yao Yi
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| |
Collapse
|
7
|
Kresse JC, Gregersen E, Atay JCL, Eijken M, Nørregaard R. Does the route matter? A preclinical review of mesenchymal stromal cell delivery to the kidney. APMIS 2023; 131:687-697. [PMID: 37750005 DOI: 10.1111/apm.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Mesenchymal stromal/stem cell (MSC) therapy has been thoroughly tested in preclinical animal models and holds great promise for the treatment of kidney diseases. It is becoming increasingly evident that the efficacy of MSC therapy is dependent on several factors including dosage, the tissue source of MSCs, the route of delivery and timing of administration. In a time where MSC therapy is moving from preclinical research to clinically therapeutic use, the importance of choice of delivery method, modality, and administration route increases. In this review, we provide an overview of the different MSC delivery routes used in preclinical kidney disease models, highlight the recent advances in the field, and summarize studies comparing delivery routes of MSCs to the kidney.
Collapse
Affiliation(s)
| | - Emil Gregersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Marco Eijken
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Cedillo-Servin G, Louro AF, Gamelas B, Meliciano A, Zijl A, Alves PM, Malda J, Serra M, Castilho M. Microfiber-reinforced hydrogels prolong the release of human induced pluripotent stem cell-derived extracellular vesicles to promote endothelial migration. BIOMATERIALS ADVANCES 2023; 155:213692. [PMID: 37952463 DOI: 10.1016/j.bioadv.2023.213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicle (EV)-based approaches for promoting angiogenesis have shown promising results. Yet, further development is needed in vehicles that prolong EV exposure to target organs. Here, we hypothesized that microfiber-reinforced gelatin methacryloyl (GelMA) hydrogels could serve as sustained delivery platforms for human induced pluripotent stem cell (hiPSC)-derived EV. EV with 50-200 nm size and typical morphology were isolated from hiPSC-conditioned culture media and tested negative for common co-isolated contaminants. hiPSC-EV were then incorporated into GelMA hydrogels with or without a melt electrowritten reinforcing mesh. EV release was found to increase with GelMA concentration, as 12 % (w/v) GelMA hydrogels provided higher release rate and total release over 14 days in vitro, compared to lower hydrogel concentrations. Release profile modelling identified diffusion as a predominant release mechanism based on a Peppas-Sahlin model. To study the effect of reinforcement-dependent hydrogel mechanics on EV release, stress relaxation was assessed. Reinforcement with highly porous microfiber meshes delayed EV release by prolonging hydrogel stress relaxation and reducing the swelling ratio, thus decreasing the initial burst and overall extent of release. After release from photocrosslinked reinforced hydrogels, EV remained internalizable by human umbilical vein endothelial cells (HUVEC) over 14 days, and increased migration was observed in the first 4 h. EV and RNA cargo stability was investigated at physiological temperature in vitro, showing a sharp decrease in total RNA levels, but a stable level of endothelial migration-associated small noncoding RNAs over 14 days. Our data show that hydrogel formulation and microfiber reinforcement are superimposable approaches to modulate EV release from hydrogels, thus depicting fiber-reinforced GelMA hydrogels as tunable hiPSC-EV vehicles for controlled release systems that promote endothelial cell migration.
Collapse
Affiliation(s)
- Gerardo Cedillo-Servin
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ana Filipa Louro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Beatriz Gamelas
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Meliciano
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anne Zijl
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jos Malda
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
9
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
10
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
11
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Tan Z, Hall P, Costin A, Crawford SA, Ramm G, Wong CHY, Kitching AR, Hickey MJ. Removal of the endothelial surface layer via hyaluronidase does not modulate monocyte and neutrophil interactions with the glomerular endothelium. Microcirculation 2023; 30:e12823. [PMID: 37494581 PMCID: PMC10909409 DOI: 10.1111/micc.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Simon A. Crawford
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Department of Pediatric NephrologyMonash Medical CentreClaytonVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| |
Collapse
|
13
|
Mahindran E, Wan Kamarul Zaman WS, Ahmad Amin Noordin KB, Tan YF, Nordin F. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Hype or Hope for Skeletal Muscle Anti-Frailty. Int J Mol Sci 2023; 24:ijms24097833. [PMID: 37175537 PMCID: PMC10178115 DOI: 10.3390/ijms24097833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Steadily rising population ageing is a global demographic trend due to the advancement of new treatments and technologies in the medical field. This trend also indicates an increasing prevalence of age-associated diseases, such as loss of muscle mass (sarcopenia), which tends to afflict the older population. The deterioration in muscle function can cause severe disability and seriously affects a patient's quality of life. Currently, there is no treatment to prevent and reverse age-related skeletal muscle ageing frailty. Existing interventions mainly slow down and control the signs and symptoms. Mesenchymal stem cell-derived extracellular vesicle (MSC-EV) therapy is a promising approach to attenuate age-related skeletal muscle ageing frailty. However, more studies, especially large-scale randomised clinical trials need to be done in order to determine the adequacy of MSC-EV therapy in treating age-related skeletal muscle ageing frailty. This review compiles the present knowledge of the causes and changes regarding skeletal muscle ageing frailty and the potential of MSC-EV transplantation as a regenerative therapy for age-related skeletal muscle ageing frailty and its clinical trials.
