1
|
Rota E, Immovilli P, Pappalardo I, Risso R, Zuccotti G, Agosti S, Morelli N, Rovere ME, Costa I, D'Orsi ML. Direct Oral Anticoagulants and Concomitant Anti-seizure Medications: A Retrospective, Case-Control Study in a Real-World Setting. Clin Ther 2024; 46:e26-e30. [PMID: 38972763 DOI: 10.1016/j.clinthera.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Although prescription of direct oral anticoagulants (DOACs) for epileptic patients on anti-seizure medications (ASMs) is on the increase, international guidelines pose strict restrictions because this may lead to pharmacologic interactions. However, current evidence on their clinical relevance remains scanty. This retrospective, case-control study assessed the frequency of ischemic/hemorrhagic events and epileptic seizures involving DOAC-ASM cotherapy in the real world, compared with DOAC and ASM monotherapy, in age- and gender-matched controls. METHODS Data on patients who had been prescribed a concomitant DOAC and ASM therapy for at least 6 months were extracted from the database of the Pharmaceutical Service of the Alessandria Province (Italy). After exclusions, the case group included 124 patients, 44 on valproic acid (VPA) and 80 on levetiracetam (LEV) concomitant with a DOAC, and it was compared with the DOAC-control and ASM-control groups. The clinical and laboratory data were extracted from the electronic archives of the hospitals in the same province. FINDINGS Two (1.6%) ischemic and 2 (1.6%) major hemorrhagic events were observed in the case group. Four (3.2%) ischemic and no hemorrhagic events occurred in the DOAC-control group. There were no statistically significant differences in the ischemic and hemorrhagic events between the case group (patients on concomitant LEV or VPA who were prescribed a DOAC) and the DOAC-control group, and there was no difference in the recurrence rate of epileptic seizures between the case group and the ASM-control group. IMPLICATIONS Although this study has some limits, mainly the small sample size, our findings indicate that neither LEV nor VPA concomitant treatment significantly affects the effects of DOACs in a real-world setting.
Collapse
Affiliation(s)
- Eugenia Rota
- The Neurology Unit, San Giacomo Hospital, ASL Alessandria, Novi Ligure, Italy.
| | - Paolo Immovilli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | - Irene Pappalardo
- The Clinical Neurophysiology and Epilepsy Unit, IRCCS San Martino Hospital, Genova, Italy
| | - Roberta Risso
- The Internal Medicine Unit, M. Ferrero Hospital, ASLCN2, Verduno, Italy
| | | | - Sergio Agosti
- The Cardiology Unit, Micone Hospital, ASL3, Sestri Ponente, Italy
| | - Nicola Morelli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | | | - Ilaria Costa
- The Hospital Pharmacy, ASL Alessandria, Alessandria, Italy
| | | |
Collapse
|
2
|
Hosseini SA, Mirzaei SA, Kermani S, Yaghoobi H. Valproate modulates the activity of multidrug resistance efflux pumps, as a chemoresistance factor in gastric cancer cells. Mol Biol Rep 2024; 51:427. [PMID: 38498238 DOI: 10.1007/s11033-024-09284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Commitee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahriar Kermani
- Student Research Commitee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
4
|
Corsini A, Ferri N, Proietti M, Boriani G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs 2021; 80:1065-1083. [PMID: 32504376 DOI: 10.1007/s40265-020-01328-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Edoxaban, a direct factor Xa inhibitor, is the latest of the non-vitamin K antagonist oral anticoagulants (NOACs). Despite being marketed later than other NOACs, its use is now spreading in current clinical practice, being indicated for both thromboprophylaxis in patients with non-valvular atrial fibrillation (NVAF) and for the treatment and prevention of venous thromboembolism (VTE). In patients with multiple conditions, the contemporary administration of several drugs can cause relevant drug-drug interactions (DDIs), which can affect drugs' pharmacokinetics and pharmacodynamics. Usually, all the NOACs are considered to have significantly fewer DDIs than vitamin K antagonists; notwithstanding, this is actually not true, all of them are affected by DDIs with drugs that can influence the activity (induction or inhibition) of P-glycoprotein (P-gp) and cytochrome P450 3A4, both responsible for the disposition and metabolism of NOACs to a different extent. In this review/expert opinion, we focused on an extensive report of edoxaban DDIs. All the relevant drugs categories have been examined to report on significant DDIs, discussing the impact on edoxaban pharmacokinetics and pharmacodynamics, and the evidence for dose adjustment. Our analysis found that, despite a restrained number of interactions, some strong inhibitors/inducers of P-gp and drug-metabolising enzymes can affect edoxaban concentration, just as it happens with other NOACs, implying the need for a dose adjustment. However, our analysis of edoxaban DDIs suggests that given the small propensity for interactions of this agent, its use represents an acceptable clinical decision. Still, DDIs can be significant in certain clinical situations and a careful evaluation is always needed when prescribing NOACs.
Collapse
Affiliation(s)
- Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Multimedica IRCCS, Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122, Milan, Italy. .,Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy. .,Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| |
Collapse
|
5
|
Wang Y, Hao CL, Zhang ZH, Wang LH, Yan LN, Zhang RJ, Lin L, Yang Y. Valproic Acid Increased Autophagic Flux in human Multiple Myeloma Cells in Vitro. Biomed Pharmacother 2020; 127:110167. [PMID: 32344258 DOI: 10.1016/j.biopha.2020.110167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To investigate the effects of valproic acid (VPA) on autophagic flux in multiple myeloma (MM) cells. METHODS AND RESULTS Cell proliferation was assayed by the Cell Counting Kit-8 assay. The qRT-PCR was used to measure the expressions of LC3-II at mRNA level. Autophagic flux was measured by LC3-II turnover using western blot analysis and flow cytometry using the fluorescent dye Cyto-ID. An assay using the RFP-GFP-LC3 tandem construct was performed to monitor autophagic flux. Cell proliferation assay showed that VPA could inhibit the proliferation of MM cells and the inhibitory effects were enhanced with the extension of time. The qRT-PCR and western blot showed that the expression level of LC3-II in the VPA plus CQ group was significantly higher than that in CQ group. Cyto-ID autophagy test showed that the intracellular average fluorescence intensity in VPA plus CQ group was significantly higher than that in control and VPA group (all p < 0.001). The results of RFP-GFP-LC3 tandem construct showed that the numbers of yellow puncta and red puncta in VPA group was higher than that in control group. CONCLUSIONS VPA could inhibit the proliferation of MM cells and the inhibitory effects were enhanced with the extension of time. VPA could enhance autophagic flux in MM cells, and the increase of autophagosomes was caused by autophagy enhancement rather than inhibition. These findings provided rationale for the treatment of MM with VPA.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Chang-Lai Hao
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
| | - Zhi-Hua Zhang
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
| | - Li-Hong Wang
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-Na Yan
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Rong-Juan Zhang
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li Lin
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yue Yang
- Department of Scientific Research, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
6
|
Lin H, Hu B, He X, Mao J, Wang Y, Wang J, Zhang T, Zheng J, Peng Y, Zhang F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol 2020; 171:113733. [DOI: 10.1016/j.bcp.2019.113733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
7
|
The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2019; 21:ijms21010238. [PMID: 31905792 PMCID: PMC6981391 DOI: 10.3390/ijms21010238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance caused by the overexpression of the ATP-binding cassette (ABC) proteins in cancer cells remains one of the most difficult challenges faced by drug developers and clinical scientists. The emergence of multidrug-resistant cancers has driven efforts from researchers to develop innovative strategies to improve therapeutic outcomes. Based on the drug repurposing approach, we discovered an additional action of TMP195, a potent and selective inhibitor of class IIa histone deacetylase. We reveal that in vitro TMP195 treatment significantly enhances drug-induced apoptosis and sensitizes multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2 to anticancer drugs. We demonstrate that TMP195 inhibits the drug transport function, but not the protein expression of ABCB1 and ABCG2. The interaction between TMP195 with these transporters was supported by the TMP195-stimulated ATPase activity of ABCB1 and ABCG2, and by in silico docking analysis of TMP195 binding to the substrate-binding pocket of these transporters. Furthermore, we did not find clear evidence of TMP195 resistance conferred by ABCB1 or ABCG2, suggesting that these transporters are unlikely to play a significant role in the development of resistance to TMP195 in cancer patients.
