1
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
3
|
Rani L, Kumar A, Karhade J, Pandey G, Guha A, Mishra GC, Wani MR. IL-3 regulates the differentiation of pathogenic Th17 cells. Eur J Immunol 2022; 52:1842-1858. [PMID: 36074916 DOI: 10.1002/eji.202149674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
IL-17 producing Th17 cells play an important role in pathogenesis of rheumatoid arthritis (RA). Aberrant immune activation due to imbalance between Th17 and regulatory T (Treg) cells is associated with development of RA and other autoimmune diseases. Targeting pathogenic Th17 cells and their associated molecules is emerging as a promising strategy to treat and reverse RA. Here, we demonstrate that IL-3 inhibits the differentiation of Th17 cells and promotes the development of Treg cells in IL-2-dependent manner. In IL-2 knockout mice, we observed that IL-3 has no effect on differentiation of both Th17 and Treg cells. In addition, IL-3 decreases pathogenic IL-17A+ TNF-α+ , IL-17A+ IFN-γ+ and IL-23R+ Th17 cells, secretion of GM-CSF and IFN-γ, and osteoclastogenesis when presented in the culture together with Th-17 polarizing cytokines. Mechanistically, IL-3 regulates the development of Th17 cells through inhibition of STAT3 phosphorylation. IL-3 treatment significantly decreases the pathogenic Th17 cell responses and arthritic scores in mouse model of RA. Importantly, IL-3 inhibits differentiation of human Th17 cells. Thus, our results suggest a novel therapeutic role of IL-3 in regulation of Th17 cell-mediated pathophysiology of RA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lekha Rani
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Anil Kumar
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Juilee Karhade
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Garima Pandey
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Adrita Guha
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Gyan C Mishra
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| | - Mohan R Wani
- Bone and Cartilage Research Laboratory, National Centre for Cell Science, Pune, 411007, India
| |
Collapse
|
4
|
Xu S, Zhang M, Fang X, Hu X, Xing H, Yang Y, Meng J, Wen T, Liu J, Wang J, Wang C, Xu H. CD123 Antagonistic Peptides Assembled with Nanomicelles Act as Monotherapeutics to Combat Refractory Acute Myeloid Leukemia. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38584-38593. [PMID: 35977045 DOI: 10.1021/acsami.2c11538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Due to the development of drug resistance to traditional chemotherapies and high relapse rate, AML still has a low survival rate and there is in an urgent need for better treatment strategies. CD123 is widely expressed by AML cells, also associated with the poor prognosis of AML. In this study, we fabricated nanomicelles loaded with a lab-designed CD123 antagonistic peptide, which were referred to as mPO-6. The antagonistic and therapeutic effects were investigated with CD123+ AML cell lines and a refractory AML mouse (AE and CKITD816V) model. Results show that mPO-6 can specifically bind to the CD123+ AML cells and inhibit the cell viability effectively. Intravenous administration of mPO-6 significantly reduces the percentage of AML cells' infiltration and prolongs the median survival of AML mice. Further, the efficiency of mPO-6 is demonstrated to interfere with the axis of CD123/IL-3 via regulating the activation of STAT5, PI3K/AKT, and NF-κB signaling pathways related to cell proliferation or apoptosis at the level of mRNA and protein in vivo and in vitro. In conclusion, the novel CD123 antagonistic peptide micelle formulation mPO-6 can significantly enhance apoptosis and prolong the survival of AML mice by effectively interfering with the axis of CD123/IL-3 and therefore is a promising therapeutic candidate for the treatment of refractory AML.
Collapse
Affiliation(s)
- Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meichen Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xuechun Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
5
|
Hays P. Clinical Development and Therapeutic Applications of Bispecific Antibodies for Hematologic Malignancies. Cancer Treat Res 2022; 183:287-315. [PMID: 35551665 DOI: 10.1007/978-3-030-96376-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bispecific antibodies are composed of two monoclonal antibodies that engage T cells with tumor cell antigens and lead to tumor cell lysis. The most common types fall into the category of bispecific T cell engagers, or BiTEs, that have the canonical CD3-CD19 bispecific construct. Blinatumomab is the first bispecific antibody that received FDA approval for relapsed refractory B cell precursor acute lymphoblastic leukemia. Blinatumomab has been shown to have robust clinical outcomes and is associated with adverse events such as cytokine release syndrome and neurotoxicity. Other bispecific antibodies are under clinical investigation for multiple myeloma and acute myeloid leukemia. Along with immune checkpoint inhibitors and chimeric antigen T cell receptor therapies, bispecific antibodies are considered a mainstay as a therapeutic option for cancer immunotherapies for Hematologic malignancies.
Collapse
Affiliation(s)
- Priya Hays
- Hays Documentation Specialists, LLC, San Mateo, CA, USA.
| |
Collapse
|
6
|
Yin ZX, Xing CY, Li GH, Pang LB, Wang J, Pan J, Zang R, Zhang S. A combined risk model for the multi-encompassing identification of heterogeneities of prognoses, biological pathway variations and immune states for sepsis patients. BMC Anesthesiol 2022; 22:16. [PMID: 34996374 PMCID: PMC8739717 DOI: 10.1186/s12871-021-01552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Background Sepsis is a highly heterogeneous syndrome with stratified severity levels and immune states. Even in patients with similar clinical appearances, the underlying signal transduction pathways are significantly different. To identify the heterogeneities of sepsis from multiple angles, we aimed to establish a combined risk model including the molecular risk score for rapid mortality prediction, pathway risk score for the identification of biological pathway variations, and immunity risk score for guidance with immune-modulation therapy. Methods We systematically searched and screened the mRNA expression profiles of patients with sepsis in the Gene Expression Omnibus public database. The screened datasets were divided into a training cohort and a validation cohort. In the training cohort, authentic prognostic predictor characteristics (differentially expressed mRNAs, pathway activity variations and immune cells) were screened for model construction through bioinformatics analysis and univariate Cox regression, and a P value less than 0.05 of univariate Cox regression on 28-day mortality was set as the cut-off value. The combined risk model was finally established by the decision tree algorithm. In the validation cohort, the model performance was assessed and validated by C statistics and the area under the receiver operating characteristic curve (AUC). Additionally, the current models were further compared in clinical value with traditional indicators, including procalcitonin (PCT) and interleukin-8 (IL-8). Results Datasets from two sepsis cohort studies with a total of 585 consecutive sepsis patients admitted to two intensive care units were downloaded as the training cohort (n = 479) and external validation cohort (n = 106). In the training cohort, 15 molecules, 20 pathways and 4 immune cells were eventually enrolled in model construction. These prognostic factors mainly reflected hypoxia, cellular injury, metabolic disorders and immune dysregulation in sepsis patients. In the validation cohort, the AUCs of the molecular model, pathway model, immune model, and combined model were 0.81, 0.82, 0.62 and 0.873, respectively. The AUCs of the traditional biomarkers (PCT and IL-8) were 0.565 and 0.585, respectively. The survival analysis indicated that patients in the high-risk group identified by models in the current study had a poor prognosis (P < 0.05). The above results indicated that the models in this study are all superior to the traditional biomarkers for the predicting the prognosis of sepsis patients. Furthermore, the current study provides some therapeutic recommendations for patients with high risk scores identified by the three submodels. Conclusions In summary, the present study provides opportunities for bedside tests that could quantitatively and rapidly measure heterogeneous prognosis, underlying biological pathway variations and immune dysfunction in sepsis patients. Further therapeutic recommendations for patients with high risk scores could improve the therapeutic system for sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01552-x.