Collapse
Affiliation(s)
- Elancheleyen Mahindran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
15
|
Abdelrahman SA, Raafat N, Abdelaal GMM, Aal SMA. Electric field-directed migration of mesenchymal stem cells enhances their therapeutic potential on cisplatin-induced acute nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1077-1093. [PMID: 36640200 DOI: 10.1007/s00210-022-02380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Cisplatin is widely used as an anti-neoplastic agent but is limited by its nephrotoxicity. The use of mesenchymal stem cells (MSCs) for the management of acute kidney injury (AKI) represents a new era in treatment but effective homing of administered cells is needed. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) on cisplatin-induced AKI in rats after directed migration by electric field (EF). Forty-eight adult male albino rats were equally classified into four groups: control, cisplatin-treated, cisplatin plus BM-MSCs, and cisplatin plus BM-MSCs exposed to EF. Serum levels of IL-10 and TNF-α were measured by ELISA. Quantitative real-time PCR analysis for gene expression of Bcl2, Bax, caspase-3, and caspase-8 was measured. Hematoxylin and eosin (H&E) staining, periodic acid Schiff staining, and immunohistochemical analysis were also done. MSC-treated groups showed improvement of kidney function; increased serum levels of IL-10 and decreased levels of TNF-α; and increased mRNA expression of Bcl2 and decreased expression of Bax, caspase-3, and caspase-8 proteins comparable to the cisplatin-injured group. EF application increased MSCs homing with significant decrease in serum urea level and caspase-3 gene expression together with significant increase in Bcl2 expression than occurred in the MSCs group. Restoration of normal kidney histomorphology with significant decrease in immunohistochemical expression of caspase-3 protein was observed in the BM-MSCs plus EF group compared to the BM-MSCs group. EF stimulation enhanced the MSCs homing and improved their therapeutic potential on acute cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nermin Raafat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M M Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Soleimani M, Masoumi A, Momenaei B, Cheraqpour K, Koganti R, Chang AY, Ghassemi M, Djalilian AR. Applications of mesenchymal stem cells in ocular surface diseases: sources and routes of delivery. Expert Opin Biol Ther 2023; 23:509-525. [PMID: 36719365 PMCID: PMC10313829 DOI: 10.1080/14712598.2023.2175605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are novel, promising agents for treating ocular surface disorders. MSCs can be isolated from several tissues and delivered by local or systemic routes. They produce several trophic factors and cytokines, which affect immunomodulatory, transdifferentiating, angiogenic, and pro-survival pathways in their local microenvironment via paracrine secretion. Moreover, they exert their therapeutic effect through a contact-dependent manner. AREAS COVERED In this review, we discuss the characteristics, sources, delivery methods, and applications of MSCs in ocular surface disorders. We also explore the potential application of MSCs to inhibit senescence at the ocular surface. EXPERT OPINION Therapeutic application of MSCs in ocular surface disorders are currently under investigation. One major research area is corneal epitheliopathies, including chemical or thermal burns, limbal stem cell deficiency, neurotrophic keratopathy, and infectious keratitis. MSCs can promote corneal epithelial repair and prevent visually devastating sequelae of non-healing wounds. However, the optimal dosages and delivery routes have yet to be determined and further clinical trials are needed to address these fundamental questions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Jaiswal A, Singh R. Loss of Epidermal Homeostasis Underlies the Development of Squamous Cell Carcinoma. Stem Cell Rev Rep 2022; 19:667-679. [PMID: 36520410 DOI: 10.1007/s12015-022-10486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Squamous cell carcinoma (SCC) is one of the most common skin cancers. To develop targeted therapies for SCC, a comprehensive understanding of the disease through a systems approach is required. Here, we have collated and analyzed the literature on SCC and pathways that maintain skin homeostasis. Since, the loss of the Notch and the overactivation of the Wnt pathways in the epidermis cause SCC, we focused on these two pathways. We found that the two pathways are critical in maintaining epidermal homeostasis. Further, we found that the cancer stem cell (CSC) marker CD44 causes the transcription of SOX2, another CSC marker of SCC, activates the Wnt pathway, and blocks the Notch pathway. Similarly, the Wnt pathway causes the transcription of CD44 and SOX2 and blocks the Notch pathway. In this paper, we have discussed how the notch and the Wnt pathways affect epidermal homeostasis and the three CSCs (CD44, SOX2, and LGR6) affect the two pathways, linking the CSCs with epidermal homeostasis.
Collapse
|
18
|
Nie Y, Wang L, You X, Wang X, Wu J, Zheng Z. Low dimensional nanomaterials for treating acute kidney injury. J Nanobiotechnology 2022; 20:505. [PMID: 36456976 PMCID: PMC9714216 DOI: 10.1186/s12951-022-01712-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common severe complications among hospitalized patients. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. AKI treatment has received significant attention recently due to the excellent drug delivery capabilities of low-dimensional nanomaterials (LDNs) and their unique therapeutic effects. Diverse LDNs have been proposed to treat AKI, with promising results and the potential for future clinical application. This article aims to provide an overview of the pathogenesis of AKI and the recent advances in the treatment of AKI using different types of LDNs. In addition, it is intended to provide theoretical support for the design of LDNs and implications for AKI treatment.
Collapse
Affiliation(s)
- Yuanpeng Nie
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohua Wang
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
19
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Večerić-Haler Ž, Sever M, Kojc N, Halloran PF, Boštjančič E, Mlinšek G, Oblak M, Poženel P, Švajger U, Hartman K, Kneževič M, Barlič A, Girandon L, Aleš Rigler A, Zver S, Buturović Ponikvar J, Arnol M. Autologous Mesenchymal Stem Cells for Treatment of Chronic Active Antibody-Mediated Kidney Graft Rejection: Report of the Phase I/II Clinical Trial Case Series. Transpl Int 2022; 35:10772. [PMID: 36484064 PMCID: PMC9722440 DOI: 10.3389/ti.2022.10772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Mesenchymal stem cell (MSCs) therapy has already been studied in kidney transplant recipients (KTRs), and the available data showed that it is safe and well tolerated. The aim of this study was to evaluate the safety and efficacy of autologous MSCs in combination with standard therapy in KTRs with biopsy-proven chronic active antibody-mediated rejection (AMR). Patients with biopsy-proven chronic active AMR received treatment with autologous bone marrow-derived MSCs (3 × 106 cells/kg iv) after completion of standard therapy and were followed for up to 12 months. The primary endpoints were safety by assessment of adverse events. Secondary endpoints included assessment of kidney graft function, immunological and histological changes related to AMR activity and chronicity assessed by conventional microscopy and molecular transcripts. A total of 3 patients were enrolled in the study before it was terminated prematurely because of adverse events. We found that AMR did not improve in any of the patients after treatment with MSCs. In addition, serious adverse events were observed in one case when autologous MSCs therapy was administered in the late phase after kidney transplantation, which requires further elucidation.