Collapse
|
8
|
San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111794. [PMID: 31739588 PMCID: PMC6896008 DOI: 10.3390/cancers11111794] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation, differentiation arrest, and accumulation of immature myeloid progenitors. Although clinical advances in AML have been made, especially in young patients, long-term disease-free survival remains poor, making this disease an unmet therapeutic challenge. Epigenetic alterations and mutations in epigenetic regulators contribute to the pathogenesis of AML, supporting the rationale for the use of epigenetic drugs in patients with AML. While hypomethylating agents have already been approved in AML, the use of other epigenetic inhibitors, such as histone deacetylases (HDAC) inhibitors (HDACi), is under clinical development. HDACi such as Panobinostat, Vorinostat, and Tricostatin A have been shown to promote cell death, autophagy, apoptosis, or growth arrest in preclinical AML models, yet these inhibitors do not seem to be effective as monotherapies, but rather in combination with other drugs. In this review, we discuss the rationale for the use of different HDACi in patients with AML, the results of preclinical studies, and the results obtained in clinical trials. Although so far the results with HDACi in clinical trials in AML have been modest, there are some encouraging data from treatment with the HDACi Pracinostat in combination with DNA demethylating agents.
Collapse
Affiliation(s)
- Edurne San José-Enériz
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Naroa Gimenez-Camino
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| |
Collapse
|
9
|
Aalaei S, Mohammadzadeh M, Pazhang Y. Synergistic induction of apoptosis in a cell model of human leukemia K562 by nitroglycerine and valproic acid. EXCLI JOURNAL 2019; 18:619-630. [PMID: 31611745 PMCID: PMC6785758 DOI: 10.17179/excli2019-1581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (NG), a nitric oxide donor, and valproic acid (VPA), an inhibitor of histone deacetylases, have impressive effects on numerous cancer cell lines. This study intended to evaluate synergistic effects of NG and VPA on cell viability and apoptosis in K562 cells. K562 cells were cultured in RPMI-1640 supplemented with 10 % heat-inactivated FBS. They were treated with different doses of NG, VPA and cisplatin for 24, 48, and 72 h, and MTT assay was performed to analyze cell viability. Also, Peripheral blood mononuclear cells (PBMC) were cultured in RPMI-1640 media and incubated with NG (200 μM), VAP (100 μM), NG+VPA (150 μM) and cisplatin (8 μM) to evaluate cytotoxicity. IC50 of the drugs, when they were applied separately and in combination, were calculated using the COMPUSYN software. DNA electrophoresis, TUNEL assay, and Hoechst staining were performed to investigate apoptosis induction. RT-PCR was used for the evaluation of apoptotic genes expression. The results of the MTT assay showed that cell viability decreased at all applied doses of NG and VPA. It was noticed that the cytotoxic effects of these drugs were dose- and time-dependent. Based on the COMPUSYN output, the combination of the drugs (VPA and NG) in a certain ratio concentration synergistically decreased cell viability. Cisplatin significantly decreased cell viability of PBMCs and K562 cells. Also, the combination drug had cytotoxic effect and significantly reduced viability of K562 cells compared with PBMCs and control cells. In the target cells treated with this combination, Bax and caspase-3 expression increased but Bcl-2 expression decreased. These results suggest that NG, VPA, and their combination decreased cell viability and induced apoptosis via the intrinsic apoptotic pathway. This study suggests that this combination therapy can be considered for further evaluation as an effective chemotherapeutic strategy for patients with chronic myeloid leukemia.
Collapse
Affiliation(s)
- Shahin Aalaei
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
10
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Galgani A, Palleria C, Iannone LF, De Sarro G, Giorgi FS, Maschio M, Russo E. Pharmacokinetic Interactions of Clinical Interest Between Direct Oral Anticoagulants and Antiepileptic Drugs. Front Neurol 2018; 9:1067. [PMID: 30581412 PMCID: PMC6292857 DOI: 10.3389/fneur.2018.01067] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and rivaroxaban are being increasingly prescribed among the general population, as they are considered to be associated to lower bleeding risk than classical anticoagulants, and do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above all among the elderly. As a result, potential interactions may cause an increased risk of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the present review is to describe the pharmacokinetic interactions between AEDs and DOACs of clinical relevance. We observed that there are only few clinical reports in which such interactions have been described in patients. More data are available on the pharmacokinetics of both drugs classes which allow speculating on their potential interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban, and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine, or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which do not affect significantly CYP activity in vitro, might have a quite safe profile, even though their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few case reports and limited evidence on interactions between DOACs and AEDs in patients. However, the overall evidence suggests that the interaction between these drug classes might be of high clinical relevance and therefore further studies in larger patients' cohorts are warranted for the future in order to better clarify their pharmacokinetic and define the most appropriate clinical behavior.
