1
|
Zhang Y, Liu H, Wang K, Zheng J, Luan H, Xin M. RET Inhibitor SPP86 Triggers Apoptosis and Activates the DNA Damage Response Through the Suppression of Autophagy and the PI3K/AKT Signaling Pathway in Melanoma Cells. Drug Des Devel Ther 2025; 19:67-82. [PMID: 39803607 PMCID: PMC11724630 DOI: 10.2147/dddt.s473390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Background Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood. Thus, this study aims to explore the effects of SPP86 on autophagy and to elucidate its association with cell proliferation, apoptosis, and DNA damage in melanoma cells. Methods This study assessed the anti-tumor effects of SPP86 on cell viability, colony formation, apoptosis, and DNA damage in two melanoma cell lines, A375 and A2058. Concurrently, the underlying mechanisms, including the PI3K/AKT signaling pathway and autophagy modulation, were also elucidated. Results The study demonstrated that SPP86 exerts anti-tumor effects in melanoma cells through multiple mechanisms: it induces apoptosis, causes DNA damage, inhibits cell proliferation, and suppresses the PI3K/AKT signaling pathway. Importantly, the inhibition of autophagy appears to be a critical component of SPP86' s mode of action, with the modulation of autophagic processes influencing the cytotoxicity against melanoma cells. Conclusion These promising findings suggest that SPP86 is a potential drug candidate for the treatment of melanoma, warranting further research and development.
Collapse
Affiliation(s)
- Yuli Zhang
- Department of Dermatology, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Haidong Liu
- Department of Dermatology, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China
| | - Kun Wang
- Department of Endocrinology and Metabology, Liaocheng People’s Hospital, Liaocheng, Liaocheng, Shandong, People’s Republic of China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China
| | - Hong Luan
- Department of Dermatology, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China
| | - Ming Xin
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Han NR, Park HJ, Ko SG, Moon PD. Naringenin, a Food Bioactive Compound, Reduces Oncostatin M Through Blockade of PI3K/Akt/NF-κB Signal Pathway in Neutrophil-like Differentiated HL-60 Cells. Foods 2025; 14:102. [PMID: 39796391 PMCID: PMC11719654 DOI: 10.3390/foods14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells. To assess the modulatory effect of NAR, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assay were employed. While exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) induced elevated OSM release and mRNA expression, the elevated OSM release and mRNA expression were diminished by the addition of NAR in dHL-60 cells. While the phosphorylation of phosphatidylinositol 3-kinase, protein kinase B (Akt), and nuclear factor (NF)-κB was upregulated by exposure to GM-CSF, the upregulated phosphorylation was inhibited by the addition of NAR in dHL-60 cells. Consequently, the results indicate that the food bioactive compound NAR may have a positive effect on health (in health promotion and improvement) or may play a role in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Anazawa M, Ashibe S, Nagao Y. Gene expression levels in cumulus cells are correlated with developmental competence of bovine oocytes. Theriogenology 2025; 231:11-20. [PMID: 39389001 DOI: 10.1016/j.theriogenology.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The generation of mammalian embryos by in vitro culture is hampered by the failure of many of the embryos to develop to the blastocyst stage. This problem occurs even when cumulus-oocyte complexes (COCs) with good morphology are visually selected and used for culture. Because cumulus cells are important for oocyte maturation and subsequent embryo development, here we compared gene expression patterns in cumulus cells of COCs that developed in vitro to the blastocyst stage with those of COCs that failed to develop. Cumulus cells were aspirated from bovine COCs selected for in vitro culture. Oocyte developmental competence was evaluated by screening for cleavage and development to the blastocyst stage. The collected cumulus cells were used to quantify mRNA levels of FSH receptor (FSHR), insulin-like growth factor-1 receptor (IGF-1R), anti-Müllerian hormone (AMH), AMH receptor II (AMHRII), epidermal growth factor receptor (EGFR), estrogen receptor β (ERβ), B cell lymphoma/leukemia-2 associated X (Bax), and cysteine-aspartic acid protease-3 (Caspase-3). We found that the expression levels of FSHR, IGF-1R, AMH, and EGFR were higher in cumulus cells from COCs that developed to blastocysts as compared with those that failed to develop, whereas expression levels of Bax and Caspase-3 were lower in cumulus cells of COCs that matured to the blastocyst stage. Positive correlations were found between FSHR and IGF-1R expression (r = 0.59) and between ERβ and EGFR expression (r = 0.43) in cumulus cells from COCs that developed to the blastocyst stage. Our findings indicate that gene expression levels in cumulus cells are correlated with the developmental competence of bovine oocytes. Measurement of gene expression in cumulus cells therefore offers a non-invasive means of predicting oocyte developmental competence.
Collapse
Affiliation(s)
- Mayuko Anazawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Yang QT, Wu RX, Liang YS, Niu SF, Miao BB, Liang ZB, Shen YX. Liver transcriptome changes in pearl gentian grouper in response to acute high-temperature stress. AQUACULTURE 2024; 593:741336. [DOI: 10.1016/j.aquaculture.2024.741336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
6
|
Kumari L, Yadav R, Kumar Y, Bhatia A. Role of tight junction proteins in shaping the immune milieu of malignancies. Expert Rev Clin Immunol 2024; 20:1305-1321. [PMID: 39126381 DOI: 10.1080/1744666x.2024.2391915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Tight junctions (TJs) and their constituent proteins play pivotal roles in cellular physiology and anatomy by establishing functional boundaries within and between neighboring cells. While the involvement of TJ proteins, such as claudins, in cancer is extensively studied, studies highlighting their interaction with immune system are still meager. Studies indicate that alterations in cytokines and immune cell populations can affect TJ proteins, compromising TJ barrier function and exacerbating pro-inflammatory conditions, potentially leading to epithelial cell malignancy. Disrupted TJs in established tumors may foster a pro-tumor immune microenvironment, facilitating tumor progression, invasion, epithelial-to-mesenchymal transition and metastasis. Although previous literature contains many studies describing the involvement of TJs in pathogenesis of malignancies their role in modulating the immune microenvironment of tumors is just beginning to be unleashed. AREAS COVERED This article for the first time attempts to discern the importance of interaction between TJs and immune microenvironment in malignancies. To achieve the above aim a thorough search of databases like PubMed and Google Scholar was conducted to identify the recent and relevant articles on the topic. EXPERT OPINION Breaking the vicious cycle of dysbiosis/infections/chemical/carcinogen-induced inflammation-TJ remodeling-malignancy-TJ dysregulation-more inflammation can be used as a strategy to complement the effect of immunotherapies in various malignancies.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
7
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
8
|
Chen C, Wang X, Fang W, Liang J, Cai J, Yang D, Luo X, Gao C, Yi X, Liu Y, Zhou X. Talaketides A-G, linear polyketides with prostate cancer cytotoxic activity from the mangrove sediment-derived fungus Talaromyces sp. SCSIO 41027. Chin J Nat Med 2024; 22:1047-1056. [PMID: 39510637 DOI: 10.1016/s1875-5364(24)60659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 11/15/2024]
Abstract
Seven novel linear polyketides, talaketides A-G (1-7), were isolated from the rice media cultures of the mangrove sediment-derived fungus Talaromyces sp. SCSIO 41027. Among these, talaketides A-E (1-5) represented unprecedented unsaturated linear polyketides with an epoxy ring structure. The structures, including absolute configurations of these compounds, were elucidated through detailed analyses of nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HR-MS) data, as well as electronic custom distributors (ECD) calculations. In the cytotoxicity screening against prostate cancer cell lines, talaketide E (5) demonstrated a dose-dependent inhibitory effect on prostate cancer PC-3 cell lines, with an IC50 value of 14.44 μmol·L-1 . Moreover, compound 5 significantly inhibited the cloning formation of PC-3 cell lines and arrested the cell cycle in S-phase, ultimately inducing apoptosis. These findings indicate that compound 5 may serve as a promising lead compound for the development of a potential treatment for prostate cancer.