Collapse
Affiliation(s)
- Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Željka Večerić-Haler,
| | - Matjaž Sever
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip F. Halloran
- Division of Nephrology and Transplant Immunology, Alberta Transplant Applied Genomics Centre, University of Alberta, Edmonton, AB, Canada
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Mlinšek
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manca Oblak
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Poženel
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Urban Švajger
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Katrina Hartman
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Ariana Barlič
- Educell d.o.o Cell Therapy Service, Ljubljana, Slovenia
| | | | - Andreja Aleš Rigler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Zver
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jadranka Buturović Ponikvar
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Schreier S, Budchart P, Borwornpinyo S, Arpornwirat W, Lertsithichai P, Chirappapha P, Triampo W. New inflammatory indicators for cell-based liquid biopsy: association of the circulating CD44+/CD24− non-hematopoietic rare cell phenotype with breast cancer residual disease. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04330-5. [PMID: 36100762 PMCID: PMC9470072 DOI: 10.1007/s00432-022-04330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Background Breast cancer residual disease assessment in early-stage patients has been challenging and lacks routine identification of adjuvant therapy benefit and objective measure of therapy success. Liquid biopsy assays targeting tumor-derived entities are investigated for minimal residual disease detection, yet perform low in clinical sensitivity. We propose the detection of CD44−related systemic inflammation for the assessment of residual cancer. Methods Circulating CD44+/CD45− rare cells from healthy, noncancer- and cancer-afflicted donors were enriched by CD45 depletion and analyzed by immuno-fluorescence microscopy. CD44+ rare cell subtyping was based on cytological feature analysis and referred to as morphological index. AUC analysis was employed for identification of the most cancer-specific CD44+ subtype. Results The EpCam−/CD44+/CD24−/CD71−/CD45−/DNA+ phenotype alludes to a distinct cell type and was found frequently at concentrations below 5 cells per 5 mL in healthy donors. Marker elevation by at least 5 × on average was observed in all afflicted cohorts. The positive predicted value for the prediction of malignancy-associated systemic inflammation of a CD44+ rare cell subtype with a higher morphological index was 87%. An outlook for the frequency of sustained inflammation in residual cancer may be given to measure 78%. Conclusion The CD44+ rare cell and subtype denotes improvement in detection of residual cancer disease and may provide an objective and alternative measure of disease burden in early-stage breast cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand.
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wichit Arpornwirat
- Department of Oncology, Bangkok Hospital, 2 Soi Soonvijai 7, New Petchburi Rd, Huaykwang, Bangkok, 10310, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
22
|
Jia Y, Wang A, Zhao B, Wang C, Su R, Zhang B, Fan Z, Zeng Q, He L, Pei X, Yue W. An optimized method for obtaining clinical-grade specific cell subpopulations from human umbilical cord-derived mesenchymal stem cells. Cell Prolif 2022; 55:e13300. [PMID: 35768999 PMCID: PMC9528761 DOI: 10.1111/cpr.13300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are heterogeneous populations with broad application prospects in cell therapy, and using specific subpopulations of MSCs can enhance their particular capability under certain conditions and achieve better therapeutic effects. However, no studies have reported how to obtain high‐quality specific MSC subpopulations in vitro culture. Here, for the first time, we established a general operation process for obtaining high‐quality clinical‐grade cell subpopulations from human umbilical cord MSCs (hUC‐MSCs) based on particular markers. We used the MSC‐CD106+ subpopulations, whose biological function has been well documented, as an example to explore and optimize the crucial links of primary preparation, pre‐treatment, antibody incubation, flow sorting, quality and function test. After comprehensively evaluating the quality and function of the acquired MSC‐CD106+ subpopulations, including in vitro cell viability, apoptosis, proliferation, marker stability, adhesion ability, migration ability, tubule formation ability, immunomodulatory function and in vivo wound healing ability and proangiogenic activity, we defined an important pre‐treatment scheme which might effectively improve the therapeutic efficiency of MSC‐CD106+ subpopulations in two critical clinical application scenarios—direct injection after cell sorting and post‐culture injection into bodies. Based on the above, we tried to establish a general five‐step operation procedure for acquiring high‐quality clinical‐grade MSC subpopulations based on specific markers, which cannot only improve their enrichment efficiency and the reliability of preclinical studies, but also provide valuable methodological guidance for the rapid clinical transformation of specific MSC subpopulations.
Collapse
Affiliation(s)
- Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China.,South China Institute of Biomedicine, Guangzhou, China
| | - Ailin Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China.,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruyu Su
- South China Institute of Biomedicine, Guangzhou, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng Fan
- South China Institute of Biomedicine, Guangzhou, China.,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China.,South China Institute of Biomedicine, Guangzhou, China
| | - Lijuan He
- South China Institute of Biomedicine, Guangzhou, China.,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China.,South China Institute of Biomedicine, Guangzhou, China.,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China.,South China Institute of Biomedicine, Guangzhou, China
| |
Collapse
|
23
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
24
|
Hu X, Shen N, Liu A, Wang W, Zhang L, Sui Z, Tang Q, Du X, Yang N, Ying W, Qin B, Li Z, Li L, Wang N, Lin H. Bone marrow mesenchymal stem cell-derived exosomal miR-34c-5p ameliorates RIF by inhibiting the core fucosylation of multiple proteins. Mol Ther 2022; 30:763-781. [PMID: 34678513 PMCID: PMC8821970 DOI: 10.1016/j.ymthe.2021.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/02/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is an incurable pathological lesion in chronic kidney diseases. Pericyte activation is the major pathological characteristic of RIF. Fibroblast and macrophage activation are also involved in RIF. Studies have revealed that core fucosylation (CF), an important post-translational modification of proteins, plays a key role in pericyte activation and RIF by regulating multiple profibrotic signaling pathways as a hub-like target. Here, we reveal that mesenchymal stem cell (MSC)-derived exosomes reside specifically in the injured kidney and deliver microRNA (miR)-34c-5p to reduce cellular activation and RIF by inhibiting CF. Furthermore, we showed that the CD81-epidermal growth factor receptor (EGFR) ligand-receptor complex aids the entry of exosomal miR-34c-5p into pericytes, fibroblasts, and macrophages. Altogether, our findings reveal a novel role of MSC-derived exosomes in inhibiting multicellular activation via CF and provide a potential intervention strategy for renal fibrosis.
Collapse
Affiliation(s)
- Xuemei Hu
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China
| | - Nan Shen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Anqi Liu
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qingzhu Tang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Xiangning Du
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Ning Yang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206 China
| | - Biaojie Qin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China
| | - Zhitong Li
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China
| | - Lin Li
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Corresponding author: Nan Wang, Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian, 116011, China.