Collapse
Affiliation(s)
| | - Caterina Palleria
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | - Marta Maschio
- UOSD Neurology, Center for Tumor-related Epilepsy, Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Li W, Ma L. Synergistic antitumor activity of oridonin and valproic acid on HL-60 leukemia cells. J Cell Biochem 2018; 120:5620-5627. [PMID: 30320906 DOI: 10.1002/jcb.27845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activities. Valproic acid (VPA) is a recently emerged antineoplastic histone deacetylase inhibitor. The aim of the present study is to investigate the synergistic role of oridonin and VPA to inhibit the growth and metastasis of human leukemia cells. METHODS The effect of oridonin and VPA on proliferation was evaluated by the MTT assay. Cell migration and invasion were evaluated by transwell and scratch assays, respectively. In addition, cell apoptosis was examined by flow cytometry. The inhibitive effects of oridonin and VPA in vivo were determined by using xenografted nude mice. RESULTS The results demonstrated that oridonin in combination with VPA synergistically inhibited the proliferation of HL-60 cells, and induced obvious caspase-dependent apoptosis through activation of the intrinsic apoptosis pathway, which is involved in the downregulation of Bcl-2/Bax ratio. Furthermore, the combination treatment in vivo remarkably reduced the xenograft tumor size and triggered tumor cell apoptosis. CONCLUSION Our results suggested that the novel combination of oridonin plus VPA exerted synergistic antiproliferative and apoptosis-inducing effects on human myeloid leukemia cells, and may serve as a potentially promising antileukemia strategy.
Collapse
Affiliation(s)
- Wei Li
- Department of hematology, Hunan Province People's Hospital, Changsha, Hunan, China
| | - LiEn Ma
- Department of hematology, Hunan Province People's Hospital, Changsha, Hunan, China
| |
Collapse
|
13
|
Kou L, Sun R, Bhutia YD, Yao Q, Chen R. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv 2018; 15:869-879. [PMID: 30169976 DOI: 10.1080/17425247.2018.1517749] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
14
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
15
|
Son MS, Park CH, Kim JW. Effect of Valproic Acid on Nitric Oxide and Nitric Oxide Synthase in Trabecular Meshwork Cell. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.6.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Myung Seo Son
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
16
|
Lee SE, Kim JW. Effects of Valproic Acid on the Survival of Human Tennon's Capsule Fibroblasts. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.11.1056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- See Eun Lee
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
17
|
Cardona AF, Rojas L, Wills B, Bernal L, Ruiz-Patiño A, Arrieta O, Hakim EJ, Hakim F, Mejía JA, Useche N, Bermúdez S, Carranza H, Vargas C, Otero J, Mayor LC, Ortíz LD, Franco S, Ortíz C, Gil-Gil M, Balaña C, Zatarain-Barrón ZL. Efficacy and safety of Levetiracetam vs. other antiepileptic drugs in Hispanic patients with glioblastoma. J Neurooncol 2017; 136:363-371. [PMID: 29177594 DOI: 10.1007/s11060-017-2660-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/29/2017] [Indexed: 01/05/2023]
Abstract
Epilepsy is a common symptom in patients with glioblastoma (GB). 213 patients with GB from RedLANO follow-up registry were included. All patients underwent surgery, if feasible, followed by chemoradiation based on temozolomide (Stupp platform). Information was recorded regarding demographics, seizure timing, anti-epileptic drugs (AEDs), dosage, time to next seizure, total seizures in 6 months, and main side effects of AEDs. The relationship between epilepsy treatment and overall survival (OS) was evaluated. Mean age was 53 years old and 56.8% were male. Seventy-eight patients (37%) were treated with levetiracetam (LEV), 27% were given another AED and 36% did not require any AED. Choice of AED was not associated with age (p = 0.67), performance status (p = 0.24) or anatomic tumor site (p = 0.34). Seizures and AED requirement were greater in those having primary GB (p = 0.04). After starting an AED, the mean time until next crisis was 9.9 days (SD ± 6.3), which was shorter in those receiving LEV (p = 0.03); mean number of seizures during the first 3 and 6 months were 2.9 and 4, respectively. Most patients treated with LEV (n = 46) required less than two medication adjustments compared to those treated with other AEDs (p = 0.02). Likewise, less patients exposed to LEV required a coadjuvant drug (p = 0.04). Additionally, patients receiving LEV had significantly less adverse effects compared to patients treated with another AED. OS was significantly higher in the group treated with LEV compared to other AEDs (25.5 vs. 17.9 months; p = 0.047). Patients treated with LEV had better seizure control and longer OS compared to other AEDs.
Collapse
Affiliation(s)
- Andrés F Cardona
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia. .,Foundation for Clinical and Applied Cancer Research (FICMAC), Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia. .,Latin American Neuro-Oncology Network (RedLANO), Bogotá, Colombia.
| | - Leonardo Rojas
- Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Beatriz Wills
- Foundation for Clinical and Applied Cancer Research (FICMAC), Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia
| | - Laura Bernal
- Internal Medicine Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Enrique Jiménez Hakim
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia.,Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia
| | - Fernando Hakim
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia.,Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia
| | - Juan Armando Mejía
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia.,Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia
| | - Nicolás Useche
- Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia.,Radiology Department, Neuro-radiology Section, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Sonia Bermúdez
- Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia.,Radiology Department, Neuro-radiology Section, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Hernán Carranza
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research (FICMAC), Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia
| | - Carlos Vargas
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research (FICMAC), Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia
| | - Jorge Otero
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research (FICMAC), Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia
| | - Luis Carlos Mayor
- Neurology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - León Darío Ortíz
- Latin American Neuro-Oncology Network (RedLANO), Bogotá, Colombia.,Neuro-Oncology Unit, Clinical Oncology Department, Clínica de Las Américas, Medellín, Colombia
| | - Sandra Franco
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Carlos Ortíz
- Brain Tumors Unit, Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Miguel Gil-Gil
- Medical Oncology Service, Catalan Institute of Oncology, Hospital Duran I Reynals - IDIBELL, Hospitalet de Llobregat, Spain
| | - Carmen Balaña
- Medical Oncology Service, Catalan Institute of Oncology, Hospital Universitari Germans Trias i Pujol, IGTP, Badalona, Spain
| | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), México City, Mexico
| |
Collapse
|
18
|
Zhang H, Patel A, Wang YJ, Zhang YK, Kathawala RJ, Qiu LH, Patel BA, Huang LH, Shukla S, Yang DH, Ambudkar SV, Fu LW, Chen ZS. The BTK Inhibitor Ibrutinib (PCI-32765) Overcomes Paclitaxel Resistance in ABCB1- and ABCC10-Overexpressing Cells and Tumors. Mol Cancer Ther 2017; 16:1021-1030. [PMID: 28265007 DOI: 10.1158/1535-7163.mct-16-0511] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 02/04/2017] [Indexed: 01/20/2023]
Abstract
Paclitaxel is one of the most widely used antineoplastic drugs in the clinic. Unfortunately, the occurrence of cellular resistance has limited its efficacy and application. The ATP-binding cassette subfamily B member 1 (ABCB1/P-glycoprotein) and subfamily C member 10 (ABCC10/MRP7) are the major membrane protein transporters responsible for the efflux of paclitaxel, constituting one of the most important mechanisms of paclitaxel resistance. Here, we demonstrated that the Bruton tyrosine kinase inhibitor, ibrutinib, significantly enhanced the antitumor activity of paclitaxel by antagonizing the efflux function of ABCB1 and ABCC10 in cells overexpressing these transporters. Furthermore, we demonstrated that the ABCB1 or ABCC10 protein expression was not altered after treatment with ibrutinib for up to 72 hours using Western blot analysis. However, the ATPase activity of ABCB1 was significantly stimulated by treatment with ibrutinib. Molecular docking analysis suggested the binding conformation of ibrutinib within the large cavity of the transmembrane region of ABCB1. Importantly, ibrutinib could effectively enhance paclitaxel-induced inhibition on the growth of ABCB1- and ABCC10-overexpressing tumors in nude athymic mice. These results demonstrate that the combination of ibrutinib and paclitaxel can effectively antagonize ABCB1- or ABCC10-mediated paclitaxel resistance that could be of great clinical interest. Mol Cancer Ther; 16(6); 1021-30. ©2017 AACR.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Long-Hui Qiu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bhargav A Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Li-Hua Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Li-Wu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York.
