1
|
El Hussein S, Wang W. Flow Cytometry Profiling of Plasmacytoid Dendritic Cell Neoplasms. Cancers (Basel) 2024; 16:2118. [PMID: 38893237 PMCID: PMC11171351 DOI: 10.3390/cancers16112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In this review, we aim to provide a summary of the diverse immunophenotypic presentations of distinct entities associated with plasmacytoid dendritic cell (pDC) proliferation. These entities include the following: (1) blastic plasmacytoid dendritic cell neoplasm (BPDCN); (2) mature pDC proliferation (MPDCP), most commonly seen in chronic myelomonocytic leukemia (CMML); and (3) myeloid neoplasms with pDC differentiation, in which pDCs show a spectrum of maturation from early immature pDCs to mature forms, most commonly seen in acute myeloid leukemia (pDC-AML). Our aim is to provide a flow cytometry diagnostic approach to these distinct and sometimes challenging entities and to clarify the immunophenotypic spectrum of neoplastic pDCs in different disease presentations. In this review, we also cover the strategies in the evaluation of residual disease, as well as the challenges and pitfalls we face in the setting of immune and targeted therapy. The differential diagnosis will also be discussed, as blasts in some AML cases can have a pDC-like immunophenotype, mimicking pDCs.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Vermont Larner College of Medicine, 111 Colchester Avenue, Burlington, VT 05401, USA
| | - Wei Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
2
|
Flynn PA, Long MD, Kosaka Y, Long N, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. Front Immunol 2024; 15:1297338. [PMID: 38495876 PMCID: PMC10943691 DOI: 10.3389/fimmu.2024.1297338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Dendritic cells (DC) are mediators between innate and adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for acute myeloid leukemia (AML) patients. Having a shared myeloid lineage it can be difficult to distinguish bone fide DCs from AML tumor cells. To date, there is little information on the effects of FLT3-ITD in DC biology. To further elucidate this relationship we utilized CITE-seq technology in combination with flow cytometry and multiplex immunoassays to measure changes to DCs in human and mouse tissues. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with AML to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet- phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells in the bone marrow and spleen compartments. Ex vivo stimulation of CD4+ T cells also showed increased Th17 phenotype in AML mice. Moreover, co-culture of AML mouse-derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes and their downstream effects on Th polarization.
Collapse
Affiliation(s)
- Patrick A. Flynn
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yoko Kosaka
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Nicola Long
- Department of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jessica S. Mulkey
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Jesse L. Coy
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Anupriya Agarwal
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Evan F. Lind
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Flynn PA, Long MD, Kosaka Y, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558512. [PMID: 37781631 PMCID: PMC10541139 DOI: 10.1101/2023.09.19.558512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dendritic cells (DC) are mediators of adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for leukemia patients. To date, there is little information on the effects of FLT3-ITD in DC biology. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with acute myeloid leukemia (AML) to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet - phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells. Furthermore, co-culture of AML mouse- derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes.
Collapse
|
5
|
Jansko-Gadermeir B, Leisch M, Gassner FJ, Zaborsky N, Dillinger T, Hutter S, Risch A, Melchardt T, Egle A, Drost M, Larcher-Senn J, Greil R, Pleyer L. Myeloid NGS Analyses of Paired Samples from Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group. Cancers (Basel) 2023; 15:2305. [PMID: 37190237 PMCID: PMC10136651 DOI: 10.3390/cancers15082305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Background: Next generation sequencing (NGS) has become indispensable for diagnosis, risk stratification, prognostication, and monitoring of response in patients with myeloid neoplasias. Guidelines require bone marrow evaluations for the above, which are often not performed outside of clinical trials, indicating a need for surrogate samples. Methods: Myeloid NGS analyses (40 genes and 29 fusion drivers) of 240 consecutive, non-selected, prospectively collected, paired bone marrow/peripheral blood samples were compared. Findings: Very strong correlation (r = 0.91, p < 0.0001), high concordance (99.6%), sensitivity (98.8%), specificity (99.9%), positive predictive value (99.8%), and negative predictive value (99.6%) between NGS analyses of paired samples was observed. A total of 9/1321 (0.68%) detected mutations were discordant, 8 of which had a variant allele frequency (VAF) ≤ 3.7%. VAFs between peripheral blood and bone marrow samples were very strongly correlated in the total cohort (r = 0.93, p = 0.0001) and in subgroups without circulating blasts (r = 0.92, p < 0.0001) or with neutropenia (r = 0.88, p < 0.0001). There was a weak correlation between the VAF of a detected mutation and the blast count in either the peripheral blood (r = 0.19) or the bone marrow (r = 0.11). Interpretation: Peripheral blood samples can be used to molecularly classify and monitor myeloid neoplasms via NGS without loss of sensitivity/specificity, even in the absence of circulating blasts or in neutropenic patients.