Collapse
Affiliation(s)
- Zong-Xiu Yin
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chun-Yan Xing
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guan-Hua Li
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Long-Bin Pang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Pan
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Zang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China.,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shi Zhang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China. .,Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Xu S, Zhang M, Fang X, Meng J, Xing H, Yan D, Liu J, Yang Y, Wen T, Zhang W, Wang J, Wang C, Xu H. A novel CD123-targeted therapeutic peptide loaded by micellar delivery system combats refractory acute myeloid leukemia. J Hematol Oncol 2021; 14:193. [PMID: 34774070 PMCID: PMC8590286 DOI: 10.1186/s13045-021-01206-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common malignant heterogeneous hematopoietic disease with very low average 5-year survival rate due to the refractory feature and high rate of relapse. CD123 is highly expressed on multiple types of AML cells, especially leukemia stem cells, and closely associated with the poor prognosis of AML. Aiming to meet the urgent demand to targeted therapeutics for the refractory AML patients, herein we synthesize a CD123 antagonistic peptide (PO-6) loaded in nanomicelles (mPO-6), and investigated its therapeutic effect and pharmacokinetics on a lab-established refractory AML mice model (AE & CKITD816V). It is shown that the PO-6 can effectively bind to the CD123+ AML cells and the micellar formulation mPO-6 increases the dissolution stability and the specific binding capacity. When injected intravenously, mPO-6 significantly prolongs the survival of the refractory AML mice by interfering CD123/IL-3 axis, evidenced by the down regulation of phosphorylation of STAT5 and PI3K/AKT and the inhibition of activated NF-κB in the nucleus, as well as by the analysis results of next generation RNA-sequencing (RNA-seq) with the bone marrow of the AML mice. The antagonistic effect leads to the significantly reduction of AML cells infiltration in the bone marrow of the AML mice. In conclusion, mPO-6 could provide a potent antagonistic therapeutic approach for targeted treatment of AML.
Collapse
Affiliation(s)
- Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meichen Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Doudou Yan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Weiqi Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100190, China.
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
10
|
Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv 2021; 4:5118-5132. [PMID: 33085758 DOI: 10.1182/bloodadvances.2020001742] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
Collapse
|
11
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Yilmaz M, Ravandi F. The potential role of Bi-specific antibodies in acute myeloid leukemia. Best Pract Res Clin Haematol 2020; 33:101218. [PMID: 33279174 DOI: 10.1016/j.beha.2020.101218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Bispecific antibodies consist of antigen recognition sites from two or more antibodies redirecting effector immune cell against target on tumor cells. Rapidly evolving medical technologies enabled engineering and development of recombinant protein products, and this, combined with interest from the pharmaceutical industry, further advanced the bispecific antibody research. Over 50 different types of bispecific antibody constructs are now being manufactured and explored in ongoing or future clinical trials. In this review, we will summarize the available data for bispecific antibodies developed and being investigated for the treatment of patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Musa Yilmaz
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA.
| | - Farhad Ravandi
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| |
Collapse
|
13
|
Bao Y, Hu W, Guo Y, Yang W. Phenotypic characterization of malignant progenitor cells in patients with idiopathic myelofibrosis. Hematol Oncol Stem Cell Ther 2019; 12:146-154. [DOI: 10.1016/j.hemonc.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
|
14
|
Liu W, Yuan W, Li X, Zhuang J, Mo X, Dai G, Wang Y, Chen J, Wan Y, Li Y, Zhu X, Chen Y, Luo S, Jiang Z, Shi Y, Chen F, Cao L, Ye X, Fan X, Zhu P, Zhang K, Wu X. ZNF424 Induces Apoptosis and Inhibits Proliferation in Lung Carcinoma Cells. Curr Mol Med 2019; 18:109-115. [PMID: 29974829 PMCID: PMC6225340 DOI: 10.2174/1566524018666180705113642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022]
Abstract
Background: Previously, we showed that the Zinc finger-containing transcription factor ZNF424 inhibits p21 transcription, which has been widely associated with various cancers. However, because the roles of ZNF424 in tumorigenesis have not been characterized, we correlated ZNF424 expression with tumorigenesis in lung cancer. Results: The present immunohistochemical analyses show significantly lower ZNF424 expression levels in 43 of 60 lung cancer tissues compared with adjacent tissues. Moreover, flow cytometry assays indicated that overexpression of ZNF424 induces apoptosis in A549 human lung carcinoma cells, and overexpression of ZNF424 significantly increases numbers of G1 phase cells and decreases numbers of S phase cells, suggesting that ZNF424 inhibits proliferation. Western Blot analyses show that overexpression of ZNF424 decreases protein expression levels of the mitogen-activated protein kinase (MAPK) signaling proteins P-P38 and P-ERK in A549 cells. Conclusion: These are the first data to associate ZNF424 with tumorigenesis and demonstrate an inhibitory role in lung cancer, indicating the potential of ZNF424 expression as a diagnostic marker of lung tumorigenesis.
Collapse
Affiliation(s)
- W Liu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - W Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Li
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xianga School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - J Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - X Mo
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - G Dai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Y Wan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - S Luo
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Z Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Shi
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - F Chen
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - L Cao
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Fan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - K Zhang
- The National Clinical Research Center for Geriatrics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - X Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Bispecific antibodies combine antigen recognition sites from two or more antibodies into a single construct allowing simultaneous binding to multiple targets. Bispecific antibodies exist which can redirect immune effector cells against acute myeloid leukemia (AML) targets. This review will highlight the progress to date and the challenges in developing bispecific antibodies for the treatment of AML. RECENT FINDINGS Currently, a number of bispecific antibody formats including bispecific T cell engagers, dual affinity retargeting proteins, and tandem diabodies are in clinical development for AML. These antibodies target antigens present on AML blasts, including CD33, and the low affinity IL3 receptor, CD123. T cell redirecting bispecific antibodies in early phase clinical trials for AML include AG330, flotetuzumab, JNJ-63709178, and AMV564. Bispecific antibodies represent a promising immunotherapeutic approach for the treatment of cancer. The results of ongoing studies in AML will elucidate the potential for these agents in AML.
Collapse
Affiliation(s)
- Daniel G Guy
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Ave, CB 8007, St. Louis, MO, 63110, USA
| | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Ave, CB 8007, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Arai N, Homma M, Abe M, Baba Y, Murai S, Watanuki M, Kawaguchi Y, Fujiwara S, Kabasawa N, Tsukamoto H, Uto Y, Ariizumi H, Yanagisawa K, Hattori N, Saito B, Shiozawa E, Harada H, Yamochi-Onizuka T, Nakamaki T, Takimoto M. Impact of CD123 expression, analyzed by immunohistochemistry, on clinical outcomes in patients with acute myeloid leukemia. Int J Hematol 2019; 109:539-544. [PMID: 30847774 DOI: 10.1007/s12185-019-02616-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Aberrant expression of the interleukin-3 receptor alpha chain (IL3RA or CD123) is frequently observed in patients with a subset of leukemic disorders, including acute myeloid leukemia (AML), particularly in leukemia stem cells. We analyzed the relationships between immunohistochemical (IHC) expression, including that of CD123, and clinical outcomes. This study involved a retrospective analysis of 48 patients diagnosed with de novo AML (M0-M5, n = 48) at our hospital between February 2008 and September 2015. Among patients with de novo AML, CD123 expression was associated with a failure to achieve complete response (CR) to initial induction chemotherapy (P = 0.044) and poor overall survival (OS) (P = 0.036). This is the first study using IHC to demonstrate that CD123 expression is associated with a poor CR rate and poor OS in de novo AML patients. These results support previous reports using flow cytometry (FCM). CD123 expression may thus be useful for assessing AML patients' prognoses. At the time of diagnosis, CD123 expression analysis using IHC may represent a clinically useful assessment for de novo AML patients.