Collapse
Affiliation(s)
- Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Wenxuan Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiaqi Liang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiangxi Yi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
9
|
Feng Z, Wei W, Wang S, Li X, Zhao L, Wan G, Hu R, Yu L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem Pharmacol 2024; 229:116461. [PMID: 39102992 DOI: 10.1016/j.bcp.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Ovarian cancer (OC) is the deadliest form of the gynecologic malignancies and effective therapeutic drugs are urgently needed. Focal adhesion kinase (FAK) is overexpressed in various solid tumors, and could serve as a potential biomarker of ovarian cancer. However, there are no launched drugs targeting FAK. Hence, the development of the novel FAK inhibitors is an emerging approach for the treatment of ovarian cancer. In this work, we characterized a selective FAK inhibitor E2, with a high inhibitory potency toward FAK. Moreover, E2 had cytotoxic, anti-invasion and anti-migration activity on ovarian cancer cells. Mechanistically, after treatment with E2, FAK downstream signaling cascades (e.g., Src and AKT) were suppressed, thus resulting in the ovarian cancer cell arrest at G0/G1 phase and the induction of cytotoxic autophagy. In addition, E2 attenuated the tumor growth of PA-1 and ES-2 ovarian cancer subcutaneous xenografts, as well as suppressed peritoneal metastasis of OVCAR3-luc. Furthermore, E2 exhibited favorable pharmacokinetic properties. Altogether, these findings demonstrate that E2 is a selective FAK inhibitor with potent anti-ovarian cancer activities both in vivo and in vitro, offering new possibilities for OC treatment strategies.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Golla U, Patel S, Shah N, Talamo S, Bhalodia R, Claxton D, Dovat S, Sharma A. From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies. Cancers (Basel) 2024; 16:3454. [PMID: 39456548 PMCID: PMC11506385 DOI: 10.3390/cancers16203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Drug repurposing is a strategy to discover new therapeutic uses for existing drugs, which have well-established toxicity profiles and are often more affordable. This approach has gained significant attention in recent years due to the high costs and low success rates associated with traditional drug development. Drug repositioning offers a more time- and cost-effective path for identifying new treatments. Several FDA-approved non-chemotherapy drugs have been investigated for their anticancer potential. Among these, anthelmintic benzimidazoles (such as albendazole, mebendazole, and flubendazole) have garnered interest due to their effects on microtubules and oncogenic signaling pathways. Blood cancers, which frequently develop resistance and have high mortality rates, present a critical need for effective therapies. This review highlights the recent advances in repurposing benzimidazoles for blood malignancies. These compounds induce cell cycle arrest, differentiation, tubulin depolymerization, loss of heterozygosity, proteasomal degradation, and inhibit oncogenic signaling to exert their anticancer effects. We also discuss current limitations and strategies to overcome them, emphasizing the potential of combining benzimidazoles with standard therapies for improved treatment of hematological cancers.
Collapse
Affiliation(s)
- Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nyah Shah
- Department of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Stella Talamo
- Department of Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA;
| | - Riya Bhalodia
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
11
|
Zhu X, Si Y, Gai C, Li Z. Investigating the molecular mechanisms of Fuzheng Yiliu Shenji prescription in SH-SY5Y neuroblastoma cells. Front Oncol 2024; 14:1447666. [PMID: 39319058 PMCID: PMC11420165 DOI: 10.3389/fonc.2024.1447666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor in childhood. Fuzheng Yiliu Shenji Prescription (FYSP) has shown potential in treating malignant pediatric tumors in clinical settings. This study aims to explore the molecular mechanisms behind its effects, specifically in the context of neuroblastoma cell lines. Objective To elucidate the active compounds in FYSP and their mechanisms of action in inhibiting neuroblastoma cell viability, inducing apoptosis, and affecting the cell cycle in SH-SY5Y cells through network pharmacology and empirical validation. Materials and methods We identified the major compounds in FYSP and their predicted targets, constructing a protein-protein interaction (PPI) network and performing GO and KEGG pathway analyses. The effects of FYSP were empirically validated through assays on cell viability, cell cycle, apoptosis, and protein expression in SH-SY5Y cells. Results The study identified 172 active chemical components in FYSP, with 188 common targets related to neuroblastoma. Network analysis highlighted the PI3K-Akt pathway as a significant target. Experimental validation in SH-SY5Y cells confirmed that FYSP could inhibit cell viability, induce G2/M cell cycle arrest, and promote apoptosis through modulation of the PI3K-Akt pathway, specifically upregulating caspase-3 and downregulating Bcl-2/Bax expression. Conclusion The study elucidates the molecular basis of FYSP's effects on neuroblastoma cells in vitro, demonstrating its ability to modulate key pathways involved in cell cycle and apoptosis. While these findings suggest a potential therapeutic role for FYSP, they are limited to in vitro observations, and further research, including in vivo studies, is necessary to explore its clinical applicability.