Collapse
Affiliation(s)
- Bettina Jansko-Gadermeir
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), 5020 Salzburg, Austria
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Michael Leisch
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Franz J. Gassner
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
| | - Thomas Dillinger
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), 5020 Salzburg, Austria
| | - Sonja Hutter
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), 5020 Salzburg, Austria
| | - Angela Risch
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Thomas Melchardt
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Alexander Egle
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Manuel Drost
- Assign Data Management and Biostatistics GmbH, 6020 Innsbruck, Austria
| | | | - Richard Greil
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Lisa Pleyer
- Salzburg Cancer Research Institute (SCRI), Center for Clinical Cancer and Immunology Trials (CCCIT), 5020 Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| |
Collapse
|
6
|
Zheng L, Zhang L, Guo Y, Xu X, Liu Z, Yan Z, Fu R. The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Front Immunol 2022; 13:1078421. [PMID: 36569863 PMCID: PMC9767949 DOI: 10.3389/fimmu.2022.1078421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a common hematological malignant disease, characterized by malignant hematopoietic stem cell proliferation in the bone marrow (BM); clinically, it mainly manifests clinically mainly by as pathological hematopoiesis, hemocytopenia, and high-risk transformation to acute leukemia. Several studies have shown that the BM microenvironment plays a critical role in the progression of MDS. In this study, we specifically evaluated mesenchymal stromal cells (MSCs) that exert immunomodulatory effects in the BM microenvironment. This immunomodulatory effect occurs through direct cell-cell contact and the secretion of soluble cytokines or micro vesicles. Several researchers have compared MSCs derived from healthy donors to low-risk MDS-associated bone mesenchymal stem cells (BM-MSCs) and have found no significant abnormalities in the MDS-MSC phenotype; however, these cells have been observed to exhibit altered function, including a decline in osteoblastic function. This altered function may promote MDS progression. In patients with MDS, especially high-risk patients, MSCs in the BM microenvironment regulate immune cell function, such as that of T cells, B cells, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSCs), macrophages, and Treg cells, thereby enabling MDS-associated malignant cells to evade immune cell surveillance. Alterations in MDS-MSC function include genomic instability, microRNA production, histone modification, DNA methylation, and abnormal signal transduction and cytokine secretion.
Collapse
Affiliation(s)
- Likun Zheng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Lei Zhang
- Department of Orthopedics, Kailuan General Hospital, Tangshan, Hebei, China
| | - Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yan
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Rong Fu,
| |
Collapse
|
7
|
Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:cancers14225656. [PMID: 36428749 PMCID: PMC9688609 DOI: 10.3390/cancers14225656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, University Hospital of Patras, 26504 Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, School of Medicine, University of Patras, 26332 Patras, Greece
| | - Periklis Foukas
- 2nd Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Myrto-Kalliopi Maragkou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 54124 Thessaloniki, Greece
| | - Eleni P. Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-969191
| |
Collapse
|
8
|
Roussel X, Garnache Ottou F, Renosi F. Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers (Basel) 2022; 14:cancers14143545. [PMID: 35884612 PMCID: PMC9317563 DOI: 10.3390/cancers14143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the main type I interferon producing cells in humans and are able to modulate innate and adaptive immune responses. Tumor infiltration by plasmacytoid dendritic cells is already well described and is associated with poor outcomes in cancers due to the tolerogenic activity of pDC. In hematological diseases, Blastic Plasmacytoid Dendritic Cells Neoplasm (BPDCN), aggressive leukemia derived from pDCs, is well described, but little is known about tumor infiltration by mature pDC described in Myeloid Neoplasms (MN). Recently, mature pDC proliferation (MPDCP) has been described as a differential diagnosis of BPDCN associated with acute myeloid leukemia (pDC-AML), myelodysplastic syndrome (pDC-MDS) and chronic myelomonocytic leukemia (pDC-CMML). Tumor cells are myeloid blasts and/or mature myeloid cells from related myeloid disorders and pDC derived from a clonal proliferation. The poor prognosis associated with MPDCP requires a better understanding of pDC biology, MN oncogenesis and immune response. This review provides a comprehensive overview about the biological aspects of pDCs, the description of pDC proliferation in MN, and an insight into putative therapies in pDC-AML regarding personalized medicine.
Collapse
Affiliation(s)
- Xavier Roussel
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Department of Clinical Hematology, University Hospital of Besançon, 25000 Besançon, France
- Correspondence: (X.R.); (F.R.)
| | - Francine Garnache Ottou
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
- Correspondence: (X.R.); (F.R.)
| |
Collapse
|
9
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
10
|
Reduced Plasmacytoid Dendritic Cell Output Is Associated With High Risk in Low-grade Myelodysplastic Syndrome. Hemasphere 2022; 6:e685. [PMID: 35136856 PMCID: PMC8815631 DOI: 10.1097/hs9.0000000000000685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022] Open
|
11
|
Comont T, Treiner E, Vergez F. From Immune Dysregulations to Therapeutic Perspectives in Myelodysplastic Syndromes: A Review. Diagnostics (Basel) 2021; 11:diagnostics11111982. [PMID: 34829329 PMCID: PMC8620222 DOI: 10.3390/diagnostics11111982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of myelodysplastic syndromes (MDSs) is complex and often includes immune dysregulation of both the innate and adaptive immune systems. Whereas clonal selection mainly involves smoldering inflammation, a cellular immunity dysfunction leads to increased apoptosis and blast proliferation. Addressing immune dysregulations in MDS is a recent concept that has allowed the identification of new therapeutic targets. Several approaches targeting the different actors of the immune system have therefore been developed. However, the results are very heterogeneous, indicating the need to improve our understanding of the disease and interactions between chronic inflammation, adaptive dysfunction, and somatic mutations. This review highlights current knowledge of the role of immune dysregulation in MDS pathophysiology and the field of new drugs.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-531-15-62-66; Fax: +33-531-15-62-58
| | - Emmanuel Treiner
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Immunology, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Infinity, Inserm UMR1291, 31000 Toulouse, France
| | - François Vergez
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Hematology, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
| |
Collapse
|
12
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
13
|
Van Leeuwen-Kerkhoff N, Westers TM, Poddighe PJ, Povoleri GAM, Timms JA, Kordasti S, De Gruijl TD, Van de Loosdrecht AA. Reduced frequencies and functional impairment of dendritic cell subsets and non-classical monocytes in myelodysplastic syndromes. Haematologica 2021; 107:655-667. [PMID: 33567812 PMCID: PMC8883570 DOI: 10.3324/haematol.2020.268136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
In myelodysplastic syndromes (MDS) the immune system is involved in pathogenesis as well as in disease progression. Dendritic cells (DC) are key players of the immune system by serving as regulators of immune responses. Their function has been scarcely studied in MDS and most of the reported studies didn't investigate naturally occurring DC subsets. Therefore, we here examined the frequency and function of DC subsets and slan+ non-classical monocytes in various MDS risk groups. Frequencies of DC as well as of slan+ monocytes were decreased in MDS bone marrow (BM) compared to normal bone marrow (NBM) samples. Transcriptional profiling revealed down-regulation of transcripts related to pro-inflammatory pathways in MDS-derived cells as compared to NBM. Additionally, their capacity to induce T cell proliferation was impaired. Multidimensional mass cytometry showed that whereas healthy donor-derived slan+ monocytes supported Th1/Th17/Treg differentiation/expansion their MDS-derived counterparts also mediated substantial Th2 expansion. Our findings point to a role for an impaired ability of DC subsets to adequately respond to cellular stress and DNA damage in the immune escape and progression of MDS. As such, it paves the way toward potential novel immunotherapeutic interventions.