Collapse
Affiliation(s)
- Nana Arai
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan. .,Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan.
| | - Mayumi Homma
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Maasa Abe
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yuta Baba
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - So Murai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Nobuyuki Kabasawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hiroyuki Tsukamoto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yui Uto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hirotsugu Ariizumi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Bungo Saito
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Eisuke Shiozawa
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Harada
- Division of Hematology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | | | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Pilot Study on Mass Spectrometry-Based Analysis of the Proteome of CD34⁺CD123⁺ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia. Proteomes 2018; 6:proteomes6010011. [PMID: 29439554 PMCID: PMC5874770 DOI: 10.3390/proteomes6010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting of leukemic stem cells with specific immunotherapy would be an ideal approach for the treatment of myeloid malignancies, but suitable epitopes are unknown. The comparative proteome-level characterization of hematopoietic stem and progenitor cells from healthy stem cell donors and patients with acute myeloid leukemia has the potential to reveal differentially expressed proteins which can be used as surface-markers or as proxies for affected molecular pathways. We employed mass spectrometry methods to analyze the proteome of the cytosolic and the membrane fraction of CD34 and CD123 co-expressing FACS-sorted leukemic progenitors from five patients with acute myeloid leukemia. As a reference, CD34+CD123+ normal hematopoietic progenitor cells from five healthy, granulocyte-colony stimulating factor (G-CSF) mobilized stem cell donors were analyzed. In this Tandem Mass Tag (TMT) 10-plex labelling–based approach, 2070 proteins were identified with 171 proteins differentially abundant in one or both cellular compartments. This proof-of-principle-study demonstrates the potential of mass spectrometry to detect differentially expressed proteins in two compartment fractions of the entire proteome of leukemic stem cells, compared to their non-malignant counterparts. This may contribute to future immunotherapeutic target discoveries and individualized AML patient characterization.
Collapse
|
18
|
Zhang Y, Li G, Liu X, Song Y, Xie J, Li G, Ren J, Wang H, Mou J, Dai J, Liu F, Guo L. Sorafenib inhibited cell growth through the MEK/ERK signaling pathway in acute promyelocytic leukemia cells. Oncol Lett 2018; 15:5620-5626. [PMID: 29552199 PMCID: PMC5840677 DOI: 10.3892/ol.2018.8010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
The present study assessed the mechanism underlying the effect of sorafenib on the proliferation and apoptosis of the acute promyelocytic leukemia (APL) cell line NB4. NB4 cells were treated with different concentrations of sorafenib (0, 1.5, 3, 6, and 12 µM) for 24, 48 and 72 h. Cell proliferation, cell cycle, and apoptosis were analyzed using an MTT assay and flow cytometry analysis, respectively. Reverse transcription-semi-quantitative polymerase chain reaction and western blot analysis were performed to assess the expression of caspase-3, caspase-8, myeloid cell leukemia (MCL)1, cyclin D1, mitogen-activated protein kinase (MEK), phosphorylated (P)-MEK, extracellular signal-regulated kinase (ERK) and P-ERK. The results of the MTT assay demonstrated that, compared with untreated cells, the proliferation of sorafenib-treated NB4 cells was inhibited dose- and time-dependently. Furthermore, cell cycle arrest was induced in the G0/G1 phase and cell apoptosis was promoted in a dose-dependent manner in sorafenib-treated NB4 cells compared with untreated cells. In addition, the expression of the proapoptotic molecules caspase-3 and caspase-8 was significantly upregulated, and the expression of the antiapoptotic molecule MCL1 and the cell cycle-associated cyclin D1 was downregulated in sorafenib-treated NB4 cells compared with untreated cells. Furthermore, the phosphorylation of MEK and ERK was inhibited in sorafenib-treated NB4 cells compared with untreated cells. Sorafenib may inhibit proliferation and induce cell cycle arrest and apoptosis in APL cells. The underlying mechanisms of such effects may be associated with alterations to the expression of apoptosis-associated and cell cycle-associated molecules via MEK/ERK signaling pathway inhibition.
Collapse
Affiliation(s)
- Yunjie Zhang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China.,Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Gangcan Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yanping Song
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jia Xie
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Guang Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jingjing Ren
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hao Wang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jiao Mou
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jinqian Dai
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Feng Liu
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Liang Guo
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
19
|
Wang Y, Xing B, Li T, Wang C, Zhou M, Liu Y, Fan L, Hu L, Peng X, Xiang Y, Wang H, Kong T, Dong W, Guo Q. SVP-B5 peptide from Buthus martensii Karsch scorpion venom exerts hyperproliferative effects on irradiated hematopoietic cells. Exp Ther Med 2017; 14:5081-5086. [PMID: 29201218 DOI: 10.3892/etm.2017.5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated the radioprotective efficacy of scorpion venom peptide, fraction II (SVPII) from the venom of Buthus martensii Karsch. In the present study, the SVP-B5 polypeptide, which is one of the active components of SVPII, was purified using a two-step chromatographic process. SVP-B5 significantly promoted the proliferation of irradiated M-NFS-60 mouse-derived myelocytic leukemia cells. In addition, SVP-B5 effectively and persistently promoted hematopoietic recovery and expansion of hematopoietic cells after irradiation as demonstrated by cobblestone area forming cell and long-term bone marrow culture assays. Treatment of M-NFS-60 cells with SVP-B5 upregulated the expression of interleukin 3 receptor and activated the Janus kinase-2/signal transducer and activator of transcription 5 signaling pathway. In conclusion, the present study demonstrated that SVP-B5 has growth factor-like properties and may be used as a therapeutic modality in the recovery of severe myelosuppression, which is a common side effect of radiotherapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Baiqian Xing
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Meixun Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yamin Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Lingjie Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Lili Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiang Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yongxin Xiang
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Han Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tianhan Kong
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Weihua Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Qifeng Guo
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
20
|
High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression. Blood Adv 2017; 1:1067-1079. [PMID: 29296749 DOI: 10.1182/bloodadvances.2016002931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
High expression of the α chain of the interleukin-3 receptor (IL-3Rα; CD123) is a hallmark of acute myeloid leukemia (AML) leukemic stem cells (LSCs). Elevated CD123 expression is part of the diagnostic immunophenotyping of myeloid leukemia, and higher expression is associated with poor prognosis. However, the biological basis of the poorer prognosis is unclear, and may include heightened IL-3 signaling and non-cell autonomous interactions with the bone marrow (BM) microenvironment. We used TF-1 cells expressing different levels of CD123 and found elevated CD123 levels amplified the proliferative response to exogenous IL-3 and maintained viability in reducing IL-3 concentrations. This was associated with stronger activation of STAT5, Akt, and extracellular signal-regulated kinase 1/2 in vitro. Surprisingly, in vivo e14.5 fetal liver cells transduced with retroviral constructs to express high CD123 failed to engraft in syngeneic recipients. In exploring the underlying mechanism for this, we found that CXCR4, a key molecule involved in LSC/BM interactions, was specifically downregulated in CD123 overexpressing cells in a manner dependent on IL-3 signaling. CXCR4 downregulation was sufficient to alter the chemotactic response of hematopoietic cells to stromal derived factor-1 (SDF-1). Thus, we propose that the overexpression of CD123 in AML LSC dictates their location by altering CXCR4/SDF-1 interaction in the BM, raising the possibility that this mechanism underpins the egress of BM AML LSC and more mature cells into the circulation.