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian 116011, China,Corresponding author: Hongli Lin, Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, No. 222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
25
|
Keller LE, Fortier LA, Delco ML, Okudaira M, Becktell L, Cercone M. High-Plex RNA Expression Profiling of Formalin-Fixed Paraffin-Embedded Synovial Membrane Indicates Potential Mechanism of Mesenchymal Stromal Cells in the Mitigation of Posttraumatic Osteoarthritis. Cartilage 2021; 13:1200S-1203S. [PMID: 33601916 PMCID: PMC8804794 DOI: 10.1177/1947603521993521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Laura E. Keller
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell
University, Ithaca, NY, USA
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell
University, Ithaca, NY, USA
| | - Mana Okudaira
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Liliya Becktell
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Marta Cercone
- Department of Clinical Sciences, Cornell
University, Ithaca, NY, USA,Marta Cercone, Department of Clinical
Sciences, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Kaffash Farkhad N, Reihani H, sedaghat A, Moghadam AA, Moghadam AB, Tavakol-Afshari J. Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regen Ther 2021; 18:152-160. [PMID: 34124322 PMCID: PMC8185247 DOI: 10.1016/j.reth.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The Covid-19 disease has recently become one of the biggest challenges globally, and there is still no specific medication. Findings showed the immune system in severe Covid-19 patients loses regulatory control of pro-inflammatory cytokines, especially IL-6 production, called the "Cytokine storm" process. This process can cause injury to vital organs, including lungs, kidneys, liver, and ultimately death if not inhibited. While many treatments have been proposed to reduce cytokine storm, but the safety and effectiveness of each of them are still in doubt. Mesenchymal stem cells (MSCs) are multipotent cells with self-renewal potential capable of suppressing overactive immune responses and leading to tissue restoration and repair. These immuno-modulatory properties of MSCs and their derivatives (like exosomes) can improve the condition of Covid-19 patients with serious infectious symptoms caused by adaptive immune system dysfunction. Many clinical trials have been conducted in this field using various MSCs around the world. Some of these have been published and summarized in the present article, while many have not yet been completed. Based on these available data, MSCs can reduce inflammatory cytokines, increase oxygen saturation, regenerate lung tissue and improve clinical symptoms in Covid-19 patients. The review article aims to collect available clinical data in more detail and investigate the role of MSCs in reducing cytokine storms as well as improving clinical parameters of Covid-19 patients for use in future clinical studies.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hamidreza Reihani
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza sedaghat
- Fellowship of Critical Care Medicine (FCCM), Lung Disease Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Adhami Moghadam
- Specialty of Internal Medicine and Critical Care, Head of Army Hospital ICU and Intensivist, Iran
| | - Ahmad Bagheri Moghadam
- Internal Medicine and Critical Care, Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Adugna DG. Current Clinical Application of Mesenchymal Stem Cells in the Treatment of Severe COVID-19 Patients: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:71-80. [PMID: 34785907 PMCID: PMC8590837 DOI: 10.2147/sccaa.s333800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus-2019 disease is a newly diagnosed infectious disease, which is caused by the severe acute respiratory syndrome corona virus-2. It spreads quickly and has become a major public health problem throughout the world. When the viral structural spike protein binds to the angiotensin-converting enzyme-2 receptor of the host cell membrane, the virus enters into host cells. The virus primarily affects lung epithelial cells or other target cells that express angiotensin-converting enzyme-2 receptors in COVID-19 patients. Chemokines released by the host cells stimulate the recruitment of different immune cells. A cytokine storm occurs when a high amount of pro-inflammatory cytokines are produced as a result of the accumulation of immune cells. In COVID-19 patients, cytokine storms are the leading cause of severe acute respiratory distress syndrome. Mesenchymal stem cells are multipotent and self-renewing adult stem cells, which are obtained from a variety of tissues including bone marrow, adipose tissue, Warthon's jelly tissue, and amniotic fluid. Mesenchymal stem cells primarily exert their important therapeutic effects through 2 mechanisms: immunoregulatory effects and differentiation capacity. Mesenchymal stem cells can release several cytokines via paracrine mechanism or by direct interaction with white blood cells such as natural killer cells, T-lymphocytes, B-lymphocytes, natural killer cells, and macrophages, resulting in immune system regulation. Mesenchymal stem cells may help to restore the lung microenvironment, preserve alveolar epithelial cells, prevent lung fibrosis, and treat pulmonary dysfunction that is caused by COVID-19 associated pneumonia. Mesenchymal stem cells therapy may suppress aggressive inflammatory reactions and increase endogenous restoration by improving the pulmonary microenvironment. Furthermore, clinical evidence suggests that intravenous injection of mesenchymal stem cells may radically reduce lung tissue damage in COVID-19 patients. With the advancement of research involving mesenchymal stem cells for the treatment of COVID-19, mesenchymal stem cells therapy may be the main strategy for reducing the recent pandemic.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
28
|
Lee PW, Wu BS, Yang CY, Lee OKS. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int J Mol Sci 2021; 22:11406. [PMID: 34768837 PMCID: PMC8583897 DOI: 10.3390/ijms222111406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs' therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.