Collapse
Affiliation(s)
- Nathalie Van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Theresia M Westers
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Pino J Poddighe
- Department of Clinical Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam
| | - Giovanni A M Povoleri
- Department Inflammation Biology, King's College London, Centre for Inflammation Biology and Cancer Immunology, London
| | - Jessica A Timms
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London
| | - Shahram Kordasti
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London, United Kingdom; Dipartimento Scienze Cliniche e Molecolari, UNIVPM, Ancona
| | - Tanja D De Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam.
| |
Collapse
|
14
|
Carenza C, Franzese S, Calcaterra F, Mavilio D, Della Bella S. Comprehensive Phenotyping of Dendritic Cells in Cancer Patients by Flow Cytometry. Cytometry A 2020; 99:218-230. [PMID: 33098618 DOI: 10.1002/cyto.a.24245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the complex interplay between tumor cells and the immune system. During the elimination phase of cancer immunoediting, immunostimulatory DCs are critical for the control of tumor growth. During the escape phase, regulatory DCs sustain tumor tolerance and contribute to the development of the immunosuppressive tumor microenvironment that characterizes this phase. Moreover, increasing evidence indicates that DCs are also critical for the success of cancer immunotherapy. Hence, there is increasing need to fully characterize DC subsets and their activatory/inhibitory profile in cancer patients. In this review, we describe the role played by different DC subsets in the different phases of cancer immunoediting, the function exerted by different activatory and inhibitory molecules expressed on DC surface, and the cytokines produced by distinct DC subsets, in order to provide an overview on the DC features that may be useful to be assessed when dealing with the flow cytometric characterization of DCs in cancer patients. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize the clinical, diagnostic, and therapeutic features of blastic plasmacytoid dendritic cell neoplasm (BPDCN). RECENT FINDINGS Several case reports and series revealed new clinical, molecular, diagnostic, and therapeutic aspects of the disease. The clinical presentation diversity has been confirmed, with frequent leukemic non-cutaneous or rare atypical manifestations. The clonal evolution in the development of BPDCN has not been sufficiently elucidated. Although certain immunophenotypic markers (CD4, TCL1, CD123, CD56, CD303) are indicative of BPDCN, the diagnosis remains in certain cases challenging. Adult (ALL)-type chemotherapy followed by hematopoietic stem cell transplantation (HSCT) is related to a favorable outcome, while chemotherapy alone seems enough in children. Future studies should continue to investigate whether CD123-directed therapies could be utilized. BPDCN is a rare aggressive malignancy that needs an aggressive induction therapy. Although a diagnostic consensus is still lacking, and large retrospective studies are also needed to obtain standardized treatment guidelines, the future perspectives are encouraging, because of novel therapeutic agents that are under investigation.
Collapse
Affiliation(s)
- Nikolaos J Tsagarakis
- Department of Immunology, "G. Gennimatas" General Hospital, Mesogion Avenue 154, 11527, Athens, Greece.
| | - Georgios Paterakis
- Department of Immunology, "G. Gennimatas" General Hospital, Mesogion Avenue 154, 11527, Athens, Greece
| |
Collapse
|
16
|
Abnormal Dendritic Cell-poiesis in Patients With Lower-risk Myelodysplastic Syndromes. Hemasphere 2020; 4:e335. [PMID: 32072149 PMCID: PMC7000478 DOI: 10.1097/hs9.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
|
17
|
Acute Lymphoblastic Leukaemia Cells Impair Dendritic Cell and Macrophage Differentiation: Role of BMP4. Cells 2019; 8:cells8070722. [PMID: 31337120 PMCID: PMC6679123 DOI: 10.3390/cells8070722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/06/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.