Collapse
Affiliation(s)
- Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinchu Si
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Li
- Department of Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Huang CG, Zhou XQ, Zheng AF, Luo X, Shen J, Xiao ZG, Yang ZH, Dai Q. eIF6 Promotes Gastric Cancer Proliferation and Invasion by Regulating Cell Cycle. Dig Dis Sci 2024; 69:3249-3260. [PMID: 38987443 PMCID: PMC11415431 DOI: 10.1007/s10620-024-08464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To investigate the role and function of eIF6 in gastric cancer (GC). METHODS The expression level of eIF6 in GC tissues and normal tissues was detected in different high-throughput sequencing cohorts. Survival analysis, gene differential analysis, and enrichment analysis were performed in the TCGA cohort. Biological networks centered on eIF6 were constructed through two different databases. Immunohistochemistry (IHC) and Western blot were used to detect protein expression of eIF6, and qRT-PCR was used to detect eIF6 mRNA expression. The correlation between the expression of eIF6 in GC tissues and clinicopathological parameters of GC was analyzed. siRNA knockout of eIF6 was used to study the proliferation, migration, and invasion. The effects of eIF6 on cell cycle and Cyclin B1 were detected by flow cytometry and Western blot. RESULTS eIF6 was significantly overexpressed in GC tissues and predicted poor prognosis. In addition, 113 differentially expressed genes were detected in cancer-related biological pathways and functions by differential analysis. Biological networks revealed interactions of genes and proteins with eIF6. The expression intensity of eIF6 in cancer tissues was higher than that in adjacent tissues (P = 0.0001), confirming the up-regulation of eIF6 expression in GC tissues. The expression level of eIF6 was statistically significant with pTNM stage (P = 0.006). siRNA knockout of eIF6 significantly reduced the proliferation, colony formation, migration, and invasion ability of GC cells. Silencing of eIF6 also inhibited the cell cycle of GC cells in G2/M phase and decreased the expression level of CyclinB1. CONCLUSION Our study suggests that eIF6 is up-regulated in GC and may promote the proliferation, migration, and invasion of GC by regulating cell cycle.
Collapse
Affiliation(s)
- Cong-Gai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, People's Republic of China
| | - Xiao-Qing Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - An-Fu Zheng
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Xing Luo
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Shen
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Zhan-Gang Xiao
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Zhi-Hui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, People's Republic of China
| | - Qiong Dai
- Department of Human Anatomy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Li H, Fan S, Gong Z, Chan JYK, Tong MCF, Chen GG. Role of hematological and neurological expressed 1 (HN1) in human cancers. Crit Rev Oncol Hematol 2024; 201:104446. [PMID: 38992849 DOI: 10.1016/j.critrevonc.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Hematological and neurological expressed 1 (HN1), also known as Jupiter microtubule associated homolog 1 (JPT1), is a highly conserved protein with widespread expression in various tissues. Ectopic elevation of HN1 has been observed in multiple cancers, highlighting its role in tumorigenesis and progression. Both proteomics and transcriptomics reveal that HN1 is closely associated with severe disease progression, poor prognostic and shorter overall survival. HN1's involvement in cancer cell proliferation and metastasis has been extensively investigated. Overexpression of HN1 is associated with increased tumor growth and disease progression, while its depletion leads to cell cycle arrest and apoptosis. The pivotal role of HN1 in cancer progression, particularly in proliferation, migration, and invasion, underscores its significance in cancer metastasis. Validation of the efficacy and safety of HN1 inhibition, along with the development of diagnostic methods to determine HN1 expression levels in patients, is essential for the translation of HN1-targeted therapies into clinical practice. Overall, HN1 emerges as a valuable prognostic marker and therapeutic target in cancer, and further investigations hold the potential to improve patient outcomes by impeding metastasis and enhancing treatment strategies.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
15
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Lee CH, Shin S, Lee SI. 10-Eicosanol Alleviates Patulin-Induced Cell Cycle Arrest and Apoptosis by Activating AKT (Protein Kinase B) in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2024; 25:8597. [PMID: 39201284 PMCID: PMC11354308 DOI: 10.3390/ijms25168597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Patulin (PAT) is a fungal toxin prevalent in apples and apple products and associated with several toxic effects, potentially harming multiple organs, including the kidneys, liver, and colon. However, the precise molecular mechanism through which PAT affects the intestines remains comprehensively unclear. Therefore, this study aims to investigate the molecular effects of PAT on the intestinal epithelium. Gene expression profiling was conducted, hypothesizing that PAT induces cell cycle arrest and apoptosis through the PI3K-Akt signaling pathway. Cell cycle analysis, along with Annexin-V and propidium iodide staining, confirmed that PAT induced G2/M phase arrest and apoptosis in IPEC-J2 cells. Additionally, PAT activated the expression of cell cycle-related genes (CDK1, CCNB1) and apoptosis-related genes (BCL6, CASP9). Treatment with SC79, an AKT activator, mitigated cell cycle arrest and apoptosis. To identify natural products that could mitigate the harmful effects of PAT in small intestinal epithelial cells in pigs, the high-throughput screening of a natural product library was conducted, revealing 10-Eicosanol as a promising candidate. In conclusion, our study demonstrates that 10-Eicosanol alleviates PAT-induced cell cycle arrest and apoptosis in IPEC-J2 cells by activating AKT.
Collapse
Affiliation(s)
- Chae Hyun Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
17
|
Li P, Ma X, Gu X. The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors. Front Cell Dev Biol 2024; 12:1442193. [PMID: 39161590 PMCID: PMC11330846 DOI: 10.3389/fcell.2024.1442193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
18
|
Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, Taher M, Haris MS, Alshwyeh HA, Alosaimi AA, Mediani A, Ilowefah MA, Islami D, Mohd Faudzi SM, Fasihi Mohd Aluwi MF, Wai LK, Rullah K. A novel chromone-based as a potential inhibitor of ULK1 that modulates autophagy and induces apoptosis in colon cancer. Future Med Chem 2024; 16:1499-1517. [PMID: 38949858 PMCID: PMC11370956 DOI: 10.1080/17568919.2024.2363668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck6020, Austria
| | - Utid Suriya
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Suet Lin Chia
- UPM – MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Areej A Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi43600, Malaysia
| | | | - Deri Islami
- Faculty of Pharmacy & Health Sciences, Universitas Abdurrab, Jalan Riau Ujung, Pekanbaru28292, Riau, Indonesia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| | | | - Lam Kok Wai
- Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur50300, Malaysia
| | - Kamal Rullah
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| |
Collapse
|
19
|
Saiprasad G, Chitra P, Manikandan R, Koodalingam A, Sudhandiran G. Hesperetin regulates PI3K/Akt and mTOR pathways to exhibit its antiproliferative effect against colon cancer cells. Biotech Histochem 2024; 99:287-304. [PMID: 39172499 DOI: 10.1080/10520295.2024.2382764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Hesperetin, a citrus flavonoid, has been a widely studied anticancer agent against many types of cancers, but the exact mechanism of efficacy is still unrevealed. Therefore, this study has attempted to delineate the mechanical aspect of hesperetin's anticancer efficacy against colon cancer using immunoblotting, scanning, and transmission electron microscopic studies. The treatment with hesperetin (25 and 50 µM) has significantly (p < 0.0001) curbed down the proliferation and cell viability of HCT-15 cells in a concentration as well as time dependent manner. Hesperetin was able to achieve this through the induction of caspase-dependent apoptosis. Moreover, hesperetin effectively inhibited phosphorylation of Akt with a parallel increase in PTEN expression thereby inhibiting the PI3K signaling axis, which contributes to the suppression of proliferation. In addition, hesperetin enhanced autophagy through dephosphorylating mTOR, one of the downstream targets of Akt with simultaneous acceleration in Beclin-1 and LC3-II expression levels. Interestingly, hesperetin enhanced the effects of Akt inhibitor LY294002 and mTOR inhibitor rapamycin. This study documented the potential of hesperetin to induce apoptosis through simultaneous acceleration over the autophagic process in colon cancer cells. Thus, hesperetin played a beneficial therapeutic role in preventing colon carcinoma growth by regulating the Akt and mTOR signaling axis.