| |
Collapse
|
19
|
Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs. Epilepsy Res 2016; 126:98-101. [DOI: 10.1016/j.eplepsyres.2016.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 01/16/2023]
|
20
|
Wang F, Chen Y, Huang L, Liu T, Huang Y, Zhao J, Wang X, Yang K, Ma S, Huang L, To KKW, Gu Y, Fu L. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells. Oncotarget 2016; 6:40850-65. [PMID: 26506420 PMCID: PMC4747373 DOI: 10.18632/oncotarget.5813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yifan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Lihua Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tao Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianming Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaokun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaolin Ma
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liyan Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
21
|
Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, Lee HF, Chi CS. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci 2016; 17:E1242. [PMID: 27490534 PMCID: PMC5000640 DOI: 10.3390/ijms17081242] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Herng-Shen Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, 813 Kaohsiung, Taiwan.
| | - Kai-Ping Chang
- Department of Pediatrics, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
- Faculty of Medicine, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Hsin-Chuan Lai
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Kaohsiung Chang Gung Medical Center, 833 Kaohsiung, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, 407 Taichung, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| |
Collapse
|
22
|
Liu N, Wang C, Wang L, Gao L, Cheng H, Tang G, Hu X, Wang J. Valproic acid enhances the antileukemic effect of cytarabine by triggering cell apoptosis. Int J Mol Med 2016; 37:1686-96. [PMID: 27082972 DOI: 10.3892/ijmm.2016.2552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/23/2016] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive clonal malignancy of hematopoietic progenitor cells with a poor clinical outcome. The resistance of leukemia cells to contemporary chemotherapy is one of the most formidable obstacles to treating AML. Combining valproic acid (VPA) with other anti-leukemic agents has previously been noted as a useful and necessary strategy which can be used to specifically induce anticancer gene expression. In the present study, we demonstrated the synergistic antileukemic activities between VPA and cytarabine (Ara‑C) in a retrovirus-mediated murine model with MLL-AF9 leukemia, three leukemia cell lines (THP-1, K562 and HL-60) and seven primary human AML samples. Using RT-qPCR, we noted that the combination of VPA and Ara‑C significantly upregulated Bax expression and led to the arrest of leukemia cell proliferation, sub-G1 DNA accumulation and cell apoptosis, as demonstrated by flow cytometric analysis. Significantly, further experiments revealed that knockdown of Bax expression prevented VPA and Ara‑C‑induced cell apoptosis in THP-1 cells. The results of our present study demonstrated the synergistic antileukemic effect of combined VPA and Ara‑C treatment in AML, and thus we suggest that VPA be used an alternative treatment for AML.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Libing Wang
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lei Gao
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Hui Cheng
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
23
|
Shi M, Ren X, Wang X, Wang H, Liu G, Yuan X, Zheng S, Yu L, Pan S, Song G, Guo Q, Li L, Zhang X, Zhang Z, Ding H, Jiang G. A novel combination of oridonin and valproic acid in enhancement of apoptosis induction of HL-60 leukemia cells. Int J Oncol 2015; 48:734-46. [PMID: 26676928 DOI: 10.3892/ijo.2015.3294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/27/2015] [Indexed: 11/06/2022] Open
Abstract
Oridonin, obtained from the traditional Chinese herbal medicine rabdosia rubescens, exerts potent antitumor activities in cancer cells. Valproic acid (VPA), as a potent histone deacetylase inhibitor (HDACI), also plays an important role in inhibition of proliferation of tumor cells. However, there are no reports so far on the cooperation between oridonin and VPA for anti-leukemic effect. Therefore, in the present study, we undertook experiments to determine whether lower concentration of oridonin in conjunction with lower concentration of VPA would produce even more encouraging synergistic effect than each of them alone, and to clarify its molecular mechanism. The results demonstrated that the lower concentration of oridonin in combination with lower concentration of VPA synergistically inhibited the proliferation of HL-60 cells, and induced obvious caspase-dependent apoptosis through activation of the intrinsic apoptosis pathway, which is involved in the downregulation of Bcl-2/Bax ratio, release of cytochrome c to cytosol and caspase-9 activation, as well as through the extrinsic apoptosis pathway mediated by Fas/FasL and caspase-8 activation. In addition, MAPK signaling pathway was also involved in apoptosis induced by oridonin plus VPA. Furthermore, the combination treatment in vivo remarkably reduced the xenograft tumor size and triggered tumor cell apoptosis. Taken together, the novel combination of oridonin plus VPA exerted synergistic anti-proliferative and apoptosis-inducing effects on human myeloid leukemia cells, and may serve as a potential promising anti-leukemia strategy.
Collapse
Affiliation(s)
- Meiyan Shi
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Xia Ren
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Hengxiao Wang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Guoqiang Liu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Shubo Zheng
- General Surgery Department, People's Hospital of Wenshang County, Wenshang, Shandong, P.R. China
| | - Linchang Yu
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Sufei Pan
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Guanhua Song
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Qiang Guo
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Lianlian Li
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Xiaoyu Zhang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Zhiyong Zhang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Huifang Ding
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong, P.R. China
| |
Collapse
|
24
|
Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice. PLoS One 2015; 10:e0143701. [PMID: 26633878 PMCID: PMC4669130 DOI: 10.1371/journal.pone.0143701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/08/2015] [Indexed: 11/26/2022] Open
Abstract
Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.
Collapse
|
25
|
Abstract
The phenomenon of multidrug resistance (MDR) in cancer is associated with the overexpression of the ATP-binding cassette (ABC) transporter proteins, including multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein. MRP1 plays an active role in protecting cells by its ability to efflux a vast array of drugs to sub-lethal levels. There has been much effort in elucidating the mechanisms of action, structure and substrates and substrate binding sites of MRP1 in the last decade. In this review, we detail our current understanding of MRP1, its clinical relevance and highlight the current environment in the search for MRP1 inhibitors. We also look at the capacity for the rapid intercellular transfer of MRP1 phenotype from spontaneously shed membrane vesicles known as microparticles and discuss the clinical and therapeutic significance of this in the context of cancer MDR.