Collapse
|
18
|
Carenza C, Calcaterra F, Oriolo F, Di Vito C, Ubezio M, Della Porta MG, Mavilio D, Della Bella S. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol 2019; 10:1325. [PMID: 31244860 PMCID: PMC6579930 DOI: 10.3389/fimmu.2019.01325] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in initiating and shaping immune responses. The effects of DCs on adaptive immune responses depend partly on functional specialization of distinct DC subsets, and partly on the activation state of DCs, which is largely dictated by environmental signals. Fully activated immunostimulatory DCs express high levels of costimulatory molecules, produce pro-inflammatory cytokines, and stimulate T cell proliferation, whereas tolerogenic DCs express low levels of costimulatory molecules, produce immunomodulatory cytokines and impair T cell proliferation. Relevant to the increasing use of immune checkpoint blockade in cancer treatment, signals generated from inhibitory checkpoint molecules on DC surface may also contribute to the inhibitory properties of tolerogenic DCs. Yet, our knowledge on the expression of inhibitory molecules on human DC subsets is fragmentary. Therefore, in this study, we investigated the expression of three immune checkpoints on peripheral blood DC subsets, in basal conditions and upon exposure to pro-inflammatory and anti-inflammatory stimuli, by using a flow cytometric panel that allows a direct comparison of the activatory/inhibitory phenotype of DC-lineage and inflammatory DC subsets. We demonstrated that functionally distinct DC subsets are characterized by differential expression of activatory and inhibitory molecules, and that cDC1s in particular are endowed with a unique immune checkpoint repertoire characterized by high TIM-3 expression, scarce PD-L1 expression and lack of ILT2. Notably, this unique cDC1 repertoire was subverted in a group of patients with myelodysplastic syndromes included in the study. Applied to the characterization of DCs in the tumor microenvironment, this panel has the potential to provide valuable information to be used for investigating the role of DC subsets in cancer, guiding DC-targeting treatments, and possibly identifying predictive biomarkers for clinical response to cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ferdinando Oriolo
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clara Di Vito
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Ubezio
- Cancer Center, Humanitas Reserach Hospital, Rozzano, Italy
| | | | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
19
|
Chokr N, Patel R, Wattamwar K, Chokr S. The Rising Era of Immune Checkpoint Inhibitors in Myelodysplastic Syndromes. Adv Hematol 2018; 2018:2458679. [PMID: 30519261 PMCID: PMC6241340 DOI: 10.1155/2018/2458679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by ineffective hematopoiesis and a wide spectrum of manifestations ranging from indolent and asymptomatic cytopenias to acute myeloid leukemia (AML). MDS result from genetic and epigenetic derangements in clonal cells and their surrounding microenvironments. Studies have shown associations between MDS and other autoimmune diseases. Several immune mechanisms have been identified in MDS, suggesting that immune dysregulation might be at least partially implicated in its pathogenesis. This has led to rigorous investigations on the role of immunomodulatory drugs as potential treatment options. Epigenetic modification via immune check point inhibition, while well established as a treatment method for advanced solid tumors, is a new approach being considered in hematologic malignancies including high risk MDS. Several trials are looking at the efficacy of these agents in MDS, as frontline therapy and in relapse, both as monotherapy and in combination with other drugs. In this review, we explore the utility of immune checkpoint inhibitors in MDS and current research evaluating their efficacy.
Collapse
Affiliation(s)
- Nora Chokr
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Waterbury Hospital, Waterbury, CT, USA
| | | | - Kapil Wattamwar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Waterbury Hospital, Waterbury, CT, USA
| | - Samer Chokr
- Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
20
|
Shallis RM, Chokr N, Stahl M, Pine AB, Zeidan AM. Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place. Expert Rev Hematol 2018; 11:715-726. [PMID: 30024293 DOI: 10.1080/17474086.2018.1503049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) encompass a heterogenous collection of clonal hematopoietic stem cell disorders defined by dysregulated hematopoiesis, peripheral cytopenias, and a risk of leukemic progression. Increasing data support the role of innate and adaptive immune pathways in the pathogenesis and disease course of MDS. The role of immunosuppressive therapy has an established role in the treatment of other hematologic diseases, such as aplastic anemia whose pathogenesis is postulated to reflect that of MDS with regards to many aspects of immune activation. Areas covered: This paper discusses the current understanding of immune dysregulation as it pertains to MDS, the clinical experience with immunosuppressive therapy in the management of MDS, as well as future prospects which will likely improve therapeutic options and outcomes for patients with MDS. Expert commentary: Though limited by paucity of high quality data, immunomodulatory and immunosuppressive therapies for the treatment of MDS have shown meaningful clinical activity in selected patients. Continued clarification of the immune pathways that are dysregulated in MDS and establishing predictors for clinical benefit of immunosuppressive therapy are vital to improve the use and outcomes with these therapies.
Collapse
Affiliation(s)
- Rory M Shallis
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Nora Chokr
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Maximilian Stahl
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Alexander B Pine
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Amer M Zeidan
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA.,b Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center , Yale University , New Haven , USA
| |
Collapse
|
21
|
van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, Lindstedt M, de Gruijl TD, van de Loosdrecht AA. Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes. Front Immunol 2018; 9:1619. [PMID: 30061890 PMCID: PMC6055354 DOI: 10.3389/fimmu.2018.01619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ (cDC2) and CD141+ (cDC1) myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for cDC2 and cDC1 was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production, and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.
Collapse
Affiliation(s)
| | | | - Theresia M Westers
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Hetty J Bontkes
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Tanja D de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Arjan A van de Loosdrecht
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
22
|
Wang C, Yang Y, Gao S, Chen J, Yu J, Zhang H, Li M, Zhan X, Li W. Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol 2018; 122:123-132. [DOI: 10.1016/j.critrevonc.2017.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
|
23
|
Roobrouck VD, Wolfs E, Delforge M, Broekaert D, Chakraborty S, Sels K, Vanwelden T, Holvoet B, Lhoest L, Khurana S, Pandey S, Hoornaert C, Ponsaerts P, Struys T, Boeckx N, Vandenberghe P, Deroose CM, Verfaillie CM. Multipotent adult progenitor cells improve the hematopoietic function in myelodysplasia. Cytotherapy 2017; 19:744-755. [PMID: 28499585 DOI: 10.1016/j.jcyt.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND AIMS Myelodysplastic syndromes (MDS) are a group of clonal stem cell disorders affecting the normal hematopoietic differentiation process and leading to abnormal maturation and differentiation of all blood cell lineages. Treatment options are limited, and there is an unmet medical need for effective therapies for patients with severe cytopenias. METHODS We demonstrate that multipotent adult progenitor cells (MAPC) improve the function of hematopoietic progenitors derived from human MDS bone marrow (BM) by significantly increasing the frequency of primitive progenitors as well as the number of myeloid colonies. RESULTS This effect was more pronounced in a non-contact culture, indicating the importance of soluble factors produced by the MAPC cells. Moreover, the cells did not stimulate the growth of the abnormal MDS clone, as shown by fluorescent in situ hybridization analysis on BM cells from patients with a known genetic abnormality. We also demonstrate that MAPC cells can provide stromal support for patient-derived hematopoietic cells. When MAPC cells were intravenously injected into a mouse model of MDS, they migrated to the site of injury and increased the hematopoietic function in diseased mice. DISCUSSION The preclinical studies undertaken here indicate an initial proof of concept for the use of MAPC cell therapy in patients with MDS-related severe and symptomatic cytopenias and should pave the way for further investigation in clinical trials.