Collapse
|
21
|
Lopes MR, Pereira JKN, de Melo Campos P, Machado-Neto JA, Traina F, Saad STO, Favaro P. De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes. Sci Rep 2017; 7:40707. [PMID: 28084439 PMCID: PMC5234038 DOI: 10.1038/srep40707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
The interaction between the bone marrow microenvironment and malignant hematopoietic cells can result in the protection of leukemia cells from chemotherapy in both myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We, herein, characterized the changes in cytokine expression and the function of mesenchymal stromal cells (MSC) in patients with MDS, AML with myelodysplasia-related changes (MRC), a well-recognized clinical subtype of secondary AML, and de novo AML. We observed a significant inhibitory effect of MDS-MSC on T lymphocyte proliferation and no significant differences in any of the cytokines tested. AML-MSC inhibited T-cell proliferation only at a very low MSC/T cell ratio. When compared to the control, AML-MRCderived MSC presented a significant increase in IL6 expression, whereas de novo AML MSC presented a significant increase in the expression levels of VEGFA, CXCL12, RPGE2, IDO, IL1β, IL6 and IL32, followed by a decrease in IL10 expression. Furthermore, data indicate that IL-32 regulates stromal cell proliferation, has a chemotactic potential and participates in stromal cell crosstalk with leukemia cells, which could result in chemoresistance. Our results suggest that the differences between AML-MRC and de novo AML also extend into the leukemic stem cell niche and that IL-32 can participate in the regulation of the bone marrow cytokine milieu.
Collapse
Affiliation(s)
- Matheus Rodrigues Lopes
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João Kleber Novais Pereira
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
22
|
Chen JJ, Arur S. Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development. Methods Mol Biol 2017; 1487:317-335. [PMID: 27924578 PMCID: PMC5429971 DOI: 10.1007/978-1-4939-6424-6_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Rat Sarcoma (RAS) GTPAse-mediated extracellular signal-regulated kinase (ERK) pathway regulates multiple biological processes across metazoans. In particular during Caenorhabditis elegans oogenesis, ERK signaling has been shown to regulate over seven distinct biological processes in a temporal and sequential manner. To fully elucidate how ERK signaling cascade orchestrates these different biological processes in vivo, identification of the direct functional substrates of the pathway is critical. This chapter describes the methods that were used to identify ERK substrates in a global manner and study their functions in the germline. These approaches can also be generally applied to study ERK-dependent biological processes in other systems.
Collapse
Affiliation(s)
- Jessica Jie Chen
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Swathi Arur
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Kaliberov SA, Kaliberova LN, Yan H, Kapoor V, Hallahan DE. Retargeted adenoviruses for radiation-guided gene delivery. Cancer Gene Ther 2016; 23:303-14. [PMID: 27492853 PMCID: PMC5031535 DOI: 10.1038/cgt.2016.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022]
Abstract
The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment.
Collapse
Affiliation(s)
- S A Kaliberov
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA.,Biologic Therapeutics Center, Washington University School of Medicine, St Louis, MO, USA
| | - L N Kaliberova
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA.,Biologic Therapeutics Center, Washington University School of Medicine, St Louis, MO, USA
| | - H Yan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA.,Biologic Therapeutics Center, Washington University School of Medicine, St Louis, MO, USA
| | - V Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - D E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA.,Biologic Therapeutics Center, Washington University School of Medicine, St Louis, MO, USA.,Siteman Cancer Center, St Louis, MO, USA
| |
Collapse
|
24
|
Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, Gao F, Eades WC, Bonvini E, Chichili GR, Moore PA, Johnson S, Collins L, DiPersio JF. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016; 127:122-31. [PMID: 26531164 PMCID: PMC4705603 DOI: 10.1182/blood-2014-05-575704] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/26/2015] [Indexed: 01/28/2023] Open
Abstract
T-cell-directed killing of tumor cells using bispecific antibodies is a promising approach for the treatment of hematologic malignancies. Here we describe our preclinical work with a dual-affinity retargeting (DART) molecule generated from antibodies to CD3 and CD123, designed to redirect T cells against acute myeloid leukemia blasts. The CD3×CD123 DART (also referred to as MGD006/S80880) consists of 2 independent polypeptides, each composed of the VH of 1 antibody in tandem with the VL of the other antibody. The target antigen CD123 (interleukin 3RA) is highly and differentially expressed in acute myeloid leukemia (AML) blasts compared with normal hematopoietic stem and progenitor cells. In this study we demonstrate that the CD3×CD123 DART binds to both human CD3 and CD123 to mediate target-effector cell association, T-cell activation, proliferation, and receptor diversification. The CD3×CD123 DART also induces a dose-dependent killing of AML cell lines and primary AML blasts in vitro and in vivo. These results provide the basis for testing the CD3×CD123 DART in the treatment of patients with CD123(+) AML.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Apoptosis
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Proliferation
- Flow Cytometry
- Genes, T-Cell Receptor alpha/genetics
- Genes, T-Cell Receptor beta/genetics
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoenzyme Techniques
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Mice
- Mice, Inbred NOD
- Mice, SCID
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | - Lynne Collins
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
25
|
Kang CW, Park MS, Kim NH, Lee JH, Oh CW, Kim HR, Kim GD. Hexane extract from Sargassum serratifolium inhibits the cell proliferation and metastatic ability of human glioblastoma U87MG cells. Oncol Rep 2015; 34:2602-8. [PMID: 26323587 DOI: 10.3892/or.2015.4222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The present study is the first to demonstrate the anticancer effects of a hexane extract from the brown algae Sargassum serratifolium (HES) on human cancer cell lines, including glioblastoma U87MG, cervical cancer HeLa and gastric cancer MKN-28 cells, as well as liver cancer SK-HEP 1 cells. Among these cancer cell lines, U87MG cells were most sensitive to the cell death induced by HES. HES exhibited a cytotoxic effect on U87MG cells at concentrations of 14-16 µg/ml, yet an effect was not observed in human embryonic kidney HEK293 cells. The antiproliferative effects of HES were regulated by inhibition of the MAPK/ERK signaling pathway which plays a pivotal role in the proliferation of glioblastoma U87MG cells. In addition, treatment with HES led to cell morphological changes and cell cytoskeleton degradation through regulation of actin dynamic signaling. Furthermore, migration and invasion of the U87MG cells were inhibited by HES via suppression of matrix metalloproteinase (MMP)-2 and -9 expression. Thus, our results suggest that HES is a potential therapeutic agent which has anticancer effects on glioblastoma.
Collapse
Affiliation(s)
- Chang-Won Kang
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Min-Seok Park
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Nan-Hee Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Ji-Hyun Lee
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
26
|
Du W, Li J, Liu W, He Y, Yao J, Liu Y, Lin J, Zheng J. Interleukin-3 receptor α chain (CD123) is preferentially expressed in immature T-ALL and may not associate with outcomes of chemotherapy. Tumour Biol 2015; 37:3817-21. [PMID: 26474588 DOI: 10.1007/s13277-015-3272-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/17/2015] [Indexed: 12/28/2022] Open
Abstract
Interleukin-3 (IL-3) receptor α chain (CD123) plays an essential role in regulating the proliferation of hematopoietic stem cells. In the hematopoietic malignancies, CD123 expression has been found in acute myeloid leukemia (AML), B-precursor acute lymphoblastic leukemia (B-ALL), as well as dendritic cell malignancies. However, whether CD123 is also expressed in T-acute lymphoblastic leukemia (T-ALL) remains unknown. Using multi-parameter flow cytometry, we analyzed CD123 expression in 160 consecutive diagnostic T-ALL patients, including 88 pediatric T-ALL cases and 72 adult T-ALL cases. The minimal residual disease (MRD) was detected after one course of induction therapy to evaluate the treatment effects. CD123 expression was detected in 24 out of 88 (27 %) pediatric T-ALLs and 30 out of 72 (42 %) adult T-ALLs. Further analysis revealed that CD123 expression is associated with the maturation stage of T-ALLs. The frequencies of CD123-positive cases decreased from 83 to 40 % and 21 % in early T-precursor ALLs, T-precursor ALLs, and mature T-ALLs, respectively. Interestingly, we detected the CD4+CD8+ double-positive leukemic cells in 22 immature and 34 mature T-ALL patients. Of note, only 4 % of these patients expressed CD123. In addition, we found that 79 % of CD33+ and 64 % of CD117+ immature T-ALL patients also expressed CD123. However, CD123 expression did not predict the outcomes of the first course of induction therapy in T-ALL patients. In conclusion, we found that CD123 is preferentially expressed in immature T-ALL. Moreover, CD123 expression is strongly associated with cross-lineage expression of myeloid markers in early T-precursor ALL.