Collapse
Grants
- Yin Yen-Liang Foundation Development and Construction Plan (107F-M01-0504) National Yang-Ming University
- MOST 108-2923-B-010-002-MY3, MOST 109-2314-B-010-053-MY3, MOST 109-2811-B-010-532, MOST 109-2926-I-010-502, MOST 109-2823-8-010-003-CV, MOST 109-2622-B-010-006, MOST 109-2321-B-010-006, MOST 110-2923-B-A49A-501-MY3, and MOST 110-2321-B-A49-003 Ministry of Science and Technology, Taiwan
- V106D25-003-MY3, VGHUST107-G5-3-3, VGHUST109-V5-1-2, and V110C-194 Taipei Veterans General Hospital
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) Ministry of Education
Collapse
Affiliation(s)
- Pei-Wen Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Hong Deh Clinic, Taipei 11251, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
29
|
Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M, Camagni S, Fagiuoli S, Pinna AD, Cescon M, Bertuzzo V, Maroni L, Introna M, Capelli C, Golay JT, Buzzi M, Mister M, Ordonez PYR, Breno M, Mele C, Villa A, Remuzzi G. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: A randomized controlled trial. Am J Transplant 2021; 21:2795-2809. [PMID: 33370477 DOI: 10.1111/ajt.16468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC) have emerged as a promising therapy to minimize the immunosuppressive regimen or induce tolerance in solid organ transplantation. In this randomized open-label phase Ib/IIa clinical trial, 20 liver transplant patients were randomly allocated (1:1) to receive a single pretransplant intravenous infusion of third-party bone marrow-derived MSC or standard of care alone. The primary endpoint was the safety profile of MSC administration during the 1-year follow-up. In all, 19 patients completed the study, and none of those who received MSC experienced infusion-related complications. The incidence of serious and non-serious adverse events was similar in the two groups. Circulating Treg/memory Treg and tolerant NK subset of CD56bright NK cells increased slightly over baseline, albeit not to a statistically significant extent, in MSC-treated patients but not in the control group. Graft function and survival, as well as histologic parameters and intragraft expression of tolerance-associated transcripts in 1-year protocol biopsies were similar in the two groups. In conclusion, pretransplant MSC infusion in liver transplant recipients was safe and induced mild positive changes in immunoregulatory T and NK cells in the peripheral blood. This study opens the way for a trial on possible tolerogenic efficacy of MSC in liver transplantation. ClinicalTrials.gov identifier: NCT02260375.
Collapse
Affiliation(s)
- Federica Casiraghi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel A Podestà
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Todeschini
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marco Zambelli
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Colledan
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology, Hepatology and Transplantation, Department of Medicine, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Antonio D Pinna
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Bertuzzo
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Lorenzo Maroni
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josee T Golay
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank, Immunohematology and Transfusion Medicine, Azienda Ospedaliero-Universitaria-Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Marilena Mister
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Pamela Y R Ordonez
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
30
|
Tseng WC, Lee PY, Tsai MT, Chang FP, Chen NJ, Chien CT, Hung SC, Tarng DC. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther 2021; 12:367. [PMID: 34183058 PMCID: PMC8240301 DOI: 10.1186/s13287-021-02374-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. METHODS Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. RESULT HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1β, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. CONCLUSION The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.
Collapse
Affiliation(s)
- Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Integrative Stem Cell Center, Department of Orthopedics, and Institute of New Drug Development, New Drug Development Center, China Medical University, Taichung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan.
| |
Collapse
|
31
|
Zhao Y, Pu M, Wang Y, Yu L, Song X, He Z. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J Control Release 2021; 336:233-251. [PMID: 34171444 DOI: 10.1016/j.jconrel.2021.06.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI), a major health issue concerning ~50% of patients treated in intensive care units, generally leads to severe renal damage associated with high mortality rate. The application of nanotechnology for the management of AKI has profound potential of further development, providing innovative strategies for predicting the early onset and progression of renal disease and improving the treatment efficacy of the life-threating AKI. This review has comprehensively summarized the nanomedicines in the application of AKI diagnosis and emphatically discussed the unique potential of various nanotechnology-based drug delivery systems (e.g., polymeric nanoparticles, organic nanoparticles, inorganic nanoparticles, lipid-based nanoparticles, hydrogels etc.) in the treatment of AKI, allowing for improved therapeutic index by enhancing both efficacy and safety concurrently. These approaches may mechanically mitigate oxidative stress, inflammation, and mitochondrial and other organellar damage, etc. In addition, the combination of nanotechnology with stem cells-based therapy or gene therapy has been explored for reducing renal tissues damage and promoting kidney repair or recovery from AKI. The review provides insights into the synthesis, advantages, and limitations of innovative nanomedicine application in the early detection and effective treatment of AKI.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mingju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
32
|
Cui Z, Feng Y, Li D, Li T, Gao P, Xu T. Activation of aryl hydrocarbon receptor (AhR) in mesenchymal stem cells modulates macrophage polarization in asthma. J Immunotoxicol 2021; 17:21-30. [PMID: 31922435 DOI: 10.1080/1547691x.2019.1706671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage polarization has been demonstrated to exert a vital role on asthma pathogenesis. Mesenchymal stem cells (MSC) have the capacity to modulate macrophage differentiation from a pro-inflammatory M1 phenotype toward an anti-inflammatory M2 phenotype. However, the impact of MSC-macrophage interactions on asthma development and underlying mechanisms responsible for this interaction remain largely unknown. The aim of this study was to investigate the role of AhR expressed on MSC in macrophage polarization in a cockroach extract (CRE)-induced asthma mouse model. The studies here revealed that MSC polarized macrophages from a pro-inflammatory M1 phenotype toward an anti-inflammatory M2 phenotype in this model. The mRNA levels of interleukin (IL)-6, IL-1β, and NOS2 as M1 markers were significantly decreased while those of select M2 markers such as Arg-1, FIZZ1, and YM-1 were significantly enhanced. It was also observed that aryl hydrocarbon receptor (AhR) signaling was significantly increased during asthma pathogenesis as demonstrated by enhanced mRNA expression of AhR, CYP1a1, and CYP1b1. It was also seen that the elevated AhR signaling was able to attenuate the onset of asthma. Use of an AhR antagonist (CH223191) resulted in significant inhibition of the AhR signaling and increases in M2 marker expression, but led to elevation of expression of M1 markers in the CRE-induced asthma model. Taken together, the current study showed that MSC can modulate macrophage polarization, in part, via activation of AhR signaling during CRE-induced asthma.
Collapse
Affiliation(s)
- Zhuang Cui
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Feng
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danqing Li
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taoping Li
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
BOZTOK ÖZGERMEN B, BULUT G, ALPASLAN PINARLI F, GÜLTEKİN SS, ÖZEN D, YAVUZ O, HAYDARDEDEOĞLU AE. Investigation of the effects of fetal rat kidney-derived mesenchymal stem cells implementation on doxorubicin-induced nephropathy in male Sprague – dawley rats. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.33988/auvfd.822776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Karbasiafshar C, Sellke FW, Abid MR. Mesenchymal stem cell-derived extracellular vesicles in the failing heart: past, present, and future. Am J Physiol Heart Circ Physiol 2021; 320:H1999-H2010. [PMID: 33861149 PMCID: PMC8163643 DOI: 10.1152/ajpheart.00951.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.