Collapse
Affiliation(s)
- Valerie D Roobrouck
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Esther Wolfs
- Nuclear Medicine & Molecular Imaging and Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Morphology Research Group, Biomedical Research Institute, Universiteit Hasselt, Diepenbeek, Belgium
| | - Michel Delforge
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Belgium
| | - Dorien Broekaert
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Soumen Chakraborty
- Department of Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kathleen Sels
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Thomas Vanwelden
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Bryan Holvoet
- Nuclear Medicine & Molecular Imaging and Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Larissa Lhoest
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Satish Khurana
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Shubham Pandey
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Universiteit Hasselt, Diepenbeek, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Hematology, University Hospitals Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine & Molecular Imaging and Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Unit Embryology and Stem Cell Biology, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, Miller A, Roloff GW, Wong HY, Paluch BE, Lutgen-Dunckley LG, Martens BL, Odunsi K, Karpf AR, Hourigan CS, Nemeth MJ. NY-ESO-1 Vaccination in Combination with Decitabine Induces Antigen-Specific T-lymphocyte Responses in Patients with Myelodysplastic Syndrome. Clin Cancer Res 2017; 24:1019-1029. [PMID: 28947565 DOI: 10.1158/1078-0432.ccr-17-1792] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
Purpose: Treatment options are limited for patients with high-risk myelodysplastic syndrome (MDS). The azanucleosides, azacitidine and decitabine, are first-line therapy for MDS that induce promoter demethylation and gene expression of the highly immunogenic tumor antigen NY-ESO-1. We demonstrated that patients with acute myeloid leukemia (AML) receiving decitabine exhibit induction of NY-ESO-1 expression in circulating blasts. We hypothesized that vaccinating against NY-ESO-1 in patients with MDS receiving decitabine would capitalize upon induced NY-ESO-1 expression in malignant myeloid cells to provoke an NY-ESO-1-specific MDS-directed cytotoxic T-cell immune response.Experimental Design: In a phase I study, 9 patients with MDS received an HLA-unrestricted NY-ESO-1 vaccine (CDX-1401 + poly-ICLC) in a nonoverlapping schedule every four weeks with standard-dose decitabine.Results: Analysis of samples serially obtained from the 7 patients who reached the end of the study demonstrated induction of NY-ESO-1 expression in 7 of 7 patients and NY-ESO-1-specific CD4+ and CD8+ T-lymphocyte responses in 6 of 7 and 4 of 7 of the vaccinated patients, respectively. Myeloid cells expressing NY-ESO-1, isolated from a patient at different time points during decitabine therapy, were capable of activating a cytotoxic response from autologous NY-ESO-1-specific T lymphocytes. Vaccine responses were associated with a detectable population of CD141Hi conventional dendritic cells, which are critical for the uptake of NY-ESO-1 vaccine and have a recognized role in antitumor immune responses.Conclusions: These data indicate that vaccination against induced NY-ESO-1 expression can produce an antigen-specific immune response in a relatively nonimmunogenic myeloid cancer and highlight the potential for induced antigen-directed immunotherapy in a group of patients with limited options. Clin Cancer Res; 24(5); 1019-29. ©2017 AACRSee related commentary by Fuchs, p. 991.
Collapse
Affiliation(s)
- Elizabeth A Griffiths
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Pragya Srivastava
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Zachary Brumberger
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Justin Kocent
- Clinical Research Services, Roswell Park Cancer Institute, Buffalo, New York
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Gregory W Roloff
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hong Yuen Wong
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Benjamin E Paluch
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Brandon L Martens
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Adam R Karpf
- Eppley Institute for Cancer Research, The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J Nemeth
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
25
|
Cull AH, Rauh MJ. Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol 2017; 102:209-219. [DOI: 10.1189/jlb.5ri0317-083r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
|
26
|
Dendritic cells in hematological malignancies. Crit Rev Oncol Hematol 2016; 108:86-96. [DOI: 10.1016/j.critrevonc.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
|
27
|
Fozza C, Crobu V, Isoni MA, Dore F. The immune landscape of myelodysplastic syndromes. Crit Rev Oncol Hematol 2016; 107:90-99. [PMID: 27823655 DOI: 10.1016/j.critrevonc.2016.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
Even though the pathogenesis of myelodysplastic syndromes (MDS) is dominated by specific molecular defects involving hematopoietic precursors, also immune mechanisms seem to play a fundamental functional role. In this review we will first describe the clinical and laboratory autoimmune manifestations often detectable in MDS patients. We will then focus on studies addressing the possible influence of different immune cell subpopulations on the disease onset and evolution. We will finally consider therapeutic approaches based on immunomodulation, ranging from immunosuppressants to vaccination and transplantation strategies.