Collapse
Affiliation(s)
- Gowrikumar Saiprasad
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| | - Palanivel Chitra
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| | | | | | - Ganaspasam Sudhandiran
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| |
Collapse
|
20
|
Zhang P, Luo W, Zhang Z, Lv M, Sang L, Wen Y, Wang L, Ding C, Wu K, Li F, Nie Y, Zhu J, Liu X, Yi Y, Ding X, Zeng Y, Liu Z. A Lipid-Sensitive Spider Peptide Toxin Exhibits Selective Anti-Leukemia Efficacy through Multimodal Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404937. [PMID: 38962935 PMCID: PMC11348133 DOI: 10.1002/advs.202404937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.
Collapse
Affiliation(s)
- Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Wu Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- College of BiologyHunan UniversityChangshaHunan410082China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Mingchong Lv
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Longkang Sang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yuhan Wen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Lingxiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Changhao Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Kun Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yueqi Nie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Jiaoyue Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Xiaofeng Liu
- Department of HematologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yan Yi
- Department of HematologyThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510630China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of ResourcesHunan Normal UniversityChangshaHunan410081China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| |
Collapse
|
21
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
22
|
Li C, Zhang ED, Ye Y, Xiao Z, Huang H, Zeng Z. Association of mitochondrial phosphoenolpyruvate carboxykinase with prognosis and immune regulation in hepatocellular carcinoma. Sci Rep 2024; 14:14051. [PMID: 38890507 PMCID: PMC11189538 DOI: 10.1038/s41598-024-64907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.
Collapse
Affiliation(s)
| | | | - Youzhi Ye
- Kunming Medical University, Kunming, China
| | | | - Hanfei Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| | - Zhong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
23
|
Fleming SA, Reyes SM, Donovan SM, Hernell O, Jiang R, Lönnerdal B, Neu J, Steinman L, Sørensen ES, West CE, Kleinman R, Wallingford JC. An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy. Front Nutr 2024; 11:1404303. [PMID: 38919388 PMCID: PMC11197938 DOI: 10.3389/fnut.2024.1404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
Collapse
Affiliation(s)
| | | | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Olle Hernell
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, United States
| | - Lawrence Steinman
- Departments of Pediatrics and of Neurology and Neurological Sciences, Interdepartmental Program in Immunology, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina E. West
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Ronald Kleinman
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
24
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Bennett JJR, Stern AD, Zhang X, Birtwistle MR, Pandey G. Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events. NPJ Syst Biol Appl 2024; 10:65. [PMID: 38834572 PMCID: PMC11150372 DOI: 10.1038/s41540-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.
Collapse
Affiliation(s)
- Jamie J R Bennett
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Zhang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2024:S2090-1232(24)00181-4. [PMID: 38729561 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
27
|
Wang Y, Zheng J, Xiao X, Feng C, Li Y, Su H, Yuan D, Wang Q, Huang P, Jin L. Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis through PI3K/Akt Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:433-451. [PMID: 38577825 DOI: 10.1142/s0192415x24500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the leading cause of death worldwide. Ginsenoside Rd (GRd) has cardioprotective properties but its efficacy and mechanism of action in myocardial I/R injury have not been clarified. This study investigated GRd as a potent therapeutic agent for myocardial I/R injury. Oxygen-glucose deprivation and reperfusion (OGD/R) and left anterior descending (LAD) coronary artery ligation were used to establish a myocardial I/R injury model in vitro and in vivo. In vivo, GRd significantly reduced the myocardial infarct size and markers of myocardial injury and improved the cardiac function in myocardial I/R injury mice. In vitro, GRd enhanced cell viability and protected the H9c2 rat cardiomyoblast cell line from OGD-induced injury GRd. The network pharmacology analysis predicted 48 potential targets of GRd for the treatment of myocardial I/R injury. GO and KEGG enrichment analysis indicated that the cardioprotective effects of GRd were closely related to inflammation and apoptosis mediated by the PI3K/Akt signaling pathway. Furthermore, GRd alleviated inflammation and cardiomyocyte apoptosis in vivo and inhibited OGD/R-induced apoptosis and inflammation in cardiomyocytes. GRd also increased PI3K and Akt phosphorylation, suggesting activation of the PI3K/Akt pathway, whereas LY294002, a PI3K inhibitor, blocked the GRd-induced inhibition of OGD/R-induced apoptosis and inflammation in H9c2 cells. The therapeutic effect of GRd in vivo and in vitro against myocardial I/R injury was primarily dependent on PI3K/Akt pathway activation to inhibit inflammation and cardiomyocyte apoptosis. This study provides new evidence for the use of GRd as a cardiovascular drug.
Collapse
Affiliation(s)
- Yuanping Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Jiading Zheng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Xieyang Xiao
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Cailing Feng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Yinghong Li
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Hui Su
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Ding Yuan
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Qinghai Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Peihong Huang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Lili Jin
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| |
Collapse
|
28
|
McCarty KJ, DeCarlo AN, Ricks RE, Pratt SL, Long NM. Effects of maternal nutrient restriction during gestation on bovine serum microRNA abundance. Anim Reprod Sci 2024; 263:107435. [PMID: 38401394 DOI: 10.1016/j.anireprosci.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
The objective was to determine the effects of maternal nutrient restriction during gestation on serum microRNA (miRNA) abundance in cattle. Primiparous Angus-cross cows (n=22) were fed either control (CON; to gain 1 Kg/week) or nutrient restricted (NR; 0.55% NEm) diets based on National Research Council requirements. On day 30 of gestation, cows were blocked by body condition and randomly assigned to one of three diets: CON (n=8) days 30-190; NR (n=7) days 30-110 followed by CON days 110-190 (NR/C); or CON (n=7) days 30-110 followed by NR days 110-190 (C/NR). At 190 days of gestation, maternal serum was collected for RNA isolation and analyzed using a miRNA microarray of known Bos taurus sequences. Data were normalized using LOWESS and analyzed via ANOVA. At 190 days of gestation, 16 miRNAs exhibited differential abundance (P<0.05) between treatments. Cows that underwent NR, irrespective of when the insult occurred, had downregulated bta-miR-126-3p compared to CON cows. Bta-miR-16b was downregulated and three miRNAs upregulated in NR/C compared to C/NR and CON cows. Additionally, seven miRNAs were downregulated and four miRNAs upregulated in C/NR compared to NR/C and CON cows. Comparison of NR/C and C/NR cows revealed three differentially abundant (P<0.04) miRNAs (bta-miR-2487_L-2R-3_1ss15CT, bta-miR-215, and bta-miR-760-5p). Top KEGG pathway enrichment of target genes included: pathways in cancer, PI3K-Akt signaling, focal adhesion, Ras signaling, proteoglycans in cancer, and MAPK signaling. In summary, maternal nutrient restriction altered serum miRNA abundance profiles irrespective of the time at which the nutritional insult was induced.