Collapse
Affiliation(s)
- Wen Du
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli He
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxia Yao
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Wuhan Kindstar Diagnostics Co., Ltd, Wuhan, China
| | - Jun Lin
- Wuhan Kindstar Diagnostics Co., Ltd, Wuhan, China
| | - Jine Zheng
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Held SAE, Heine A, Kesper AR, Schönberg K, Beckers A, Wolf D, Brossart P. Interferon gamma modulates sensitivity of CML cells to tyrosine kinase inhibitors. Oncoimmunology 2015; 5:e1065368. [PMID: 26942083 DOI: 10.1080/2162402x.2015.1065368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023] Open
Abstract
Immune effector cells such as T and NK cells can efficiently eliminate tumor cells. However, when activating oncogenic signaling pathways or protective mechanisms against cell death are active, immune cells can also confer therapy resistance. Here, we analyzed the role of activated T and NK cells and released cytokines on tyrosine kinase inhibitors imatinib and nilotinib - mediated apoptosis induction and proliferation of chronic myelogenous leukemia (CML) cells. Incubation of CML cells with activated, but not with resting CD3+ T cells or with activated NK cells significantly inhibited TKI-induced apoptosis induction in CML cells as quantified by nuclear fragmentation assays. Transwell experiments revealed a critical role for T or NK cell-derived cytokines for CML cell protection. Accordingly, CML cells treated with IFNγ also showed a clearly reduced sensitivity to TKI-mediated cell death induction and inhibition of proliferation. In contrast, IFNα or other pro-inflammatory mediators and cytokines, such as TNFα and GM-CSF did not impair TKI-induced apoptosis in CML cells. On a molecular level, IFNγ-exposed CML cells showed a significantly reduced caspase-3 activation and PARP-1 cleavage as well as an increased expression of anti-apoptotic molecule xIAP. Finally, IFNγ diminished TKI-induced downregulation of Jak-2 and STAT-5 phosphorylation and increased nuclear expression of RUNX-1, which may at least in part contribute to the reduced sensitivity to TKI effects. Our results demonstrate that IFNγ released by activated T or NK cells may interfere with the therapeutic effects of TKI in CML. Our findings may have important implications for the understanding of inflammation-mediated BCR-ABL independent resistance mechanisms.
Collapse
Affiliation(s)
| | - Annkristin Heine
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| | - Anne Ruth Kesper
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| | - Kathrin Schönberg
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| | - Anika Beckers
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| | - Dominik Wolf
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn , Bonn, Germany
| |
Collapse
|
28
|
Angelot-Delettre F, Roggy A, Frankel AE, Lamarthee B, Seilles E, Biichle S, Royer B, Deconinck E, Rowinsky EK, Brooks C, Bardet V, Benet B, Bennani H, Benseddik Z, Debliquis A, Lusina D, Roussel M, Solly F, Ticchioni M, Saas P, Garnache-Ottou F. In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasm to SL-401, an interleukin-3 receptor targeted biologic agent. Haematologica 2014; 100:223-30. [PMID: 25381130 DOI: 10.3324/haematol.2014.111740] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm.
Collapse
Affiliation(s)
- Fanny Angelot-Delettre
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| | - Anne Roggy
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| | | | - Baptiste Lamarthee
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| | - Estelle Seilles
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| | - Sabeha Biichle
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| | - Bernard Royer
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France CHU Besançon, Hematology, France
| | - Eric Deconinck
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France CHU Besançon, Hematology, France
| | - Eric K Rowinsky
- Stemline Therapeutics, Inc, 750 Lexington Avenue, 11th Floor, New York, USA
| | - Christopher Brooks
- Stemline Therapeutics, Inc, 750 Lexington Avenue, 11th Floor, New York, USA
| | | | | | - Hind Bennani
- Institut Curie, Hopital René Huguenin, Saint Cloud, France
| | | | | | | | | | | | | | - Philippe Saas
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France CHU Besançon, CIC1431, FHU INCREASE, Besançon, France
| | - Francine Garnache-Ottou
- INSERM UMR1098, F25020 Besançon Cedex, France Université de Bourgogne Franche-Comté, SFR FED4234, F25000 Besançon Cedex, France EFS Bourgogne Franche-Comté, F25020 Besançon Cedex, France LabEX LipSTIC, ANR-11-LABX-0021, F25020 Besançon Cedex, France
| |
Collapse
|
29
|
The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2016-28. [DOI: 10.1016/j.bbamcr.2013.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 12/26/2022]
|
30
|
Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GMP, Cribioli E, Maltese F, Galimberti S, Lopez AF, Biondi A, Bonnet D, Biagi E. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol 2013; 161:389-401. [PMID: 23432359 DOI: 10.1111/bjh.12282] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Current therapeutic regimens for acute myeloid leukaemia (AML) are still associated with high rates of relapse. Immunotherapy with T-cells genetically modified to express chimeric antigen receptors (CARs) represents an innovative approach. Here we investigated the targeting of the interleukin three receptor alpha (IL3RA; CD123) molecule, which is overexpressed on AML bulk population, CD34(+) leukaemia progenitors, and leukaemia stem cells (LSC) compared to normal haematopoietic stem/progenitor cells (HSPCs), and whose overexpression is associated with poor prognosis. Cytokine-induced killer (CIK) cells were transduced with SFG-retroviral-vector encoding an anti-CD123 CAR. Transduced cells were able to strongly kill CD123(+) cell lines, as well as primary AML blasts. Interestingly, secondary colony experiments demonstrated that anti-CD123.CAR preserved in vitro HSPCs, in contrast to a previously generated anti-CD33.CAR, while keeping an identical cytotoxicity profile towards AML. Furthermore, limited killing of normal monocytes and CD123-low-expressing endothelial cells was noted, thus indicating a low toxicity profile of the anti-CD123.CAR. Taken together, our results indicate that CD123-specific CARs strongly enhance anti-AML CIK functions, while sparing HSPCs and normal low-expressing antigen cells, paving the way to develop novel immunotherapy approaches for AML treatment.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Centro di Ricerca Matilde Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy combinatorial approaches has been achieved to overcome resistance of tumor cells to radiation. In this review, we summarize the results from experimental cancer therapy studies on the combination of radiation therapy and gene therapy.