Collapse
Affiliation(s)
- Jamie F Lu
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Deep Pokharel
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Mary Bebawy
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| |
Collapse
|
26
|
Xu LH, Mu FF, Zhao JH, He Q, Cao CL, Yang H, Liu Q, Liu XH, Sun SJ. Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues. PLoS One 2015; 10:e0129091. [PMID: 26075388 PMCID: PMC4468051 DOI: 10.1371/journal.pone.0129091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 01/25/2023] Open
Abstract
Acute and chronic lead (Pb) exposure might cause hypertension and cardiovascular diseases. The purpose of this study was to evaluate the effects of early acute exposure to Pb on the cellular morphology, apoptosis, and proliferation in rats and to elucidate the early mechanisms involved in the development of Pb-induced hypertension. Very young Sprague-Dawley rats were allowed to drink 1% Pb acetate for 12 and 40 days. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA) decreased in the tissues of the abdominal and thoracic aortas and increased in the cardiac tissue after 12 and 40 days of Pb exposure, respectively. Bax was upregulated and Bcl-2 was downregulated in vascular and cardiac tissues after 40 days of Pb exposure. In addition, an increase in caspase-3 activity was observed after 40 days of exposure to Pb. In terms of morphology, we found that the internal elastic lamina (IEL) of aorta lost the original curve and the diameter of cardiac cell was enlarged after 40 days. Furthermore, the exposure led to a marked increase in acetylated histone H3 levels in the aortas and cardiac tissue after 12 and 40 days, than that in the control group. These findings indicate that Pb might increase the level of histone acetylation and induce apoptosis in vascular and cardiac tissues. However, the mechanism involved need to be further investigated.
Collapse
Affiliation(s)
- Li-Hui Xu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang-Fang Mu
- College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jian-Hong Zhao
- The Second Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Qiang He
- The Second Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Cui-Li Cao
- Laboratory of Neurobiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui Yang
- College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Liu
- College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xue-Hui Liu
- College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Su-Ju Sun
- College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- * E-mail:
| |
Collapse
|
27
|
Zhang Y, Wu C, Jiang H, Zuo J, Wang X. Spectroscopic and electrochemical studies on molecular recognition of tetrathiafulvalene derivative with P-glycoprotein and drug-resistant leukemia cells. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5352-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zuco V, Cassinelli G, Cossa G, Gatti L, Favini E, Tortoreto M, Cominetti D, Scanziani E, Castiglioni V, Cincinelli R, Giannini G, Zunino F, Zaffaroni N, Lanzi C, Perego P. Targeting the invasive phenotype of cisplatin-resistant Non-Small Cell Lung Cancer cells by a novel histone deacetylase inhibitor. Biochem Pharmacol 2015; 94:79-90. [DOI: 10.1016/j.bcp.2015.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/11/2023]
|
29
|
Hasanzadeh Kafshgari M, Alnakhli M, Delalat B, Apostolou S, Harding FJ, Mäkilä E, Salonen JJ, Kuss BJ, Voelcker NH. Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomater Sci 2015; 3:1555-65. [DOI: 10.1039/c5bm00204d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyethyleneimine-coated mesoporous silicon nanoparticles efficiently deliver siRNA in glioblastoma cells, subsequently reducing the protein expression of a chemotherapy resistance gene by 70% within 72 hours.
Collapse
Affiliation(s)
- M. Hasanzadeh Kafshgari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - M. Alnakhli
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - B. Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - S. Apostolou
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - F. J. Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - E. Mäkilä
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turku
- Finland
| | - J. J. Salonen
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turku
- Finland
| | - B. J. Kuss
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - N. H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| |
Collapse
|
30
|
Zhang H, Patel A, Ma SL, Li XJ, Zhang YK, Yang PQ, Kathawala RJ, Wang YJ, Anreddy N, Fu LW, Chen ZS. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1. Br J Pharmacol 2014; 171:5845-57. [PMID: 25164592 DOI: 10.1111/bph.12889] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. EXPERIMENTAL APPROACH Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. KEY RESULTS Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. CONCLUSIONS AND IMPLICATIONS Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ni X, Li L, Pan G. HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (Review). Oncol Lett 2014; 9:515-521. [PMID: 25624882 PMCID: PMC4301560 DOI: 10.3892/ol.2014.2714] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/31/2014] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are becoming a novel and promising class of antineoplastic agents that have been used for cancer therapy in the clinic. Two HDAC inhibitors, vorinostat and romidepsin, have been approved by the Food and Drug Administration to treat T-cell lymphoma. Nevertheless, similar to common anticancer drugs, HDAC inhibitors have been found to induce multidrug resistance (MDR), which is an obstacle for the success of chemotherapy. The most common cause of MDR is considered to be the increased expression of adenosine triphosphate binding cassette (ABC) transporters. Numerous studies have identified that the upregulation of ABC transporters is often observed following treatment with HDAC inhibitors, particularly the increased expression of P-glycoprotein, which leads to drug efflux, reduces intracellular drug concentration and induces MDR. The present review summarizes the key ABC transporters involved in MDR following various HDAC inhibitor treatments in a range of cancer cell lines and also explored the potential mechanisms that result in MDR, including the effect of nuclear receptors, which are the upstream regulatory factors of ABC transporters.
Collapse
Affiliation(s)
- Xuan Ni
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li Li
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| |
Collapse
|
32
|
Tang SJ, Chen LK, Wang F, Zhang YK, Huang ZC, To KKW, Wang XK, Talele TT, Chen ZS, Chen WQ, Fu LW. CEP-33779 antagonizes ATP-binding cassette subfamily B member 1 mediated multidrug resistance by inhibiting its transport function. Biochem Pharmacol 2014; 91:144-56. [PMID: 25058526 DOI: 10.1016/j.bcp.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters often leads to the development of multidrug resistance (MDR), which is the major factor contributing to the failure of chemotherapy. The objective of this study was to investigate the enhancement of CEP-33779, a small-molecule inhibitor of Janus kinase 2 (JAK2), on the efficacy of conventional chemotherapeutic agents in MDR cells with overexpression of P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Our results showed that CEP-33779, at nontoxic concentrations, significantly sensitized ABCB1 overexpressing MDR cells to its anticancer substrates. CEP-33779 significantly increased intracellular accumulation and decreased the efflux of doxorubicin by inhibiting the ABCB1 transport function. Furthermore, CEP-33779 did not alter the expression of ABCB1 both at protein and mRNA levels but did stimulate the activity of ABCB1 ATPase. CEP-33779 was predicted to bind within the large hydrophobic cavity of homology modeled ABCB1. In addition, the down-regulation of JAK2 by shRNA altered neither the expression of ABCB1 nor the cytotoxic effect of chemotherapeutic agents in ABCB1-overexpressing cells. Significantly, CEP-33779 enhanced the efficacy of vincristine against the ABCB1-overexpressing and drug resistant KBv200 cell xenograft in nude mice. In conclusion, we conclude that CEP-33779 enhances the efficacy of substrate drugs in ABCB1-overexpressing cells by directly inhibiting ABCB1 transport function. The findings encouraged to further study on the combination therapy of CEP-33779 with conventional chemotherapeutic agents in ABCB1 mediated-MDR cancer patients.