Collapse
Affiliation(s)
- K J McCarty
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - A N DeCarlo
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - R E Ricks
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - S L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - N M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
29
|
Dos Reis Araujo T, Alves BL, Dos Santos LMB, Gonçalves LM, Carneiro EM. Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion. Rev Endocr Metab Disord 2024; 25:259-278. [PMID: 38048021 DOI: 10.1007/s11154-023-09856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic β cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Lohanna Monali Barreto Dos Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil.
| |
Collapse
|
30
|
Zheng Y, Chen X, Ding C, Liu X, Chi L, Zhang S. Abscisic acid ameliorates d-galactose -induced aging in mice by modulating AMPK-SIRT1-p53 pathway and intestinal flora. Heliyon 2024; 10:e28283. [PMID: 38524603 PMCID: PMC10957431 DOI: 10.1016/j.heliyon.2024.e28283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Abscisic acid (ABA) is a plant hormone with various biological activities. Aging is a natural process accompanied by cognitive and physiological decline, and aging and its associated diseases pose a serious threat to public health, but its mechanisms remain insufficient. Therefore, the purpose of this study was to investigate the ameliorative effects of ABA on d-galactose (D-Gal)-induced aging in mice and to delve into its molecular mechanisms. Aging model was es-tablished by theintraperitoneal injection of D-Gal. We evaluated the oxidative stress by measuring superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) levels in serum. Proteins content in brain were determined by Western blot. D-Gal-induced brain damage was monitored by measuring the levels of acetylcholinesterase (AChE) content and hematoxylin-eosin staining (H&E). To evaluate the effects of ABA on aging, we measured the gut microbiota. The results demonstrated that ABA increased SOD, CAT and AChE, decreased MDA level. H&E staining showed that ABA could improve D-Gal-induced damage. In addition, ABA regulated the B-cell-lymphoma-2 (BCL-2) family and Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling pathway, while further regulating the acetylation of p53 protein by modulating the AMPK pathway and activating SIRT1 protein, thereby inhibiting the apoptosis of brain neurons and thus regulating the aging process. Interestingly, ABA improved the ratio of intestinal bacteria involved in regulating multiple metabolic pathways in the aging process, such as Bacteroides, Firmicutes, Lactobacillus and Ak-kermansia. In conclusion, the present study suggests that ABA may be responsible for improving and delaying the aging process by enhancing antioxidant activity, anti-apoptosis and regulating intestinal flora.
Collapse
Affiliation(s)
- Yongchun Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xueyan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| | - Lihua Chi
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| |
Collapse
|
31
|
Huang L, Zhang J, Songyang Z, Xiong Y. Identification and Validation of eRNA as a Prognostic Indicator for Cervical Cancer. BIOLOGY 2024; 13:227. [PMID: 38666838 PMCID: PMC11048606 DOI: 10.3390/biology13040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The survival of CESC patients is closely related to the expression of enhancer RNA (eRNA). In this work, we downloaded eRNA expression, clinical, and gene expression data from the TCeA and TCGA portals. A total of 7936 differentially expressed eRNAs were discovered by limma analysis, and the relationship between these eRNAs and survival was analyzed by univariate Cox hazard analysis, LASSO regression, and multivariate Cox hazard analysis to obtain an 8-eRNA model. Risk score heat maps, KM curves, ROC analysis, robustness analysis, and nomograms further indicate that this 8-eRNA model is a novel indicator with high prognostic performance independent of clinicopathological classification. The model divided patients into high-risk and low-risk groups, compared pathway diversity between the two groups through GSEA analysis, and provided potential therapeutic agents for high-risk patients.
Collapse
Affiliation(s)
- Lijing Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| | - Jingkai Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
- Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyan Xiong
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| |
Collapse
|
32
|
Mei X, Xiong J, Liu J, Huang A, Zhu D, Huang Y, Wang H. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion. Cancer Lett 2024; 584:216609. [PMID: 38211648 DOI: 10.1016/j.canlet.2024.216609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. However, the molecular mechanism of LNM in CC is unclear, and there is no effective clinical treatment. Here, we found that 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the last step of cholesterol synthesis, was upregulated in CC and closely related to LNM. Gain-of-function and loss-of-function experiments proved that DHCR7 promoted the invasion ability of CC cells and lymphangiogenesis in vitro and induced LNM in vivo. The LNM-promoting effect of DHCR7 was partly mediated by upregulating KN motif and ankyrin repeat domains 4 (KANK4) expression and subsequently activating the PI3K/AKT signaling pathway. Alternatively, DHCR7 promoted the secretion of vascular endothelial growth factor-C (VEGF-C), and thereby lymphangiogenesis. Interestingly, cholesterol reprogramming was needed for the DHCR7-mediated promotion of activation of the KANK4/PI3K/AKT axis, VEGF-C secretion, and subsequent LNM. Importantly, treatment with the DHCR7 inhibitors AY9944 and tamoxifen (TAM) significantly inhibited LNM of CC, suggesting the clinical application potential of DHCR7 inhibitors in CC. Collectively, our results uncover a novel molecular mechanism of LNM in CC and identify DHCR7 as a new potential therapeutic target.
Collapse
Affiliation(s)
- Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jinfeng Xiong
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Anni Huang
- Department of Medical, Guangxi Hospital, The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, And State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
33
|
Singh R, Jaiswal A, Singh RP. Simulated microgravity induces DNA damage concurrent with impairment of DNA repair and activation of cell-type specific DNA damage response in microglial and glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119679. [PMID: 38272357 DOI: 10.1016/j.bbamcr.2024.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Long-term spaceflights affect the structural changes in brain, alter motor or cognitive function and associated development of neuro-optic syndrome in astronauts. Studies addressing the impact of microgravity on brain cells are very limited. Herein, we employed microglial (CHME3) and glioblastoma (U87MG and A172) cells to study their molecular and functional adaptations under simulated microgravity (SMG) exposure. A reduction in cell viability and proliferation with decreased levels of PCNA were observed in these cells. SMG caused extensive DNA damage with an increase in γH2A.X (ser139) phosphorylation and differential activation/expression of DNA damage response (DDR) proteins including ATM, ATR, Chk1, Chk2 and p53 in all the three cell lines. Unlike CHME3, the ATM/Chk2-dependent DDR pathway was activated in glioblastoma cells suggesting a marked difference in the adaptation between normal and cancer cells to SMG. Five different classes of DNA repair pathways including BER, NER, MMR, NHEJ and HR were suppressed in both cell lines with the notable exception of NHEJ (Ku70/80 and DNA-PK) activation in U87MG cells. SMG induced mitochondrial apoptosis with increased expression of Bax, cleaved caspase-3 and cleaved poly-(ADP-ribose) polymerase, and reduced Bcl-2 level. SMG triggered apoptosis simultaneously via ERK1/2 and AKT activation, and inhibition of GSK3β activity which was reversed by MEK1 and PI3K inhibitors. Taken together, our study revealed that microgravity is a strong stressor to trigger DNA damage and apoptosis through activation of ERK1/2 and AKT, and impairment of DNA repair capacity, albeit with a cell-type difference in DDR and NHEJ regulation, in microglial and glioblastoma cells.