Collapse
Affiliation(s)
- Claudio Fozza
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Valeria Crobu
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maria Antonia Isoni
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
28
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
29
|
Meyerson HJ, Osei E, Schweitzer K, Blidaru G, Edinger A, Schlegelmilch J, Awadallah A, Goyal T. CD1c(+) myeloid dendritic cells in myeloid neoplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:337-48. [DOI: 10.1002/cyto.b.21332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Howard J. Meyerson
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Ebenezer Osei
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Karen Schweitzer
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Georgetta Blidaru
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Alison Edinger
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - June Schlegelmilch
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Amad Awadallah
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Tanu Goyal
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
30
|
Vercauteren SM, Starczynowski DT, Sung S, McNeil K, Salski C, Jensen CL, Bruyere H, Lam WL, Karsan A. T cells of patients with myelodysplastic syndrome are frequently derived from the malignant clone. Br J Haematol 2014; 156:409-12. [PMID: 25289412 DOI: 10.1111/j.1365-2141.2011.08872.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suzanne M Vercauteren
- Pathology and Laboratory Medicine of British Columbia Children's Hospital; Bristish Columbia Genome Sciences Centre, BC Cancer Agency; Pathology and Laboratory Medicine, University of British Columbia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klammer M, Roddie PH. Current progress in the development of a cell-based vaccine for the immunotherapy of acute myeloid leukemia. Expert Rev Vaccines 2014; 5:211-22. [PMID: 16608421 DOI: 10.1586/14760584.5.2.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence that immunological control contributes to the elimination of residual leukemia has emerged from allogeneic hematopoietic stem cell transplantation. This review assesses the current understanding of immunobiology of acute myeloid leukemia and how dendritic cells and T cells may be harnessed using in vitro and in vivo priming techniques. Preclinical and clinical dendritic cell vaccine trials reported to date are considered and the prospects for immunotherapy with dendritic cell-based vaccine constructs evaluated.
Collapse
Affiliation(s)
- Matthias Klammer
- Western General Hospital, University of Edinburgh-Leukaemia Research Fund, John Hughes Bennett Laboratory and Department of Haematology, Western General Hospital, Edinburgh, UK.
| | | |
Collapse
|
32
|
Davison GM, Novitzky N, Abdulla R. Monocyte derived dendritic cells have reduced expression of co-stimulatory molecules but are able to stimulate autologous T-cells in patients with MDS. Hematol Oncol Stem Cell Ther 2013; 6:49-57. [DOI: 10.1016/j.hemonc.2013.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 01/21/2023] Open
|
33
|
Kerkhoff N, Bontkes HJ, Westers TM, de Gruijl TD, Kordasti S, van de Loosdrecht AA. Dendritic cells in myelodysplastic syndromes: from pathogenesis to immunotherapy. Immunotherapy 2013; 5:621-37. [DOI: 10.2217/imt.13.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal disorders of the hematopoietic stem cell characterized by ineffective hematopoiesis leading to peripheral cytopenias. Different processes are involved in its pathogenesis, such as (epi)genetic alterations and immunological dysfunctions. The nature of immune dysregulation is markedly different between various MDS risk groups. In low-risk MDS, the immune system is in a proinflammatory state, whereas in high-risk disease, immunosuppressive features facilitate expansion of the dysplastic clone and can eventually lead to disease progression to acute myeloid leukemia. Various cell types contribute to dysregulation of immune responses in MDS. Dendritic cells (DCs) are important regulators of immunity. However, the role of DCs in MDS has yet to be elucidated. It has been suggested that impaired DC function can hamper adequate immune responses. This review focuses on the involvement of DCs in immune dysregulation in low- and high-risk MDS and the implications for DC-targeted therapies.
Collapse
Affiliation(s)
- Nathalie Kerkhoff
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Pathology, Unit Medical Immunology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King’s College Hospital London, Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Bone marrow dendritic cells are reduced in patients with high-risk myelodysplastic syndromes. Leuk Res 2013; 37:266-73. [DOI: 10.1016/j.leukres.2012.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
|
35
|
Wolff L, Bies J. p15Ink4b Functions in determining hematopoietic cell fates: implications for its role as a tumor suppressor. Blood Cells Mol Dis 2013; 50:227-31. [PMID: 23403260 DOI: 10.1016/j.bcmd.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 02/02/2023]
Abstract
The p15Ink4b gene is frequently hypermethylated in myeloid neoplasia and has been demonstrated to be a tumor suppressor. Since it is a member of the INK4b family of cyclin-dependent kinase inhibitors, it was initially presumed that its loss in leukemic blasts caused a dysregulation of the cell cycle. However, animal model experiments over the last several years have produced a very different picture of how p15Ink4b functions in hematopoietic cells and how its loss contributes to myelodysplastic syndrome and myeloid leukemia. It is clear now, that in early hematopoietic progenitors, p15Ink4b functions outside of its canonical role as a cell cycle inhibitor. Its functions are involved in signal transduction and influence the development of erythroid, monocytic and dendritic cells.