Collapse
|
32
|
PKR regulates proliferation, differentiation, and survival of murine hematopoietic stem/progenitor cells. Blood 2013; 121:3364-74. [PMID: 23403623 DOI: 10.1182/blood-2012-09-456400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase R (PKR) is an interferon (IFN)-inducible, double-stranded RNA-activated kinase that initiates apoptosis in response to cellular stress. To determine the role of PKR in hematopoiesis, we developed transgenic mouse models that express either human PKR (TgPKR) or a dominant-negative PKR (TgDNPKR) mutant specifically in hematopoietic tissues. Significantly, peripheral blood counts from TgPKR mice decrease with age in association with dysplastic marrow changes. TgPKR mice have reduced colony-forming capacity and the colonies also are more sensitive to hematopoietic stresses. Furthermore, TgPKR mice have fewer hematopoietic stem/progenitor cells (HSPCs), and the percentage of quiescent (G0) HSPCs is increased. Importantly, treatment of TgPKR bone marrow (BM) with a PKR inhibitor specifically rescues sensitivity to growth factor deprivation. In contrast, marrow from PKR knockout (PKRKO) mice has increased potential for colony formation and HSPCs are more actively proliferating and resistant to stress. Significantly, TgPKR HSPCs have increased expression of p21 and IFN regulatory factor, whereas cells from PKRKO mice display mechanisms indicative of proliferation such as reduced eukaryotic initiation factor 2α phosphorylation, increased extracellular signal-regulated protein kinases 1 and 2 phosphorylation, and increased CDK2 expression. Collectively, data reveal that PKR is an unrecognized but important regulator of HSPC cell fate and may play a role in the pathogenesis of BM failure.
Collapse
|
33
|
Mavroudi I, Papadaki HA. The role of CD40/CD40 ligand interactions in bone marrow granulopoiesis. ScientificWorldJournal 2011; 11:2011-9. [PMID: 22125452 PMCID: PMC3217605 DOI: 10.1100/2011/671453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/05/2011] [Indexed: 12/14/2022] Open
Abstract
The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor superfamily, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G-CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syndrome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granulocytic progenitor cell depletion, providing thus a pathogenetic cause of CIN.
Collapse
Affiliation(s)
- Irene Mavroudi
- Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece
| | | |
Collapse
|
34
|
Ruvolo PP, Zhou L, Watt JC, Ruvolo VR, Burks JK, Jiffar T, Kornblau S, Konopleva M, Andreeff M. Targeting PKC-mediated signal transduction pathways using enzastaurin to promote apoptosis in acute myeloid leukemia-derived cell lines and blast cells. J Cell Biochem 2011; 112:1696-707. [PMID: 21360576 PMCID: PMC3394435 DOI: 10.1002/jcb.23090] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies in acute myeloid leukemia (AML) suggest activation of pro-proliferative signaling cascades including those mediated by protein kinase C (PKC) represent a poor prognostic factor for patients. The classical PKC isoforms α and β generally support survival signaling and have emerged as important targets for anti-cancer therapy. Enzastaurin is a PKC β inhibitor and is in clinical trials for lymphomas, gliomas, and lung cancer. Presently, it is not known if enzastaurin could be effective against AML. In the current study, we found that high dose enzastaurin was found to promote apoptosis in the AML-derived cell lines and in blast cells from AML patients. The mechanism of cell death, however, likely does not involve PKC β as another PKC β inhibitor was not toxic to AML cell lines and did not promote enzastaurin-induced cell killing. While enzastaurin is fairly specific for PKC β, the agent can inhibit other PKC isoforms at higher concentrations. Enzastaurin was effective at inhibiting PKC α phosphorylation and membrane localization in the AML cell lines and suppressed phosphorylation of BCL2. Furthermore, enzastaurin suppressed activation of ERK (which can be activated by PKC α). Analysis of the serine/threonine phosphorylation profile in HL60 cells after enzastaurin treatment revealed that the drug inhibits the phosphorylation of a distinct set of proteins while promoting phosphorylation of another set of proteins. This suggests the drug may regulate multiple signaling pathways. Taken together, these findings suggest that enzastaurin could be effective in the therapy of AML.
Collapse
Affiliation(s)
- Peter P. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Liran Zhou
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie C. Watt
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian R. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tilahun Jiffar
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood 2010; 115:3970-9. [PMID: 20203268 DOI: 10.1182/blood-2009-10-246967] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor growth factor independence 1 (Gfi1) and the growth factor granulocyte colony-stimulating factor (G-CSF) are individually essential for neutrophil differentiation from myeloid progenitors. Here, we provide evidence that the functions of Gfi1 and G-CSF are linked in the regulation of granulopoiesis. We report that Gfi1 promotes the expression of Ras guanine nucleotide releasing protein 1 (RasGRP1), an exchange factor that activates Ras, and that RasGRP1 is required for G-CSF signaling through the Ras/mitogen-activated protein/extracellular signal-regulated kinase (MEK/Erk) pathway. Gfi1-null mice have reduced levels of RasGRP1 mRNA and protein in thymus, spleen, and bone marrow, and Gfi1 transduction in myeloid cells promotes RasGRP1 expression. When stimulated with G-CSF, Gfi1-null myeloid cells are selectively defective at activating Erk1/2, but not signal transducer and activator of transcription 1 (STAT1) or STAT3, and fail to differentiate into neutrophils. Expression of RasGRP1 in Gfi1-deficient cells rescues Erk1/2 activation by G-CSF and allows neutrophil maturation by G-CSF. These results uncover a previously unknown function of Gfi1 as a regulator of RasGRP1 and link Gfi1 transcriptional control to G-CSF signaling and regulation of granulopoiesis.
Collapse
|
36
|
He WY, Lan Y, Yao HY, Li Z, Wang XY, Li XS, Zhang JY, Zhang Y, Liu B, Mao N. Interleukin-3 promotes hemangioblast development in mouse aorta-gonad-mesonephros region. Haematologica 2009; 95:875-83. [PMID: 20007140 DOI: 10.3324/haematol.2009.014241] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The hemangioblast is a bi-potential precursor cell with the capacity to differentiate into hematopoietic and vascular cells. In mouse E7.0-7.5 embryos, the hemangioblast can be identified by a clonal blast colony-forming cell (BL-CFC) assay or single cell OP9 co-culture. However, the ontogeny of the hemangioblast in mid-gestation embryos is poorly defined. DESIGN AND METHODS The BL-CFC assay and the OP9 system were combined to illustrate the hemangioblast with lymphomyeloid and vascular potential in the mouse aorta-gonad-mesonephros region. The colony-forming assay, reverse transcriptase polymerase chain reaction analysis, immunostaining and flow cytometry were used to identify the hematopoietic potential, and Matrigel- or OP9-based methods were employed to evaluate endothelial progenitor activity. RESULTS Functionally, the aorta-gonad-mesonephros-derived BL-CFC produced erythroid/myeloid progenitors, CD19(+) B lymphocytes, and CD3(+)TCRbeta(+) T lymphocytes. Meanwhile, the BL-CFC-derived adherent cells generated CD31(+) tube-like structures on OP9 stromal cells, validating the endothelial progenitor potential. The aorta-gonad-mesonephros-derived hemangioblast was greatly enriched in CD31(+), endomucin(+) and CD105(+) subpopulations, which collectively pinpoints the endothelial layer as the main location. Interestingly, the BL-CFC was not detected in yolk sac, placenta, fetal liver or embryonic circulation. Screening of candidate cytokines revealed that interleukin-3 was remarkable in expanding the BL-CFC in a dose-dependent manner through the JAK2/STAT5 and MAPK/ERK pathways. Neutralizing interleukin-3 in the aorta-gonad-mesonephros region resulted in reduced numbers of BL-CFC, indicating the physiological requirement for this cytokine. Both hematopoietic and endothelial differentiation potential were significantly increased in interleukin-3-treated BL-CFC, suggesting a persistent positive influence. Intriguingly, interleukin-3 markedly amplified primitive erythroid and macrophage precursors in E7.5 embryos. Quantitative polymerase chain reaction analysis demonstrated declined Flk-1 and elevated Scl and von Willebrand factor transcription upon interleukin-3 stimulation, indicating accelerated hemangiopoiesis. CONCLUSIONS The hemangioblast with lymphomyeloid potential is one of the precursors of definitive hematopoiesis in the mouse aorta-gonad-mesonephros region. Interleukin-3 has a regulatory role with regards to both the number and capacity of the dual-potential hemangioblast.