Collapse
Affiliation(s)
- Ragini Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Sun Y, Liu Y, Chen H, Tan Y. Circular RNA circRHOBTB3 inhibits ovarian cancer progression through PI3K/AKT signaling pathway. Panminerva Med 2024; 66:36-46. [PMID: 32720791 DOI: 10.23736/s0031-0808.20.03957-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have emerged as significant regulators in human cancers. We aimed to explore the functional role of circular RNA RHOBTB3 (circRHOBTB3) in ovarian cancer. METHODS The expression of circRHOBTB3 was detected by real-time quantitative PCR (RT-qPCR). Then, the localization of circRHOBTB3 in ovarian cancer cells was identified by cell fractionation assay. Cell proliferation, migration and invasion were measured by cell counting kit-8 (CCK-8), transwell migration and invasion assays, respectively. The protein expression of N-cadherin, vimentin and E-cadherin was measured by western blot. And the glucose consumption and lactate production were detected by a glucose colorimetric assay kit and a lactic acid production detection kit, respectively. The involvement mRNA and protein expression of glucose transporter 1 (GLUT1), hexokinase-2 (HK2) and lactate dehydrogenase A (LDHA) were determined by RT-qPCR and western blot, respectively. Besides, lentivectors for short hairpin RNA (shRNA) against circRHOBTB3 (sh-circRHOBTB3) or pcDNA-circRHOBTB3 were used to downregulate or upregulate circRHOBTB3 expression in an animal tumor model. The protein expression of phosphoinositide 3-kinase (PI3K), phospho-PI3K (p-PI3K), protein kinase B (AKT), phospho-AKT (p-AKT), mammalian target of rapamycin (mTOR) and phospho-mTOR (p-mTOR) was examined by western blot. The activator (740Y-P) and inhibitor (LY294002) of PI3K/AKT pathway were used to evaluate the contribution of PI3K/AKT. CircRHOBTB3 was downregulated in ovarian cancer tissues and cells. RESULTS Functionally, circRHOBTB3 overexpression could markedly suppress cell proliferation, metastasis, and glycolysis, whereas the opposite results could be observed in the deletion of circRHOBTB3. Additionally, xenograft experiment also identified the above results. Finally, we observed that circRHOBTB3 inhibited the progression of ovarian cancer via inactivating PI3K/AKT signaling pathway. CONCLUSIONS CircRHOBTB3 exerted a suppressor role and inhibited the tumorigenesis by inactivating PI3K/AKT pathway in ovarian cancer.
Collapse
Affiliation(s)
- Yalan Sun
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - Yanfang Liu
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - He Chen
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - Yujie Tan
- Department of Obstetrics, Luoyang Central Hospital, Zhengzhou University, Luoyang, China -
| |
Collapse
|
35
|
Meng Q, Zhu H, Li Y, Peng X, Wang T, Huang H, Zhou H, Liu Y, Ru S, Wu J, Ma Y. Quantitative proteomics reveals the protective effects of Yinchenzhufu decoction against cholestatic liver fibrosis in mice by inhibiting the PDGFRβ/PI3K/AKT pathway. Front Pharmacol 2024; 15:1341020. [PMID: 38469403 PMCID: PMC10926276 DOI: 10.3389/fphar.2024.1341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRβ), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRβ/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-β-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRβ expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRβ/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qian Meng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Huang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuejia Liu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sujie Ru
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Maphutha J, Twilley D, Lall N. The Role of the PTEN Tumor Suppressor Gene and Its Anti-Angiogenic Activity in Melanoma and Other Cancers. Molecules 2024; 29:721. [PMID: 38338464 PMCID: PMC10856229 DOI: 10.3390/molecules29030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.
Collapse
Affiliation(s)
- Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
37
|
Zornić S, Simović Marković B, Franich AA, Janjić GV, Jadranin MB, Avdalović J, Rajković S, Živković MD, Arsenijević NN, Radosavljević GD, Pantić J. Characterization, modes of interactions with DNA/BSA biomolecules and anti-tumor activity of newly synthesized dinuclear platinum(II) complexes with pyridazine bridging ligand. J Biol Inorg Chem 2024; 29:51-73. [PMID: 38099936 DOI: 10.1007/s00775-023-02030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 04/10/2024]
Abstract
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(μ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(μ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(μ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(μ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Collapse
Affiliation(s)
- Sanja Zornić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
- Department of Microbiology, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000, Kragujevac, Serbia
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milka B Jadranin
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Jelena Avdalović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Nebojša N Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Gordana D Radosavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Jelena Pantić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
38
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Li X, Li X, Chen L, Deng Y, Zheng Z, Ming Y. Tabersonine Induces the Apoptosis of Human Hepatocellular Carcinoma In vitro and In vivo. Anticancer Agents Med Chem 2024; 24:764-772. [PMID: 38465429 PMCID: PMC11327752 DOI: 10.2174/0118715206286612240303172230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored. OBJECTIVE The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma. METHODS The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo. RESULTS AND DISCUSSION Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth. CONCLUSION Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.
Collapse
MESH Headings
- Apoptosis/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Proliferation/drug effects
- Mice
- Indole Alkaloids/pharmacology
- Indole Alkaloids/chemistry
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Molecular Structure
- Structure-Activity Relationship
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Hep G2 Cells
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xuan Li
- Department of Bioengineering and Biotechnology, Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xudan Li
- Fujian Provincial Key Laboratory of new target drugs (Xiamen University), School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361021, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Yuan Deng
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Zhizhong Zheng
- College of Life and Health Sciences, Fuzhou Institute of Technology, Fuzhou, 350506, China
| | - Yanlin Ming
- Department of Bioengineering and Biotechnology, Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| |
Collapse
|
40
|
Liu Y, Dai S, Xu Y, Xiang Y, Zhang Y, Xu Z, Sun L, Zhang GCX, Shu Q. Integration of Network Pharmacology and Experimental Validation to Explore Jixueteng - Yinyanghuo Herb Pair Alleviate Cisplatin-Induced Myelosuppression. Integr Cancer Ther 2024; 23:15347354241237969. [PMID: 38462913 DOI: 10.1177/15347354241237969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Jixueteng, the vine of the bush Spatholobus suberectus Dunn., is widely used to treat irregular menstruation and arthralgia. Yinyanghuo, the aboveground part of the plant Epimedium brevicornum Maxim., has the function of warming the kidney to invigorate yang. This research aimed to investigate the effects and mechanisms of the Jixueteng and Yinyanghuo herbal pair (JYHP) on cisplatin-induced myelosuppression in a mice model. Firstly, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) screened 15 effective compounds of JYHP decoction. Network pharmacology enriched 10 genes which may play a role by inhibiting the apoptosis of bone marrow (BM) cells. Then, a myelosuppression C57BL/6 mice model was induced by intraperitoneal (i.p.) injection of cis-Diaminodichloroplatinum (cisplatin, CDDP) and followed by the intragastric (i.g.) administration of JYHP decoction. The efficacy was evaluated by blood cell count, reticulocyte count, and histopathological analysis of bone marrow and spleen. Through the vivo experiments, we found the timing of JYHP administration affected the effect of drug administration, JYHP had a better therapeutical effect rather than a preventive effect. JYHP obviously recovered the hematopoietic function of bone marrow from the peripheral blood cell test and pathological staining. Flow cytometry data showed JYHP decreased the apoptosis rate of BM cells and the western blotting showed JYHP downregulated the cleaved Caspase-3/Caspase-3 ratios through RAS/MEK/ERK pathway. In conclusion, JYHP alleviated CDDP-induced myelosuppression by inhibiting the apoptosis of BM cells through RAS/MEK/ERK pathway and the optimal timing of JYHP administration was after CDDP administration.