Collapse
Affiliation(s)
- Shang-jun Tang
- Department of General Surgery, Chen Xing Hai Hospital, Guangdong Medical College, Zhongshan, China; State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Li-kun Chen
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Yun-kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhen-cong Huang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Kenneth Kin Wah To
- School of Pharmacy, Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Xiao-kun Wang
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wei-qiang Chen
- Department of General Surgery, Chen Xing Hai Hospital, Guangdong Medical College, Zhongshan, China.
| | - Li-wu Fu
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
33
|
Heo SK, Noh EK, Yoon DJ, Jo JC, Park JH, Kim H. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity. PLoS One 2014; 9:e98859. [PMID: 24918603 PMCID: PMC4053340 DOI: 10.1371/journal.pone.0098859] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA) is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML) cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose) polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Eui-Kyu Noh
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Dong-Joon Yoon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae-Cheol Jo
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae-Hoo Park
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hawk Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
- Division of Hematology and Hematological Malignancies, Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
In Vitro Characterization of Valproic Acid, ATRA, and Cytarabine Used for Disease-Stabilization in Human Acute Myeloid Leukemia: Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells. LEUKEMIA RESEARCH AND TREATMENT 2014; 2014:143479. [PMID: 24527217 PMCID: PMC3910457 DOI: 10.1155/2014/143479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/28/2013] [Indexed: 02/08/2023]
Abstract
The combined use of the histone deacetylase inhibitor valproic acid (VPA), the retinoic acid receptor- α agonist all-trans retinoic acid (ATRA), and the deoxyribonucleic acid polymerase- α inhibitor cytarabine (Ara-C) is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML). Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.
Collapse
|
35
|
Bruna J, Miró J, Velasco R. Epilepsy in glioblastoma patients: basic mechanisms and current problems in treatment. Expert Rev Clin Pharmacol 2013; 6:333-44. [PMID: 23656344 DOI: 10.1586/ecp.13.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glioblastoma-related epilepsy requires paying careful attention to a combination of factors with an integrated approach. Major interrelated issues must be considered in the seizure care of glioblastoma patients. Seizure control frequently requires the administration of antiepileptic drugs simultaneously with other treatments, including surgery, radiotherapy and chemotherapy, with complete seizure relief often being difficult to achieve. The pharmacological interactions between antiepileptic drugs and antineoplastic agents can modify the activity of both treatments, compromising their efficacy and increasing the probability of developing adverse events related to both therapies. This review summarizes the new pathophysiological pathways involved in the epileptogenesis of glioblastoma-related seizures and the interactions between antiepileptic drugs and oncological treatment, paying special attention to its impact on survival and the current evidence of the antiepileptic treatment efficacy, including the potential usefulness of new third-generation compounds.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO Duran i Reynals, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Wu S, Zheng SD, Huang HL, Yan LC, Yin XF, Xu HN, Zhang KJ, Gui JH, Chu L, Liu XY. Lithium down-regulates histone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin. J Biol Chem 2013; 288:35500-10. [PMID: 24165128 DOI: 10.1074/jbc.m113.479865] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lithium is an effective mood stabilizer that has been clinically used to treat bipolar disorder for several decades. Recent studies have suggested that lithium possesses robust neuroprotective and anti-tumor properties. Thus far, a large number of lithium targets have been discovered. Here, we report for the first time that HDAC1 is a target of lithium. Lithium significantly down-regulated HDAC1 at the translational level by targeting HDAC1 mRNA. We also showed that depletion of HDAC1 is essential for the neuroprotective effects of lithium and for the lithium-mediated degradation of mutant huntingtin through the autophagic pathway. Our studies explain the multiple functions of lithium and reveal a novel mechanism for the function of lithium in neurodegeneration.
Collapse
Affiliation(s)
- Shuai Wu
- From the State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rudà R, Bello L, Duffau H, Soffietti R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2013; 14 Suppl 4:iv55-64. [PMID: 23095831 DOI: 10.1093/neuonc/nos199] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seizures represent a common symptom in low-grade gliomas; when uncontrolled, they significantly contribute to patient morbidity and negatively impact quality of life. Tumor location and histology influence the risk for epilepsy. The pathogenesis of tumor-related epilepsy is multifactorial and may differ among tumor histologies (glioneuronal tumors vs diffuse grade II gliomas). Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Epilepsy surgery may improve seizure control. Radiotherapy and chemotherapy with alkylating agents (procarbazine + CCNU+ vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (levetiracetam, topiramate, lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but there is lack of evidence regarding their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University of Turin and San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
38
|
Pratt SE, Durland–Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkins EJ, Dantzig AH. Efficacy of Low-Dose Oral Metronomic Dosing of the Prodrug of Gemcitabine, LY2334737, in Human Tumor Xenografts. Mol Cancer Ther 2013; 12:481-90. [DOI: 10.1158/1535-7163.mct-12-0654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
He D, Zhao XQ, Chen XG, Fang Y, Singh S, Talele TT, Qiu HJ, Liang YJ, Wang XK, Zhang GQ, Chen ZS, Fu LW. BIRB796, the inhibitor of p38 mitogen-activated protein kinase, enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cells. PLoS One 2013; 8:e54181. [PMID: 23349819 PMCID: PMC3548808 DOI: 10.1371/journal.pone.0054181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/07/2012] [Indexed: 01/07/2023] Open
Abstract
ATP-binding-cassette family membrane proteins play an important role in multidrug resistance. In this study, we investigated BIRB796, an orally active inhibitor of p38 mitogen-activated protein kinase, reversed MDR induced by ABCB1, ABCG2 and ABCC1. Our results showed that BIRB796 could reverse ABCB1-mediated MDR in both the drug selected and transfected ABCB1-overexpressing cell models, but did not enhance the efficacy of substrate-chemotherapeutical agents in ABCC1 or ABCG2 overexpression cells and their parental sensitive cells. Furthermore, BIRB796 increased the intracellular accumulation of the ABCB1 substrates, such as rhodamine 123 and doxorubicin. Moreover, BIRB796 bidirectionally mediated the ATPase activity of ABCB1, stimulating at low concentration, inhibiting at high concentration. However, BIRB796 did not alter the expression of ABCB1 both at protein and mRNA level. The down-regulation of p38 by siRNA neither affected the expression of ABCB1 nor the cytotoxic effect of paclitaxel on KBV200. The binding model of BIRB796 within the large cavity of the transmembrane region of ABCB1 may form the basis for future lead optimization studies. Importantly, BIRB796 also enhanced the effect of paclitaxel on the inhibition of growth of the ABCB1-overexpressing KBV200 cell xenografts in nude mice. Overall, we conclude that BIRB796 reverses ABCB1-mediated MDR by directly inhibiting its transport function. These findings may be useful for cancer combinational therapy with BIRB796 in the clinic.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- HL-60 Cells