Collapse
Affiliation(s)
- Wen-Yan He
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009; 94:1016-9. [PMID: 19454491 DOI: 10.3324/haematol.2008.000299] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated CD123 expression in 95 pediatric and 24 adult ALL patients and compared the results with the CD123 expression in normal B-cell precursors. Early B-cell precursors were negative while intermediate precursors and mature B cells showed weak CD123 expression. Leukemic blasts in 31% of precursor-B ALL samples exhibited strong expression of CD123, 61% had moderate CD123 expression and 8% were negative; 81.5% of ALL with hyperdiploid karyotype (>/= 52 chromosomes) showed strong CD123 overexpression. In contrast, cases with ETV6/RUNX1 rearrangement had weak CD123 expression. Our study suggests that overexpression of CD123 is an aberrant phenotype present in a subset of precursor-B ALL with hyperdiploid genotype, and represents an additional marker of good prognosis in pediatric precursor-B ALL. Moreover, aberrant CD123 expression in ALL is a good marker for monitoring of minimal residual disease.
Collapse
Affiliation(s)
- Miroslav Djokic
- 1Department of Pathology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Schroeder JT, Chichester KL, Bieneman AP. Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:2432-8. [PMID: 19201898 DOI: 10.4049/jimmunol.0801782] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although IL-3 is commonly recognized for its growth factor-like activity, in vitro studies have long demonstrated a unique capacity for this cytokine to also augment the proinflammatory properties and phenotype of human basophils. In particular, basophils secrete mediators that are hallmarks in allergic disease, including vasoactive amines (e.g., histamine), lipid metabolites (e.g., leukotriene C(4)), and cytokines (e.g., IL-4/IL-13), which are all markedly enhanced with IL-3 pretreatment. This priming phenomenon is observed in response to both IgE-dependent and IgE-independent stimulation. Additionally, IL-3 directly activates basophils for IL-13 secretion and enhanced CD69 expression, two markers that are elevated in allergic subjects. Lymphocytes are commonly thought to be the source of the IL-3 that primes for these basophil responses. However, we demonstrate herein for the first time that basophils themselves rapidly produce IL-3 (within 4 h) in response to IgE-dependent activation. More importantly, our findings definitively show that basophils rapidly bind and utilize the IL-3 they produce, as evidenced by functional and phenotypic activity that is inhibited in the presence of neutralizing anti-IL-3 receptor (CD123) Abs. We predict that autocrine IL-3 activity resulting from low-level IgE/FcepsilonRI cross-linking by specific allergen represents an important mechanism behind the hyperreactive nature of basophils that has long been observed in allergic disease.
Collapse
Affiliation(s)
- John T Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology at Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
39
|
Chen YQ, Zhao CL, Li W. Effect of hypoxia-inducible factor-1alpha on transcription of survivin in non-small cell lung cancer. J Exp Clin Cancer Res 2009; 28:29. [PMID: 19245702 PMCID: PMC2663545 DOI: 10.1186/1756-9966-28-29] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/26/2009] [Indexed: 02/25/2023] Open
Abstract
Background Survivin is a structurally and functionally unique member of the inhibitor of apoptosis protein (IAP) family. It plays an important role, not only in regulating mitosis but also in inhibiting apoptosis. The current literature contains few reports on the transcriptional regulation of survivin expression in lung cancer. Methods In this study, we investigated the effect of hypoxia-inducible factor-1α (HIF-1α) on the transcriptional activity of the survivin promoter in non-small cell lung cancer (NSCLC). Immunohistochemical staining was used to detect the expression of survivin and HIF-1α in the lung tissue of 120 patients with non-small cell lung cancer (NSCLC) and 40 patients with benign pulmonary disease. We also performed experiments with the lung adenocarcinoma cell line A549 cells, which were cultured under hypoxic conditions. The expression of survivin and HIF-1α was detected by real-time RT-PCR and Western blotting. In the survivin promoter the putative binding-site for HIF-1α, is -19 bp~-16 bp upstream of TSS. We performed site-directed mutagenesis of this binding site, and used luciferase reporter plasmids to determine the relative activity of the survivin promoter in A549 cells. We also studied the effect of HIF-1α on the expression of survivin by dsRNA targeting of HIF-1α mRNA. Results HIF-1α (58.33%) and survivin (81.60%) were both over-expressed in NSCLC and their expressions correlated with one another. They were also expressed in A549 cells under normal and hypoxic conditions, with a significant increase under hypoxic conditions. Site directed mutagenesis of the putative binding site for HIF-1α in the survivin promoter significantly decreased the activity of the survivin promoter in A549 cells. Inhibition of HIF-1α by RNAi decreased the expression of survivin in A549 cell lines. Conclusion Our results indicate that the binding of HIF-1α to the survivin promoter increases transcription of the survivin gene. Thus, HIF-1α is an important transcriptional regulator of survivin expression
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Respiration, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China.
| | | | | |
Collapse
|
40
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22:686-707. [DOI: 10.1038/leu.2008.26] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
McCubrey JA, Sokolosky ML, Lehmann BD, Taylor JR, Navolanic PM, Chappell WH, Abrams SL, Stadelman KM, Wong EWT, Misaghian N, Horn S, Bäsecke J, Libra M, Stivala F, Ligresti G, Tafuri A, Milella M, Zarzycki M, Dzugaj A, Chiarini F, Evangelisti C, Martelli AM, Terrian DM, Franklin RA, Steelman LS. Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. ACTA ACUST UNITED AC 2008; 48:113-35. [PMID: 18423407 DOI: 10.1016/j.advenzreg.2008.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1263-84. [PMID: 17126425 PMCID: PMC2696318 DOI: 10.1016/j.bbamcr.2006.10.001] [Citation(s) in RCA: 1743] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Leo Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shelton JG, Steelman LS, Abrams SL, Bertrand FE, Franklin RA, McMahon M, McCubrey JA. The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it? Expert Opin Ther Targets 2007; 9:1009-30. [PMID: 16185155 DOI: 10.1517/14728222.9.5.1009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past 30 years, a relatively simple growth factor and its cognate receptor have provided seminal insights into the understanding of the genetic basis of cancer, as well as growth factor signalling. The epidermal growth factor (EGF), its cognate receptor (EGFR) and related family members have been shown to be important in normal, as well as the malignant growth of many cell types including: glioblastomata, astrocytomas, medulloblastomata, non-small cell lung carcinoma (NSCLC) and breast cancer. This review summarises the history of the EGFR gene and the v-ErbB oncogene, as well as diverse approaches developed to inhibit EGFR activity. The two most advanced therapies use either small-molecule cell membrane permeable kinase inhibitors or antibodies which prevent receptor activation. Recent clinical trials indicate that certain NSCLC patients have mutations in the EGFR gene which makes them more responsive to kinase inhibitors. These mutations appear to enhance the ability of the ligand to activate EGFR activity and also prolong the binding of the EGFR inhibitor to the kinase domain. Evidence to date suggests that these EGFR mutations in NSCLC occur more frequently in Japan than in the western hemisphere. Although these mutations are correlated with enhanced efficacy to the inhibitors in NSCLC, they can not explain or predict the sensitivity of many other cancer patients to the beneficial effects of the EGFR kinase inhibitors or antibody mediated therapy. As with as other small-molecule kinase inhibitors and susceptible diseases (e.g., imatinib and chronic myeloid leukaemia), resistance to EGFR inhibitors has been reported recently, documenting the requirement for development of multi-pronged therapeutic approaches. EGFR kinase inhibitors are also being evaluated as adjuvants in hormonal therapy of breast cancer - especially those which overexpress EGFR. Genetically engineered antibodies specific for the EGFR family member ErbB2 have been developed which show efficacy in the treatment of primary, and prevent the relapse of, breast cancer. Clearly, the EGF/EGFR signalling cascade has, and continues to play, an important role in the development of novel anticancer targeted therapies.