Collapse
Affiliation(s)
- Yi Liu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuying Dai
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yixiao Xu
- School of Pharmaceutical Sciences of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Xiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yao Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeting Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Sun
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | | | - Qijin Shu
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| |
Collapse
|
41
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
43
|
Riscal R, Riquier-Morcant B, Gadea G, Linares LK. Give and Take: The Reciprocal Control of Metabolism and Cell Cycle. Methods Mol Biol 2024; 2740:155-168. [PMID: 38393475 DOI: 10.1007/978-1-0716-3557-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell cycle is an ordered sequence of events that occur in a cell preparing for cell division . The cell cycle is a four-stage process in which the cell increases in size, copies its DNA , prepares to divide, and divides. All these stages require a coordination of signaling pathways as well as adequate levels of energy and building blocks. These specific signaling and metabolic switches are tightly orchestrated in order for the cell cycle to occur properly. In this book chapter, we will provide information on the basis of metabolism and cell cycle interplay, and we will finish by an unexhaustive list of metabolomics approaches available to study the reciprocal control of metabolism and cell cycle.
Collapse
Affiliation(s)
- Romain Riscal
- INSERM U1194, IRCM, Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, France
| | - Blanche Riquier-Morcant
- INSERM U1194, IRCM, Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, France
| | - Gilles Gadea
- INSERM U1194, IRCM, Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, France
| | - Laetitia K Linares
- INSERM U1194, IRCM, Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, France.
| |
Collapse
|
44
|
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, Wu C, Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023; 8:453. [PMID: 38097539 PMCID: PMC10721848 DOI: 10.1038/s41392-023-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and proliferation play important roles in epithelial cancer formation and progression, but what molecules and how they trigger EMT is largely unknown. Here we performed spatial transcriptomic and functional analyses on samples of multistage esophageal squamous-cell carcinoma (ESCC) from mice and humans to decipher these critical issues. By investigating spatiotemporal gene expression patterns and cell-cell interactions, we demonstrated that the aberrant epithelial cell interaction via EFNB1-EPHB4 triggers EMT and cell cycle mediated by downstream SRC/ERK/AKT signaling. The aberrant epithelial cell interaction occurs within the basal layer at early precancerous lesions, which expands to the whole epithelial layer and strengthens along the cancer development and progression. Functional analysis revealed that the aberrant EFNB1-EPHB4 interaction is caused by overexpressed ΔNP63 due to TP53 mutation, the culprit in human ESCC tumorigenesis. Our results shed new light on the role of TP53-TP63/ΔNP63-EFNB1-EPHB4 axis in EMT and cell proliferation in epithelial cancer formation.
Collapse
Affiliation(s)
- Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Hu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, 100006, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Szymanska K, Rytelewska E, Zaobidna E, Kiezun M, Gudelska M, Kopij G, Dobrzyn K, Mlyczynska E, Kurowska P, Kaminska B, Nynca A, Smolinska N, Rak A, Kaminski T. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023; 12:2835. [PMID: 38132154 PMCID: PMC10742260 DOI: 10.3390/cells12242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348 Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| |
Collapse
|
46
|
Hermawan A, Wulandari F, Yudi Utomo R, Asmah Susidarti R, Kirihata M, Meiyanto E. Transcriptomics analyses reveal the effects of Pentagamaboronon-0-ol on PI3K/Akt and cell cycle of HER2+ breast cancer cells. Saudi Pharm J 2023; 31:101847. [PMID: 38028209 PMCID: PMC10652209 DOI: 10.1016/j.jsps.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Monoclonal antibodies and targeted therapies against HER2+ breast cancer has improved overall and disease-free survival in patients; however, encountering drug resistance causes recurrence, necessitating the development of newer HER2-targeted medications. A curcumin analog PGB-0-ol showed most cytotoxicity against HCC1954 HER2+ breast cancer cells than against other subtypes of breast cancer cells. Objective Here, we employed next-generation sequencing technology to elucidate the molecular mechanism underlying the effect of PGB-0-ol on HCC1954 HER2+ breast cancer cells. Methods The molecular mechanism underlying the action of PGB-0-ol on HCC1954 HER2+ breast cancer cells was determined using next-generation sequencing technologies. Additional bioinformatics studies were performed, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease-gene, and drug-gene associations, network topology analysis (NTA), and gene set enrichment analysis (GSEA). Results We detected 2,263 differentially expressed genes (DEGs) (1,459 upregulated and 804 downregulated) in the PGB-0-ol- and DMSO-treated HCC1954 cells. KEGG enrichment data revealed the control of phosphatidylinositol signaling system, and ErbB signaling following PGB-0-ol treatment. Gene ontology (GO) enrichment analysis demonstrated that these DEGs governed cell cycle, participated in the mitotic spindle and nuclear membrane, and controlled kinase activity at the molecular level. According to the NTA data for GO enrichment, GSEA data for KEGG, drug-gene and disease-gene, PGB-0-ol regulated PI3K/Akt signaling and cell cycle in breast cancer. Overall, our investigation revealed the transcriptomic profile of PGB-0-ol-treated HCC1954 breast cancer cells following PGB-0-ol therapy. Bioinformatics analyses showed that PI3K/Akt signaling and cell cycle was modulated. However, further studies are required to validate the findings of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Edy Meiyanto
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
47
|
Pore AA, Kamyabi N, Bithi SS, Ahmmed SM, Vanapalli SA. Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells. Cell Mol Bioeng 2023; 16:443-457. [PMID: 38099214 PMCID: PMC10716102 DOI: 10.1007/s12195-023-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/10/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cell proliferation represents a major hallmark of cancer biology, and manifests itself in the assessment of tumor growth, drug resistance and metastasis. Tracking cell proliferation or cell fate at the single-cell level can reveal phenotypic heterogeneity. However, characterization of cell proliferation is typically done in bulk assays which does not inform on cells that can proliferate under given environmental perturbations. Thus, there is a need for single-cell approaches that allow longitudinal tracking of the fate of a large number of individual cells to reveal diverse phenotypes. Methods We fabricated a new microfluidic architecture for high efficiency capture of single tumor cells, with the capacity to monitor cell divisions across multiple daughter cells. This single-cell proliferation (SCP) device enabled the quantification of the fate of more than 1000 individual cancer cells longitudinally, allowing