- Humans
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Naphthalenes/pharmacology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Paclitaxel/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/genetics
Collapse
Affiliation(s)
- Dan He
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumuqi, China
| | - Xiao-qin Zhao
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xing-gui Chen
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi Fang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Satyakam Singh
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Hui-juan Qiu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yong-ju Liang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-kun Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Guo-qing Zhang
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumuqi, China
- * E-mail: (LF); (GZ)
| | - Zhe-sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Li-wu Fu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LF); (GZ)
| |
Collapse
|
40
|
Fujii K, Suzuki N, Yamamoto T, Suzuki D, Iwatsuki K. Valproic acid inhibits proliferation of EB virus-infected natural killer cells. ACTA ACUST UNITED AC 2013; 17:163-9. [PMID: 22664116 DOI: 10.1179/102453312x13376952196494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is no recognized treatment for Epstein-Barr virus (EBV)-associated natural killer (NK) cell lymphoproliferative disorders (LPDs). To determine the possibility of histone deacetylase inhibitors as a therapeutic tool for such disorders, we investigated the anti-proliferative effects of valproic acid (VPA) on two EBV-infected NK cell lines (KAI3 and NKED). VPA inhibited the growth of both lines in a dose- and time-dependent manner by inducing histone hyperacetylation. G1 cell cycle arrest was induced at 24 hours and was associated with increased expression of p21(WAF1), p27(Kip1), and cyclin E and decreased expression of cyclin D2, CDK4, and c-myc. Sub-G1 fractions were not significantly changed at 24 hours, whereas cleaved caspase-3 and cleaved PARP were already detected, and the extrinsic apoptotic pathway, determined by cleaved caspase-8, was activated. Finally, sub-G1 accumulation was increased after 72 hours following stimulation. These findings indicate that VPA might be a therapeutic option for EBV-associated NK-cell LPDs.
Collapse
Affiliation(s)
- Kazuyasu Fujii
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | | | | | | |
Collapse
|
41
|
Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, To KKW, Zhou W, Huang HB, Fu LW. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol 2012; 166:1669-83. [PMID: 22233293 DOI: 10.1111/j.1476-5381.2012.01849.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Besides targeting the well-known oncogenic c-Met, crizotinib is the first oral tyrosine kinase inhibitor inhibiting anaplastic lymphoma kinase (ALK) in clinical trials for the treatment of non-small cell lung cancer. Here, we assessed the possible reversal of multidrug resistance (MDR) by crizotinib in vitro and in vivo. EXPERIMENTAL APPROACH 1-(4,5-Dimethylthiazol-2-yl)-3,5- diphenylformazan was used in vitro and xenografts in nude mice were used in vivo to investigate reversal of MDR by crizotinib. To understand the mechanisms for MDR reversal, the alterations of intracellular doxorubicin or rhodamine 123 accumulation, doxorubicin efflux, ABCB1 expression level, ATPase activity of ABCB1 and crizotinib-induced c-Met, Akt and ERK1/2 phosphorylation were examined. KEY RESULTS Crizotinib significantly enhanced the cytotoxicity of chemotherapeutic agents which are also ABCB1 substrates, in MDR cells with no effect found on sensitive cells in vitro and in vivo. Additionally, crizotinib significantly increased intracellular accumulation of rhodamine 123 and doxorubicin and inhibited the drug efflux in ABCB1-overexpressing MDR cells. Further studies showed that crizotinib enhanced the ATPase activity of ABCB1 in a concentration-dependent manner. However, expression of ABCB1 was not affected, and reversal of MDR by crizotinib was not related to the phosphorylation of c-Met, Akt or ERK1/2. Importantly, crizotinib significantly enhanced the effect of paclitaxel against KBv200 cell xenografts in nude mice. CONCLUSIONS AND IMPLICATIONS Crizotinib reversed ABCB1-mediated MDR by inhibiting ABCB1 transport function without affecting ABCB1 expression or blocking the Akt or ERK1/2 pathways. These findings are useful for planning combination chemotherapy of crizotinib with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wen-jing Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gillet N, Vandermeers F, de Brogniez A, Florins A, Nigro A, François C, Bouzar AB, Verlaeten O, Stern E, Lambert DM, Wouters J, Willems L. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors. Pathogens 2012; 1:65-82. [PMID: 25436765 PMCID: PMC4235689 DOI: 10.3390/pathogens1020065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 12/30/2022] Open
Abstract
We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Alix de Brogniez
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Arnaud Florins
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Annamaria Nigro
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Carole François
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Amel-Baya Bouzar
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Olivier Verlaeten
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Eric Stern
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Didier M Lambert
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Johan Wouters
- Biological Chemistry, Facultés Universitaires Notre-Dame de la Paix, Namur 5000, Belgium.
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| |
Collapse
|
43
|
Pretreatment of leukemic cells with low-dose decitabine markedly enhances the cytotoxicity of gemtuzumab ozogamicin. Leukemia 2012; 27:233-5. [PMID: 22814292 PMCID: PMC3542629 DOI: 10.1038/leu.2012.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Liu KJ, He JH, Su XD, Sim HM, Xie JD, Chen XG, Wang F, Liang YJ, Singh S, Sodani K, Talele TT, Ambudkar SV, Chen ZS, Wu HY, Fu LW. Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo. Int J Cancer 2012; 132:224-35. [PMID: 22623106 DOI: 10.1002/ijc.27649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Saracatinib, a highly selective, dual Src/Abl kinase inhibitor, is currently in a Phase II clinical trial for the treatment of ovarian cancer. In our study, we investigated the effect of saracatinib on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters in vitro and in vivo. Our results showed that saracatinib significantly enhanced the cytotoxicity of ABCB1 substrate drugs in ABCB1 overexpressing HeLa/v200, MCF-7/adr and HEK293/ABCB1 cells, an effect that was stronger than that of gefitinib, whereas it had no effect on the cytotoxicity of the substrates in ABCC1 overexpressing HL-60/adr cells and its parental sensitive cells. Additionally, saracatinib significantly increased the doxorubicin (Dox) and Rho 123 accumulation in HeLa/v200 and MCF-7/adr cells, whereas it had no effect on HeLa and MCF-7 cells. Furthermore, saracatinib stimulated the ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin in a concentration-dependent manner. In addition, the homology modeling predicted the binding conformation of saracatinib within the large hydrophobic drug-binding cavity of human ABCB1. However, neither the expression level of ABCB1 nor the phosphorylation level of Akt was altered at the reversal concentrations of saracatinib. Importantly, saracatinib significantly enhanced the effect of paclitaxel against ABCB1-overexpressing HeLa/v200 cancer cell xenografts in nude mice. In conclusion, saracatinib reverses ABCB1-mediated MDR in vitro and in vivo by directly inhibiting ABCB1 transport function, without altering ABCB1 expression or AKT phosphorylation. These findings may be helpful to attenuate the effect of MDR by combining saracatinib with other chemotherapeutic drugs in the clinic.