Collapse
Affiliation(s)
- Linda Wolff
- Laboratory of Cellular Oncology, National Cancer Institute, Room 4124, 37 Convent Dr. Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Recurrence of monoclonal gammopathy associated with donor-derived myelodysplastic syndrome after cord blood stem cell transplantation. Exp Hematol 2011; 39:1119-23. [PMID: 21911093 DOI: 10.1016/j.exphem.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/05/2011] [Accepted: 09/02/2011] [Indexed: 11/23/2022]
Abstract
Myelodysplastic syndrome (MDS) is known to be associated with functional abnormalities of B cells, including hypergammaglobulinemia and monoclonal gammopathy (MG). However, the pathogenesis of these immunological disorders has not been clarified. We report a patient who developed donor-derived MDS followed by leukemic transformation after cord blood transplantation for MDS with MG. Interestingly, MG reappeared before development of donor-derived MDS. We analyzed the immunoglobulin allotype gene polymorphisms to determine whether the MG after cord blood transplantation was of recipient origin or donor origin. Results of genetic analysis and enzyme-linked immunosorbent assay of IgG1 allotype revealed that the MG after cord blood transplantation was of donor origin. Although the mechanism of donor-derived MG remains unclear, the persistent presence of recipient's antigen presenting cells might have induced the abnormal immunoglobulin production.
Collapse
|
37
|
Rickmann M, Krauter J, Stamer K, Heuser M, Salguero G, Mischak-Weissinger E, Ganser A, Stripecke R. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication. Ann Hematol 2011; 90:1047-58. [PMID: 21520003 PMCID: PMC3150660 DOI: 10.1007/s00277-011-1231-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 01/07/2023]
Abstract
Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin−, HLA-DR+, CD11c+, CD86+) and plasmacytoid DC (pDC: Lin−, HLA-DR+, CD123+, CD86+) in diagnostic samples of 47 FLT3-ITD− and 40 FLT3-ITD+ AML patients. The majority of ITD+ AML samples showed high frequencies of mDCs or pDCs, with significantly decreased HLA-DR expression compared with DCs detectable in ITD− AML samples. Interestingly, mDCs and pDCs sorted out from ITD+ AML samples contained the ITD insert revealing their leukemic origin and, upon ex vivo culture with cytokines, they acquired DC morphology. Notably, mDC/pDCs were detectable concurrently with single lineage mDCs and pDCs in all ITD+ AML (n = 11) and ITD− AML (n = 12) samples analyzed for mixed lineage DCs (Lin−, HLA-DR+, CD11c+, CD123+). ITD+ AML mDCs/pDCs could be only partially activated with CD40L and CpG for production of IFN-α, TNF-α, and IL-1α, which may affect the anti-leukemia immune surveillance in the course of disease progression.
Collapse
Affiliation(s)
- Mareike Rickmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 2011; 153:568-81. [DOI: 10.1111/j.1365-2141.2011.08683.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Fujita J, Mizuki M, Otsuka M, Ezoe S, Tanaka H, Satoh Y, Fukushima K, Tokunaga M, Matsumura I, Kanakura Y. Myeloid neoplasm-related gene abnormalities differentially affect dendritic cell differentiation from murine hematopoietic stem/progenitor cells. Immunol Lett 2011; 136:61-73. [DOI: 10.1016/j.imlet.2010.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
|
40
|
Ou JJ, Bagg A. Diagnostic challenges in the myelodysplastic syndromes: the current and future role of genetic and immunophenotypic studies. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:275-91. [PMID: 23488463 DOI: 10.1517/17530050902813947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a clinically and pathologically diverse collection of hematopoietic neoplasms, most commonly presenting with peripheral cytopenias typically in the context of bone marrow hypercellularity. Mechanistically, at least in the early phases of the disease, this apparently paradoxical picture is primarily due to ineffective hematopoiesis, which is accompanied by a variety of morphologic abnormalities in hematopoietic cells. The identification of recurrent, clinically relevant cytogenetic defects in MDS has spurred the research of molecular mechanisms that contribute to its inception as well as to the development of heterogeneous subtypes. Although conventional cytogenetic analyses remain a diagnostic mainstay in MDS, the application of contemporary techniques including molecular cytogenetics, microarray technologies and multiparametric flow cytometry may ultimately reveal new diagnostic parameters that are theoretically more objective and sensitive than current morphologic approaches. This review aims to outline the role of genetic and immunophenotypic studies in the evaluation of MDS, including findings that may potentially influence future diagnostic classifications, which could refine prognostication and ultimately facilitate the growth of targeted therapies.
Collapse
Affiliation(s)
- Joyce J Ou
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, 3400 Spruce Street, 6 Founders Pavilion, PA 19406-4283, USA
| | | |
Collapse
|
41
|
Cukrová V, Neuwirtová R, Doležalová L, Beličková M, Jiřina Bartůňková, Jonášová A, Jaroslav Čermák, Homolková H, Malíková I. Defective cytotoxicity of T lymphocytes in myelodysplastic syndrome. Exp Hematol 2009; 37:386-94. [DOI: 10.1016/j.exphem.2008.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
|
42
|
Meers S, Vandenberghe P, Boogaerts M, Verhoef G, Delforge M. The clinical significance of activated lymphocytes in patients with myelodysplastic syndromes: A single centre study of 131 patients. Leuk Res 2008; 32:1026-35. [DOI: 10.1016/j.leukres.2007.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 10/06/2007] [Accepted: 10/08/2007] [Indexed: 11/26/2022]
|
43
|
Sun Q, So CC, Yip SF, Wan TSK, Ma SK, Chan LC. Functional alterations of Lin-CD34+CD38+ cells in chronic myelomonocytic leukemia and on progression to acute leukemia. Leuk Res 2008; 32:1374-81. [PMID: 18372040 DOI: 10.1016/j.leukres.2008.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/15/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
The functional behavior of hematopoietic stem cell (HSC) and progenitors in chronic myelomonocytic leukemia (CMML) and on disease progression is little known. We performed cell proliferation, apoptosis, hematopoietic colony forming/replating and differentiation potential studies in the purified subpopulations of Lin(-)CD34(+)CD38(-) and Lin(-)CD34(+)CD38(+) cells from 16 CMML with 6 cases after acute myeloid leukemia transformation (AML-t). We observed an expansion of the hematopoietic progenitor pool (Lin(-)CD34(+) cells) in AML-t comprising mainly Lin(-)CD34(+)CD38(+) cells. The Lin(-)CD34(+)CD38(+) cells in AML-t displayed high proliferative activity, resistance to apoptosis, enhanced myeloid colony formation/replating ability and a complete dendritic cell (DC) differentiation block. Our findings suggest Lin(-)CD34(+)CD38(+) cells instead of Lin(-)CD34(+)CD38(-) cells could be the target(s) of secondary genetic lesions underpinning progression from CMML to AML, which have implications for the further study of the biology of leukemic transformation and the design of new strategies for the effective treatment of CMML.