Collapse
Affiliation(s)
- John G Shelton
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D'Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. ACTA ACUST UNITED AC 2006; 46:249-79. [PMID: 16854453 DOI: 10.1016/j.advenzreg.2006.01.004] [Citation(s) in RCA: 486] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip-1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip-1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kiser KF, Colombi M, Moroni C. Isolation and characterization of dominant and recessive IL-3-independent hematopoietic transformants. Oncogene 2006; 25:6595-603. [PMID: 16702946 DOI: 10.1038/sj.onc.1209673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Retroviral integration mutagenesis and treatment with the frameshift mutagen ICR191 were used to transform v-H-ras expressing PB-3c cells to interleukin-3 (IL-3) independence. Six clones displayed viral integrations into the 3' region of the IL-3 gene thus acting post-transcriptionally by disrupting the AU-rich instability element. Two clones contained reverse orientation integration into the raf-1 gene revealing an enhancer insertion mechanism. Growth by this mechanism was sensitive to the Raf-1 inhibitor BAY 43-9006 and the Mek inhibitor U0126. Following treatment with ICR191, IL-3-independent clones were recovered and studied by cell fusion. With 21/22 clones, IL-3 independence resulted from a recessive mechanism as cellular hybrids with parental cells reverted to IL-3 dependence. Recessive clone D2c displayed increased phospho-Erk1/2 levels and was growth sensitive to U0126, but not to BAY43-9006. The single dominant clone, D5a, showed no signs of mitogen-activated protein kinases pathway activation but displayed constitutive phosphorylation of Stat5. We conclude that PB-3c has several options to acquire IL-3 growth autonomy involving transcriptional or post-transcriptional mechanisms affecting the distal regulators Erk or Stat5. The reported panel of independent dominant and recessive transformants should provide a useful tool for inhibitor profiling.
Collapse
Affiliation(s)
- K F Kiser
- Institute for Medical Microbiology, Department of Clinical-Biological Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
48
|
Konopleva M, Contractor R, Kurinna SM, Chen W, Andreeff M, Ruvolo PP. The novel triterpenoid CDDO-Me suppresses MAPK pathways and promotes p38 activation in acute myeloid leukemia cells. Leukemia 2005; 19:1350-4. [PMID: 15931262 DOI: 10.1038/sj.leu.2403828] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of novel therapeutic strategies is a continuing challenge for the treatment of acute myeloid leukemia (AML). The novel triterpenoid, C-28 methyl ester of 2-cyano-3,12-dioxoolen-1,9-dien-28-oic acid (CDDO-Me), induces apoptosis in myeloid leukemic cell lines and in primary AML samples. In this report, the effects of CDDO-Me on CD34(+) AML progenitor cells in vitro were examined. CDDO-Me induced apoptosis in all but one of ten AML samples. CDDO-Me is known to inhibit the activation of ERK1/2. In this series of primary AML samples, ERK was expressed and phosphorylated in all patient samples studied and CDDO-Me inhibited ERK phosphorylation in five of 10 samples. However, CDDO-Me induced apoptosis in four of five samples without decreasing pERK levels, suggesting that pERK is not the sole target of the compound. CDDO-Me induced phosphorylation of p38 in AML-derived U937 cells. Pretreatment of U937 cells with a p38 inhibitor protected cells from the cyto-toxic effects of CDDO-Me. These findings suggest a role for p38 in CDDO-Me-induced apoptosis. In preliminary studies, CDDO-Me induced p38 phosphorylation in seven of eight primary AML samples. These findings suggest that CDDO-Me treatment shifts cell signaling away from cyto-protective pathways and thus CDDO-Me may be effective for the treatment of AML.
Collapse
Affiliation(s)
- M Konopleva
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
49
|
McCubrey JA, Shelton JG, Steelman LS, Franklin RA, Sreevalsan T, McMahon M. Effects of a conditionally active v-ErbB and an EGF-R inhibitor on transformation of NIH-3T3 cells and abrogation of cytokine dependency of hematopoietic cells. Oncogene 2004; 23:7810-20. [PMID: 15361836 DOI: 10.1038/sj.onc.1208055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor (EGF) and its cognate receptor (EGF-R) are often dysregulated in human neoplasia. Moreover, EGF-R-transformed cell lines have constitutive EGF-R activity, which makes elucidation of its effects difficult to determine. In the following studies, the effects of a novel conditionally activated form of EGF-R, v-ErbB:ER, on the morphological transformation of NIH-3T3 cells and the abrogation of hematopoietic cell cytokine dependence were investigated. The v-ErbB ES-4 oncogene was fused to the hormone binding domain of the estrogen receptor (ER). This construct, v-ErbB:ER, requires beta-estradiol or 4-OH tamoxifen for activation. v-ErbB:ER conditionally transformed NIH-3T3 cells and abrogated cytokine dependence of hematopoietic cells. Stimulation of v-ErbB:ER activity resulted in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and Raf/MEK/ERK kinase cascades. To determine the importance of these signal transduction pathways, the conditionally transformed hematopoietic cells were treated with EGF-R, PI3K and MEK inhibitors. The EGF-R inhibitor AG1478 effectively inhibited MEK, ERK and Akt activation, and induced apoptosis when the cells were grown in response to v-ErbB:ER. Apoptosis was observed at 100- to 1000-fold lower concentrations of AG1478 when the cells were grown in response to v-ErbB:ER as opposed to IL-3. Furthermore, the parental, BCR-ABL- and Raf-transformed cells were only susceptible to the apoptosis-inducing effects of AG1478 at the highest concentrations demonstrating the specificity of these inhibitors. MEK or PI3K inhibitors suppressed ERK or Akt activation, respectively, and induced apoptosis in the v-ErbB:ER-responsive cells. However, MEK and PI3K inhibitors only induced apoptosis at 1000-fold higher concentrations than the EGFR inhibitor. This novel v-ErbB:ER construct and these conditionally transformed cell lines will be useful to further elucidate ErbB-mediated signal transduction and to determine the effectiveness of various inhibitors in targeting different aspects of EGF-R-mediated signal transduction and malignant transformation.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bennett RL, Blalock WL, May WS. Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem 2004; 279:42687-93. [PMID: 15299031 DOI: 10.1074/jbc.m403321200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is now apparent that the double-stranded (ds)RNA-dependent protein kinase, PKR, is a regulator of diverse cellular responses to stress. Recently, the murine dsRNA-binding protein RAX and its human ortholog PACT were identified as cellular activators of PKR. Previous reports demonstrate that following stress, RAX/PACT associates with and activates PKR resulting in eIF2alpha phosphorylation, consequent translation inhibition, and cell death via apoptosis. Although RAX/PACT is phosphorylated during stress, any regulatory role for this post-translational modification has been uncertain. Now we have discovered that RAX is phosphorylated on serine 18 in both human and mouse cells. The non-phosphorylatable form of RAX, RAX(S18A), although still able to bind dsRNA and associate with PKR, fails to activate PKR following stress. Furthermore, stable expression of RAX(S18A) results in a dominant-negative effect characterized by deficiency of eukaryotic initiation factor 2 alpha subunit phosphorylation, delay of translation inhibition, and failure to undergo rapid apoptosis following removal of interleukin-3. We propose that the ability of RAX to activate PKR is regulated by a sequential mechanism featuring RAX association with PKR, RAX phosphorylation at serine 18, and activation of PKR.
Collapse
Affiliation(s)
- Richard L Bennett
- University of Florida College of Medicine, Shands Cancer Center, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|