Collapse
Affiliation(s)
- Ke-Jun Liu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Berendsen S, Broekman M, Seute T, Snijders T, van Es C, de Vos F, Regli L, Robe P. Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 2012; 21:1391-415. [DOI: 10.1517/13543784.2012.694425] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Pierre Robe
- UMC Utrecht,
Utrecht, Netherlands
- University of Liège,
Liège, Belgium
| |
Collapse
|
46
|
Mukherjee S, Sarkar R, Biswas J, Roy M. Curcumin Inhibits Histone Deacetylase Leading to Cell Cycle Arrest and Apoptosis via Upregulation of p21 in Breast Cancer Cell Lines. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/19430892.2012.691799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Zapotocky M, Mejstrikova E, Smetana K, Stary J, Trka J, Starkova J. Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically. Cancer Lett 2012; 319:144-153. [PMID: 22261333 DOI: 10.1016/j.canlet.2011.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/04/2011] [Accepted: 12/25/2011] [Indexed: 01/07/2023]
Abstract
Valproic acid (VPA) has extensive effects on leukemic blasts through its inhibition of histone deacetylases. The main goal of this study was to identify the subgroup of patients who may benefit most from VPA treatment. We examined the significance of t(8;21) chromosomal aberration for VPA treatment response among acute myeloid leukemia (AML) patients by direct comparison of AML1/ETO-negative vs. positive leukemic cell-lines as well as bone marrow blasts from AML patients. In t(8;21) AML, leukemogenesis is supposed to be induced via aberrant recruitment of histone deacetylases. AML cell lines of different genotypes (Kasumi-1, Kasumi-6, MV4;11, K562) and diagnostic bone marrow samples from patients were treated with VPA. VPA induced apoptosis in AML1/ETO-positive and MLL-AF4-positive cells in a dose-dependent manner. Differentiation, as indicated by changes in immunophenotype, was observed only in AML1/ETO-positive cells. VPA increased the expression of AML1 target genes - PU.1, C/EBPa, BPI and IGFBP7 only in AML1/ETO-positive cells. This AML1/ETO-specific effect was confirmed also using patient blasts isolated at the time of diagnosis. AML1/ETO-positive leukemia shows specific mechanism of VPA residing from differentiation followed by apoptosis that is accompanied by an increase in the expression of repressed AML1 target genes. Our data suggest that AML1/ETO-positive patients might derive the greatest benefit from VPA treatment.
Collapse
Affiliation(s)
- Michal Zapotocky
- CLIP, Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP, Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Karel Smetana
- Institute of Hematology and Blood Transfusion, Charles University, 1st Medical School, Prague, Czech Republic
| | - Jan Stary
- CLIP, Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Jan Trka
- CLIP, Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School, Prague, Czech Republic.
| | - Julia Starkova
- CLIP, Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School, Prague, Czech Republic
| |
Collapse
|
48
|
Lane S, Gill D, McMillan NAJ, Saunders N, Murphy R, Spurr T, Keane C, Fan HM, Mollee P. Valproic acid combined with cytosine arabinoside in elderly patients with acute myeloid leukemia has in vitro but limited clinical activity. Leuk Lymphoma 2012; 53:1077-83. [PMID: 22098405 DOI: 10.3109/10428194.2011.642302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elderly patients with acute myeloid leukemia (AML) have a poor prognosis. The authors examined the in vitro and clinical activity of the histone deacetylase inhibitor valproic acid (VA) combined with cytosine arabinoside (AraC) in elderly patients with AML unsuited to intensive therapy. For the in vitro studies, primary AML cells from 11 patients were treated with AraC and VA and analyzed for apoptosis, cytostatic effects, differentiation and acetyl histone H3 induction. VA (alone and with AraC) enhanced apoptosis and induced acetyl histone H3. VA inhibited cell proliferation. For the clinical trial, 15 patients were treated with VA and subcutaneous AraC and assessed for toxicity and response. No complete or partial remissions were achieved. In conclusion, VA has in vitro activity against AML and has additional activity with AraC. However, in this study, this combination demonstrated limited clinical activity in elderly patients with AML.
Collapse
Affiliation(s)
- Steven Lane
- Queensland Institute of Medical Research, Herston, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Van Breemen MSM, Wilms EB, Vecht CJ. Seizure control in brain tumors. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:381-389. [PMID: 22230456 DOI: 10.1016/b978-0-444-52138-5.00026-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
50
|
Apatinib (YN968D1) enhances the efficacy of conventional chemotherapeutical drugs in side population cells and ABCB1-overexpressing leukemia cells. Biochem Pharmacol 2011; 83:586-97. [PMID: 22212563 DOI: 10.1016/j.bcp.2011.12.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/15/2011] [Accepted: 12/06/2011] [Indexed: 12/26/2022]
Abstract
P-glycoprotein (P-gp, ABCB1) overexpression and enrichment of stem-like cells are linked to poor prognosis in tumor patients. In this study, we investigated the effect of apatinib, an oral multi-targeted tyrosine kinase inhibitor (TKI) on enhancing the efficacy of conventional anticancer drugs in side population (SP) cells and ABCB1-overexpressing leukemia cells in vitro, in vivo and ex vivo. Our results showed that apatinib significantly enhanced the cytotoxicity and cell apoptosis induced by doxorubicin in SP cells sorted from K562 cells. Furthermore, apatinib also strongly reversed multidrug resistance (MDR) in K562/ADR cells, and the primary leukemia blasts overexpressing ABCB1 while showed no synergistic interactions with chemotherapeutic agents in MRP1-, MRP4-, MRP7- and LRP-overexpressing cells. Apatinib treatment markedly increased the intracellular accumulation of doxorubicin and rhodamine 123 in K562/ADR cells and the accumulation of rhodamine 123 in the primary leukemia blasts with ABCB1 overexpression. Apatinib stimulated the ATPase activity of P-gp in a dose-dependent manner but did not alter the expression of ABCB1 at both mRNA and protein levels. The phosphorylation level of AKT and ERK1/2 remained unchanged after apatinib treatment in both sensitive and MDR cells. Importantly, apatinib significantly enhanced the antitumor activity of doxorubicin in nude mice bearing K562/ADR xenografts. Taken together, our results suggest that apatinib could target to SP cells and ABCB1-overexpressing leukemia cells to enhance the efficacy of chemotherapeutic drugs. These findings should be useful for the combination of apatinib and chemotherapeutic agents in the clinic.
Collapse
|