comprehensive profiling of the phenotypic heterogeneity that would be otherwise masked in standard cell proliferation assays. We characterized the efficiency of single cell capture and demonstrated the utility of the SCP device by exposing MCF-7 breast tumor cells to different doses of the chemotherapeutic agent doxorubicin. Results The single cell trapping efficiency of the SCP device was found to be ~ 85%. At the low doses of doxorubicin (0.01 µM, 0.001 µM, 0.0001 µM), we observed that 50-80% of the drug-treated cells had undergone proliferation, and less than 10% of the cells do not proliferate. Additionally, we demonstrated the potential of the SCP device in circulating tumor cell applications where minimizing target cell loss is critical. We showed selective capture of breast tumor cells from a binary mixture of cells (tumor cells and white blood cells) that was isolated from blood processing. We successfully characterized the proliferation statistics of these captured cells despite their extremely low counts in the original binary suspension. Conclusions The SCP device has significant potential for cancer research with the ability to quantify proliferation statistics of individual tumor cells, opening new avenues of investigation ranging from evaluating drug resistance of anti-cancer compounds to monitoring the replicative potential of patient-derived cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00773-z.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| | - Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: 10x Genomics, Pleasanton, CA USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: College of Engineering, West Texas A&M University, Canyon, TX USA
| | - Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: Manufacturing Integration Engineer, Intel Corporation, Hillsboro, OR USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| |
Collapse
|
48
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
49
|
Chu E, Mychasiuk R, Green TRF, Zamani A, Dill LK, Sharma R, Raftery AL, Tsantikos E, Hibbs ML, Semple BD. Regulation of microglial responses after pediatric traumatic brain injury: exploring the role of SHIP-1. Front Neurosci 2023; 17:1276495. [PMID: 37901420 PMCID: PMC10603304 DOI: 10.3389/fnins.2023.1276495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Severe traumatic brain injury (TBI) is the world's leading cause of permanent neurological disability in children. TBI-induced neurological deficits may be driven by neuroinflammation post-injury. Abnormal activity of SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) has been associated with dysregulated immunological responses, but the role of SHIP-1 in the brain remains unclear. The current study investigated the immunoregulatory role of SHIP-1 in a mouse model of moderate-severe pediatric TBI. Methods SHIP-1+/- and SHIP-1-/- mice underwent experimental TBI or sham surgery at post-natal day 21. Brain gene expression was examined across a time course, and immunofluorescence staining was evaluated to determine cellular immune responses, alongside peripheral serum cytokine levels by immunoassays. Brain tissue volume loss was measured using volumetric analysis, and behavior changes both acutely and chronically post-injury. Results Acutely, inflammatory gene expression was elevated in the injured cortex alongside increased IBA-1 expression and altered microglial morphology; but to a similar extent in SHIP-1-/- mice and littermate SHIP-1+/- control mice. Similarly, the infiltration and activation of CD68-positive macrophages, and reactivity of GFAP-positive astrocytes, was increased after TBI but comparable between genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-1-/- mice exhibited reduced body weight and increased circulating cytokines. Pro-inflammatory gene expression in the injured hippocampus was also elevated in SHIP-1-/- mice; however, GFAP immunoreactivity at the injury site in TBI mice was lower. TBI induced a comparable loss of cortical and hippocampal tissue in both genotypes, while SHIP-1-/- mice showed reduced general activity and impaired working memory, independent of TBI. Conclusion Together, evidence does not support SHIP-1 as an essential regulator of brain microglial morphology, brain immune responses, or the extent of tissue damage after moderate-severe pediatric TBI in mice. However, our data suggest that reduced SHIP-1 activity induces a greater inflammatory response in the hippocampus chronically post-TBI, warranting further investigation.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Tabitha R. F. Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, United States
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Larissa K. Dill
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - April L. Raftery
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Liang D, Qi Y, Liu L, Chen Z, Tang S, Tang J, Chen N. Jin-Gui-Shen-Qi Wan ameliorates diabetic retinopathy by inhibiting apoptosis of retinal ganglion cells through the Akt/HIF-1α pathway. Chin Med 2023; 18:130. [PMID: 37828620 PMCID: PMC10568827 DOI: 10.1186/s13020-023-00840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Jin-Gui-Shen-Qi Wan (JGSQ) has been used in China for thousands of years to treat various ailments, including frequent urination, blurred vision, and soreness in the waist and knees. It has traditional therapeutic advantages in improving eye diseases. AIM OF THE STUDY Clinical studies have confirmed the therapeutic efficacy of JGSQ in improving diabetes and vision; however, its efficacy and pharmacological effects in treating diabetic retinopathy (DR) remain unclear. Therefore, the aim of this study was to investigate the specific pharmacological effects and potential mechanisms of JGSQ in improving DR through a db/db model. MATERIALS AND METHODS db/db mice were given three different doses of orally administered JGSQ and metformin for 8 weeks, and then PAS staining of the retinal vascular network patch, transmission electron microscopy, H&E staining, and TUNEL staining were performed to determine the potential role of JGSQ in improving DR-induced neuronal cell apoptosis. Furthermore, network pharmacology analysis and molecular docking were carried out to identify the main potential targets of JGSQ, and the efficacy of JGSQ in improving DR was evaluated through western blotting and immunofluorescence staining, revealing its mechanism of action. RESULTS According to the results from H&E, TUNEL, and PAS staining of the retinal vascular network patch and transmission electron microscopy, JGSQ does not have an advantage in improving the abnormal morphology of vascular endothelial cells, but it has a significant effect on protecting retinal ganglion cells from apoptosis. Through network pharmacology and molecular docking, AKT, GAPDH, TNF, TP53, and IL-6 were identified as the main core targets of JGSQ. Subsequently, through western blot and immunofluorescence staining, it was found that JGSQ can inhibit HIF-1α, promote p-AKT expression, and inhibit TP53 expression. At the same time, inhibiting the release of inflammatory factors protects retinal ganglion cells and improves apoptosis in DR. CONCLUSION These results indicated that in the db/db DR mouse model, JGSQ can inhibit the expression of inflammatory cytokines and protect retinal ganglion cells from apoptosis, possibly by modulating the Akt/HIF-1α pathway.
Collapse
Affiliation(s)
- Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoxia Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|