Collapse
Affiliation(s)
- Qian Sun
- SH Ho Foundation Research Laboratories, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
44
|
Ma L, Ceuppens J, Kasran A, Delforge M, Boogaerts M, Vandenberghe P. Immature and mature monocyte-derived dendritic cells in myelodysplastic syndromes of subtypes refractory anemia or refractory anemia with ringed sideroblasts display an altered cytokine profile. Leuk Res 2007; 31:1373-82. [PMID: 17188353 DOI: 10.1016/j.leukres.2006.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 10/28/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DC) are pivotal for T cell-mediated immunity. We investigated the early and terminal maturation of monocyte-derived DC (MoDC) in myelodysplastic syndromes (FAB subtypes refractory anemia (MDS-RA) or refractory anemia with ringed sideroblasts (MDS-RARS)). Immature MoDC were obtained by culture of monocytes with GM-CSF and IL-4 for 8 days. To obtain mature MoDC, TNF-alpha was added during the final three culture days. T cell proliferation and T cell cytokine secretion in mixed lymphocyte reactions (MLR) unveiled a strong reduction of allostimulatory capacity of mature but also of immature MoDC from MDS patients. Immature MoDC from MDS patients exhibited an almost normal immunophenotype, but secreted substantially less IL-12 and more IL-10 in response to LPS/IFN-gamma than normal controls. Terminal addition of TNF-alpha to GM-CSF/IL-4 treated monocytes failed to extinguish cytokine production by MDS MoDC and failed to induce the expected membrane upregulation of costimulatory and other ligands as in normal controls. While our data provide further support for previous studies that have indicated an impaired differentiation of immature towards mature MoDC, they also clearly demonstrate a qualitatively and quantitatively altered cytokine secretion at the level of immature MoDC, which may in part explain the reduced allostimulatory capacity of these cells. These alterations may contribute to immune modulation of the clinical phenotype of marrow failure in MDS, and may have to be considered when designing DC-based immunotherapeutic strategies for MDS.
Collapse
Affiliation(s)
- Ling Ma
- Laboratory for Experimental Hematology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Platzbecker U, Meredyth-Stewart M, Ehninger G. The pathogenesis of myelodysplastic syndromes (MDS). Cancer Treat Rev 2007. [DOI: 10.1016/j.ctrv.2007.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Nyåkern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T, Piccaluga PP, Martinelli G, Cocco L, Martelli AM. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006; 20:230-8. [PMID: 16341040 DOI: 10.1038/sj.leu.2404057] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is known to play an important role in antiapoptotic signaling and has been implicated in the aggressiveness of a number of different human cancers including acute myeloid leukemia (AML). The progression of myelodysplastic syndromes (MDSs) to AML is thought to be associated with abrogation of apoptotic control mechanisms. However, little is known about signal transduction pathways which may be involved in enhanced survival of MDS cells. In this report, we have performed immunocytochemical and flow cytometric analysis to evaluate the levels of activated Akt in bone marrow or peripheral blood mononuclear cells from patients diagnosed with MDS. We observed high levels of Ser473 phosphorylated Akt (p-Akt) staining in 90% of the cases (n=22) diagnosed as high-risk MDS, whereas mononuclear cells from normal bone marrow or low-risk MDS patients showed low or absent Ser473 p-Akt staining. Furthermore, all high-risk MDS patients also demonstrated high expression of the Class I PI3K p110delta catalytic subunit and a decreased expression of PTEN. Taken together, our results suggest that Akt activation might be one of the factors contributing to the decreased apoptosis rate observed in patients with high-risk MDS.
Collapse
Affiliation(s)
- M Nyåkern
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Disperati P, Ichim CV, Tkachuk D, Chun K, Schuh AC, Wells RA. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Leuk Res 2005; 30:233-9. [PMID: 16046234 DOI: 10.1016/j.leukres.2005.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 06/16/2005] [Accepted: 06/16/2005] [Indexed: 01/18/2023]
Abstract
Myelodysplastic syndrome (MDS) comprises a group of clonal haematopoietic disorders characterized by peripheral blood cytopenias, bone marrow hypercellularity, and abnormal blood cell differentiation. Approximately 30% of cases of MDS eventually progress to acute myelogenous leukemia (AML), while progression of MDS into acute lymphoblastic leukemia (ALL) is rare. In this report, we describe a case of MDS that progressed to ALL, and review the 21 previously reported cases of MDS to ALL transformation. We review the cancer stem cell model and its application to these disorders, and discuss the implications of the rarity of transformation of MDS to ALL for the biology of MDS and the pathogenesis of ALL.
Collapse
Affiliation(s)
- Patricia Disperati
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
48
|
Panoskaltsis N. Dendritic cells in MDS and AML--cause, effect or solution to the immune pathogenesis of disease? Leukemia 2005; 19:354-7. [PMID: 15674424 DOI: 10.1038/sj.leu.2403634] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N Panoskaltsis
- Department of Haematology, Imperial College London, London, UK.
| |
Collapse
|