Collapse
Affiliation(s)
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
Kletukhina SK, Neustroeva OA, Kurbangaleeva SV, Salafutdinov II, Rogov AM, James V, Rizvanov AA, Gomzikova MO. Storage stability and delivery potential of cytochalasin B induced membrane vesicles. ACTA ACUST UNITED AC 2021; 30:e00616. [PMID: 33996522 PMCID: PMC8090994 DOI: 10.1016/j.btre.2021.e00616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Cytochalasin B induced membrane vesicles are a promising tool for clinical application in regenerative medicine and antitumor therapy. Storage temperature is an important factor in maintaining the integrity and delivery potential of cytochalasin B induced membrane vesicles. Freezing at -20 °C in saline is optimal method of cytochalasin B induced membrane vesicles storage. The use of cryoprotectants may help to solve the problem of the aggregation of cytochalasin B induced membrane vesicles during freeze drying.
Cell-free therapies based on extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are considered as a promising tool for stimulating regeneration and immunomodulation. The need to develop a practical approach for large-scale production of vesicles with homogenous content led to the implementation of cytochalasin B-induced to induce microvesicles (CIMVs) biogenesis. CIMVs mimic natural EVs in size and composition of the surrounding cytoplasmic membrane. Previously we observed that MSC derived CIMVs demonstrate the same therapeutic angiogenic and immunomodulatory activity as the parental MSCs, making them a potentially scalable cell-free therapeutic option. However, little is known about their storage stability and delivery potential. We determined that different storage conditions alter the protein concentration within the solution used to store CIMVs over time, this concided with a decrease in the amount of CIMVs due to gradual degradation. We established that freezing and storage CIMVs in saline at -20 °C reduces degredation and prolongs their shelf life. Additionally, we found that freeze-thawing preserved the CIMVs morphology better than freeze drying and subsequent rehydration which resulted in aggregation of CIMVs. Collectively our data demonstrates for the first time, that the most optimal method of CIMVs storage is freezing at -20 °C, to preserve the CIMVs in the maximum quantity and quality with retention of effective delivery. These findings will benefit the formation of standardized protocols for the use of CIMVs for both basic research and clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Kazan Federal University, Kazan, 420008, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Marina O Gomzikova
- Kazan Federal University, Kazan, 420008, Russia.,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
36
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
37
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
38
|
Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep 2021; 11:5265. [PMID: 33664277 PMCID: PMC7933415 DOI: 10.1038/s41598-021-83894-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have demonstrated efficacy in pre-clinical models of inflammation and tissue injury, including in models of lung injury and infection. Rolling, adhesion and transmigration of MSCs appears to play a role during MSC kinetics in the systemic vasculature. However, a large proportion of MSCs become entrapped within the lungs after intravenous administration, while the initial kinetics and the site of arrest of MSCs in the pulmonary vasculature are unknown. We examined the kinetics of intravascularly administered MSCs in the pulmonary vasculature using a microfluidic system in vitro and intra-vital microscopy of intact mouse lung. In vitro, MSCs bound to endothelium under static conditions but not under laminar flow. VCAM-1 antibodies did not affect MSC binding. Intravital microscopy demonstrated MSC arrest at pulmonary micro-vessel bifurcations due to size obstruction. Retention of MSCs in the pulmonary microvasculature was increased in Escherichia coli-infected animals. Trapped MSCs deformed over time and appeared to release microvesicles. Labelled MSCs retained therapeutic efficacy against pneumonia. Our results suggest that MSCs are physically obstructed in pulmonary vasculature and do not display properties of rolling/adhesion, while retention of MSCs in the infected lung may require receptor interaction.
Collapse
|
39
|
Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Malviya R, Singh A, Fuloria NK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. BIOLOGY 2021; 10:172. [PMID: 33668707 PMCID: PMC7996168 DOI: 10.3390/biology10030172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | - Amit Singh
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | | |
Collapse
|
40
|
Li W, Chen W, Sun L. An Update for Mesenchymal Stem Cell Therapy in Lupus Nephritis. KIDNEY DISEASES 2021; 7:79-89. [PMID: 33824866 DOI: 10.1159/000513741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Background Lupus nephritis (LN) is the most severe organ manifestations of systemic lupus erythematosus (SLE). Although increased knowledge of the disease pathogenesis has improved treatment options, outcomes have plateaued as current immunosuppressive therapies have failed to prevent disease relapse in more than half of treated patients. Thus, there is still an urgent need for novel therapy. Mesenchymal stem cells (MSCs) possess a potently immunosuppressive regulation on immune responses, and intravenous transplantation of MSCs ameliorates disease symptoms and has emerged as a potential beneficial therapy for LN. The objective of this review is to discuss the defective functions of MSCs in LN patients and the application of MSCs in the treatment of both LN animal models and patients. Summary Bone marrow MSCs from SLE patients exhibit impaired capabilities of migration, differentiation, and immune regulation and display senescent phenotype. Allogeneic MSCs suppress autoimmunity and restore renal function in mouse models and patients with LN by inducing regulatory immune cells and suppressing Th1, Th17, T follicular helper cell, and B-cell responses. In addition, MSCs can home to the kidney and integrate into tubular cells and differentiate into mesangial cells. Key Messages The efficacy of MSCs in the LN treatment remains to be confirmed, and future advances from stem cell science can be expected to pinpoint significant MSC subpopulations, as well as specific mechanisms of action, leading the way to the use of more potent stimulated or primed pretreated MSCs to treat LN.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
41
|
Holan V, Echalar B, Palacka K, Kossl J, Bohacova P, Krulova M, Brejchova J, Svoboda P, Zajicova A. The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Rev Rep 2021; 17:1420-1428. [PMID: 33582958 DOI: 10.1007/s12015-021-10126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs) have the ability to migrate to the site of injury or inflammation, and to contribute to the healing process. Since patients treated with MSCs are often users of analgesic drugs, to relieve their uncomfortable pain associated with the tissue disorder, there is a possibility of negative effects of these drugs on the migration of endogenous and exogenous MSCs. Therefore, we tested the impact of acute and chronic treatment with morphine on the migration and organ distribution of exogenous adipose tissue-derived MSCs in mouse models. Firstly, we showed that the incubation of MSCs with morphine significantly reduced the expression of adhesive molecules CD44 (HCAM), CD54 (ICAM-1) and CD106 (VCAM-1) on MSCs. Using a model of systemic administration of MSCs labeled with vital dye PKH26 and by the application of flow cytometry to detect living CD45-PKH26+ cells, we found a decreased number of labeled MSCs in the lung, spleen and bone marrow, and a significantly increased number of MSCs in the liver of morphine-treated recipients. A skin allograft model was used to study the effects of morphine on the migration of exogenous MSCs to the superficial wound. Intraperitoneally administered MSCs migrated preferentially to the wound site, and this migration was significantly decreased in the morphine-treated recipients. The present results showed that morphine significantly influences the distribution of exogenous MSCs in the body, and decreases their migration to the site of injury.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic. .,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic.
| | - Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Jan Kossl
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Pavla Bohacova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Magdalena Krulova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Jana Brejchova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| |
Collapse
|
42
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
43
|
Qin B, Zhang Q, Chen D, Yu HY, Luo AX, Suo LP, Cai Y, Cai DY, Luo J, Huang JF, Xiong K. Extracellular vesicles derived from mesenchymal stem cells: A platform that can be engineered. Histol Histopathol 2021; 36:615-632. [PMID: 33398872 DOI: 10.14670/hh-18-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells play an important role in tissue damage and repair. This role is mainly due to a paracrine mechanism, and extracellular vesicles (EVs) are an important part of the paracrine function. EVs play a vital role in many aspects of cell homeostasis, physiology, and pathology, and EVs can be used as clinical biomarkers, vaccines, or drug delivery vehicles. A large number of studies have shown that EVs derived from mesenchymal stem cells (MSC-EVs) play an important role in the treatment of various diseases. However, the problems of low production, low retention rate, and poor targeting of MSC-EVs are obstacles to current clinical applications. The engineering transformation of MSC-EVs can make up for those shortcomings, thereby improving treatment efficiency. This review summarizes the latest research progress of MSC-EV direct and indirect engineering transformation from the aspects of improving MSC-EV retention rate, yield, targeting, and MSC-EV visualization research, and proposes some feasible MSC-EV engineering methods of transformation.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ai-Xiang Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liang-Peng Suo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan Cai
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yang Cai
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| |
Collapse
|
44
|
Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
|
45
|
Aslam R, Hussain A, Cheng K, Kumar V, Malhotra A, Gupta S, Singhal PC. Transplantation of mesenchymal stem cells preserves podocyte homeostasis through modulation of parietal epithelial cell activation in adriamycin-induced mouse kidney injury model. Histol Histopathol 2020; 35:1483-1492. [PMID: 33124682 DOI: 10.14670/hh-18-276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To determine the role of the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) in podocyte renewal, we studied BALB/C mice with or without adriamycin-induced acute kidney injury. MSCs were transplanted ectopically under the capsule of the left kidney or into the peritoneal cavity after the onset of kidney injury to test testing their local or systemic paracrine effects, respectively. Adriamycin produced increases in urine protein: creatinine ratios, blood urea nitrogen, and blood pressure, which improved after both renal subcapsular and intraperitoneal MSCs transplants. The histological changes of adriamycin kidney changes regressed in both kidneys and in only the ipsilateral kidney after intraperitoneal or renal subcapsular transplants indicating that the benefits of transplanted MSCs were related to the extent of paracrine factor distribution. Analysis of kidney tissues for p57-positive parietal epithelial cells (PECs) showed that MSC transplants restored adriamycin-induced decreases in the abundance of these cells to normal levels, although after renal subcapsular transplants these changes did not extend to contralateral kidneys. Moreover, adriamycin caused inflammatory activation of PECs with coexpression of CD44 and phospho-ERK, which was normalized in both or only ipsilateral kidneys depending on whether MSCs were transplanted in the peritoneal cavity or subcapsular space, respectively.
Collapse
Affiliation(s)
- Rukhsana Aslam
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ali Hussain
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Kang Cheng
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Vinod Kumar
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ashwani Malhotra
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Sanjeev Gupta
- Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, The Irwin S. and Sylvia Chanin Institute for Cancer Research, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA
| | - Pravin C Singhal
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA.
| |
Collapse
|
46
|
Lee JH, Ha DH, Go HK, Youn J, Kim HK, Jin RC, Miller RB, Kim DH, Cho BS, Yi YW. Reproducible Large-Scale Isolation of Exosomes from Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Application in Acute Kidney Injury. Int J Mol Sci 2020; 21:E4774. [PMID: 32635660 PMCID: PMC7370182 DOI: 10.3390/ijms21134774] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a fatal medical episode caused by sudden kidney damage or failure, leading to the death of patients within a few hours or days. Previous studies demonstrated that exosomes derived from various mesenchymal stem/stromal cells (MSC-exosomes) have positive effects on renal injuries in multiple experimental animal models of kidney diseases including AKI. However, the mass production of exosomes is a challenge not only in preclinical studies with large animals but also for successful clinical applications. In this respect, tangential flow filtration (TFF) is suitable for good manufacturing practice (GMP)-compliant large-scale production of high-quality exosomes. Until now, no studies have been reported on the use of TFF, but rather ultracentrifugation has been almost exclusively used, to isolate exosomes for AKI therapeutic application in preclinical studies. Here, we demonstrated the reproducible large-scale production of exosomes derived from adipose tissue-derived MSC (ASC-exosomes) using TFF and the lifesaving effect of the ASC-exosomes in a lethal model of cisplatin-induced rat AKI. Our results suggest the possibility of large-scale stable production of ASC-exosomes without loss of function and their successful application in life-threatening diseases.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Dae Hyun Ha
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | - Jinkwon Youn
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | | | | | - Byong Seung Cho
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| |
Collapse
|
47
|
The protective effect of human adiposederived mesenchymal stem cells on cisplatin-induced nephrotoxicity is dependent on their level of expression of heme oxygenase-1. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The therapeutic efficacy of adipose mesenchymal stem cells (Ad-MSCs) for acute kidney injury (AKI) has been investigated extensively, and the anti-apoptotic, anti-inflammatory, and proangiogenic effects of heme oxygenase-1 (HO-1) reportedly ameliorate AKI. We hypothesized that the therapeutic efficacy of Ad-MSCs is dependent on their expression level of HO-1. The viability and migration ability of cisplatin-treated human renal proximal tubular epithelial cells were assessed. Sprague–Dawley rats were divided into control, cisplatin (10 mg/kg), and cisplatin plus Ad MSCs (with high and low HO-1 expression) groups. The HO-1 expression level in hAd-MSCs increased with increasing passage number, peaking at passage 4 and decreasing thereafter. The viability and migratory ability of hAd-MSCs with high HO-1 expression were greater than those of hAd-MSCs with low HO-1 expression. Renal tubular toxicity in cisplatin-treated rats was ameliorated by administration of hAd-MSCs with high HO-1 expression, although the levels of blood urea nitrogen and serum creatinine did not differ according to the level of HO-1 expression. The magnitude of reactive oxygen species induced DNA damage was lower in hAd-MSCs with high HO-1 expression than in those with low HO-1 expression. Administration of hAd-MSCs significantly suppressed cisplatin induced apoptosis. Also, hAd-MSCs with high HO-1 expression were more resistant to cisplatin-induced apoptosis than were those with low HO-1 expression. hAd MSCs with high HO-1 expression have therapeutic potential for cisplatin induced nephrotoxicity, based on our in vitro and in vivo results. These findings will facilitate the development of novel therapeutic strategies for cisplatin-induced AKI.
Collapse
|
48
|
Liu D, Cheng F, Pan S, Liu Z. Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther 2020; 11:249. [PMID: 32586408 PMCID: PMC7318741 DOI: 10.1186/s13287-020-01751-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of kidney diseases is emerging as a public health problem. Stem cells (SCs), currently considered as a promising tool for therapeutic application, have aroused considerable interest and expectations. With self-renewal capabilities and great potential for proliferation and differentiation, stem cell therapy opens new avenues for the development of renal function and structural repair in kidney diseases. Mounting evidence suggests that stem cells exert a therapeutic effect mainly by replacing damaged tissues and paracrine pathways. The benefits of various types of SCs in acute kidney disease and chronic kidney disease have been demonstrated in preclinical studies, and preliminary results of clinical trials present its safety and tolerability. This review will focus on the stem cell-based therapy approaches for the treatment of kidney diseases, including various cell sources used, possible mechanisms involved, and outcomes that are generated so far, along with prospects and challenges in clinical application.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
49
|
Effect of Timing and Complement Receptor Antagonism on Intragraft Recruitment and Protolerogenic Effects of Mesenchymal Stromal Cells in Murine Kidney Transplantation. Transplantation 2020; 103:1121-1130. [PMID: 30801518 DOI: 10.1097/tp.0000000000002611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have protolerogenic effects in renal transplantation, but they induce long-term regulatory T cells (Treg)-dependent graft acceptance only when infused before transplantation. When given posttransplant, MSCs home to the graft where they promote engraftment syndrome and do not induce Treg. Unfortunately, pretransplant MSC administration is unfeasible in deceased-donor kidney transplantation. METHODS To make MSCs a therapeutic option also for deceased organ recipients, we tested whether MSC infusion at the time of transplant (day 0) or posttransplant (day 2) together with inhibition of complement receptors prevents engraftment syndrome and allows their homing to secondary lymphoid organs for promoting tolerance. We analyzed intragraft and splenic MSC localization, graft survival, and alloimmune response in mice recipients of kidney allografts and syngeneic MSCs given on day 0 or on posttransplant day 2. C3a receptor (C3aR) or C5a receptor (C5aR) antagonists were administered to mice in combination with the cells or were used together to treat MSCs before infusion. RESULTS Syngeneic MSCs given at day 0 homed to the spleen increased Treg numbers and induced long-term graft acceptance. Posttransplant MSC infusion, combined with a short course of C3aR or C5aR antagonist or administration of MSCs pretreated with C3aR and C5aR antagonists, prevented intragraft recruitment of MSCs and graft inflammation, inhibited antidonor T-cell reactivity, but failed to induce Treg, resulting in mild prolongation of graft survival. CONCLUSIONS These data support testing the safety/efficacy profile of administering MSCs on the day of transplant in deceased-donor transplant recipients and indicate that complement is crucial for MSC recruitment into the kidney allograft.
Collapse
|
50
|
Ramírez-Bajo MJ, Martín-Ramírez J, Bruno S, Pasquino C, Banon-Maneus E, Rovira J, Moya-Rull D, Lazo-Rodriguez M, Campistol JM, Camussi G, Diekmann F. Nephroprotective Potential of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Murine Model of Chronic Cyclosporine Nephrotoxicity. Front Cell Dev Biol 2020; 8:296. [PMID: 32432111 PMCID: PMC7214690 DOI: 10.3389/fcell.2020.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapies and derived products have a high potential in aiding tissue and organ repairing and have therefore been considered as potential therapies for treating renal diseases. However, few studies have evaluated the impact of these therapies according to the stage of chronic kidney disease. The aim of this study was to evaluate the renoprotective effect of murine bone marrow mesenchymal stromal cells (BM-MSCs), their extracellular vesicles (EVs) and EVs-depleted conditioned medium (dCM) in an aggressive mouse model of chronic cyclosporine (CsA) nephrotoxicity in a preventive and curative manner. Methods After 4 weeks of CsA-treatment (75 mg/kg daily) mice developed severe nephrotoxicity associated with a poor survival rate of 25%, and characterized by tubular vacuolization, casts, and cysts in renal histology. BM-MSC, EVs and dCM groups were administered as prophylaxis or as treatment of CsA nephrotoxicity. The effect of the cell therapies was analyzed by assessing renal function, histological damage, apoptotic cell death, and gene expression of fibrotic mediators. Results Combined administration of CsA and BM-MSCs ameliorated the mice survival rates (6-15%), but significantly renal function, and histological parameters, translating into a reduction of apoptosis and fibrotic markers. On the other hand, EVs and dCM administration were only associated with a partial recovery of renal function or histological damage. Better results were obtained when used as treatment rather than as prophylactic regimen i.e., cell therapy was more effective once the damage was established. Conclusion In this study, we showed that BM-MSCs induce an improvement in renal outcomes in an animal model of CsA nephrotoxicity, particularly if the inflammatory microenvironment is already established. EVs and dCM treatment induce a partial recovery, indicating that further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Javier Martín-Ramírez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stefania Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Chiara Pasquino
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Daniel Moya-Rull
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| | - Giovanni Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| |
Collapse
|