1
|
Ma K, Cheng Z, Sun L, Li H. Identification of potential therapeutic targets for gliomas by bioinformatics analysis. Oncol Lett 2017; 14:5203-5210. [PMID: 29113156 PMCID: PMC5652254 DOI: 10.3892/ol.2017.6850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2017] [Indexed: 01/16/2023] Open
Abstract
Gliomas are primary tumors that originate in the brain or spinal cord and develop from supportive glial cells. The present study aimed to identify potential candidate molecular markers for the treatment of gliomas, and to explore the underlying mechanisms of this disease. The gene expression profile data GSE50021, which consisted of 10 specimens of normal brain tissues and 35 specimens of glioma tissues, was downloaded from Gene Expression Omnibus (GEO). The methylation microarray data GSE50022, consisting of 28 glioma specimens, was also downloaded from GEO. Differentially expressed genes (DEGs) between patients with glioma and normal individuals were identified, and key methylation sites were screened. Transcriptional regulatory networks were constructed, and target genes were selected. Survival analysis of key methylation sites and risk analysis of sub-pathways were performed, from which key genes and pathways were selected. A total of 79 DEGs and 179 key methylation sites were identified, of which 20 target genes and 36 transcription factors were included in the transcriptional regulatory network. Glutamate metabotropic receptor 2 (GRM2) was regulated by 8 transcription factors. Inositol-trisphosphate 3-kinase A (ITPKA) was a significantly enriched DEG, associated with the inositol phosphate metabolism pathway, Survival analysis revealed that the survival time of patients with lower methylation levels in cg00157228 was longer than patients with higher methylation levels. ITPKA was the closest located gene to cg00157228. In conclusion, GRM2 and enriched ITPKA, associated with the inositol phosphate metabolism pathway, may be key mechanisms in the development and progression of gliomas. Furthermore, the present study provided evidence for an additional mechanism of methylation-induced gliomas, in which methylation results in the dysregulation of specific transcripts. The results of the present study may provide a research direction for studying the mechanisms underlying the development and progression of gliomas.
Collapse
Affiliation(s)
- Ke Ma
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihua Cheng
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Sun
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haibo Li
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
3
|
Taylor DL, Tiwari AK, Lieberman JA, Potkin SG, Meltzer HY, Knight J, Remington G, Müller DJ, Kennedy JL. Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine. MOLECULAR NEUROPSYCHIATRY 2016; 2:185-197. [PMID: 28277565 DOI: 10.1159/000449224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 08/17/2016] [Indexed: 01/16/2023]
Abstract
Altered glutamate neurotransmission is implicated in the etiology of schizophrenia (SCZ) and the pharmacogenetics of response to clozapine (CLZ), which is the drug of choice for treatment-resistant SCZ. Response to antipsychotic therapy is highly variable, although twin studies suggest a genetic component. We investigated the association of 10 glutamate system gene variants with CLZ response using standard genotyping procedures. GRM2 (rs4067 and rs2518461), SLC1A2 (rs4354668, rs4534557, and rs2901534), SLC6A9 (rs12037805, rs1978195, and rs16831558), GRIA1 (rs2195450), and GAD1 (rs3749034) were typed in 163 European SCZ/schizoaffective disorder patients deemed resistant or intolerant to previous pharmacotherapy. Response was assessed following 6 months of CLZ monotherapy using change in Brief Psychiatric Rating Scale (BPRS) scores. Categorical and continuous response variables were analyzed using χ2 tests and analysis of covariance, respectively. We report no significant associations following correction for multiple testing. Prior to correction, nominally significant associations were observed for SLC6A9, SLC1A2, GRM2, and GRIA1. Most notably, CC homozygotes of rs16831558 located in the glycine transporter 1 gene (SLC6A9) exhibited an allele dose-dependent improvement in positive symptoms compared to T allele carriers (puncorrected = 0.008, pcorrected = 0.08). To clarify the role of SLC6A9 in clinical response to antipsychotic medication, and CLZ in particular, this finding warrants further investigation in larger well-characterized samples.
Collapse
Affiliation(s)
- Danielle L Taylor
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada
| | - Arun K Tiwari
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York, N.Y, USA
| | - Steven G Potkin
- Department of Psychiatry, University of California, Irvine, Calif, USA
| | - Herbert Y Meltzer
- Northwestern University Feinberg School of Medicine, Chicago, Ill., USA
| | - Joanne Knight
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada; Lancaster Medical School and Data Science Institute, Lancaster University, Lancaster, UK
| | - Gary Remington
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| | - Daniel J Müller
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| | - James L Kennedy
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| |
Collapse
|
4
|
Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol 2016; 7:130. [PMID: 27242534 PMCID: PMC4873505 DOI: 10.3389/fphar.2016.00130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder which substantially impairs patients' quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5-10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| |
Collapse
|
5
|
Maj C, Minelli A, Giacopuzzi E, Sacchetti E, Gennarelli M. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia. Curr Neuropharmacol 2016; 14:540-50. [PMID: 27296644 PMCID: PMC4983747 DOI: 10.2174/1570159x13666150514232745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.
Collapse
Affiliation(s)
| | | | | | | | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11 - 25123 Brescia, Italy.
| |
Collapse
|
6
|
In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors. Acta Neurol Belg 2015; 115:221-32. [PMID: 25539775 DOI: 10.1007/s13760-014-0407-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. The glutamate system plays an important role in the formation of synapses during brain development and synaptic plasticity. Dysfunctions in glutamate regulation may lead to hyperexcitatory neuronal networks and neurotoxicity. Glutamate excess is possibly of great importance in the pathophysiology of several neurological and psychiatric disorders such as epilepsy and schizophrenia. Interestingly, cross talk between these disorders has been well documented: psychiatric comorbidities are frequent in epilepsy and temporal lobe epilepsy is one of the highest risk factors for developing psychosis. Therefore, dysfunctions in glutamatergic neurotransmission might constitute a common pathological mechanism. A major negative feedback system is regulated by the presynaptic group II metabotropic glutamate (mGlu) receptors including mGlu2/3 receptors. These receptors are predominantly localised extrasynaptically in basal ganglia and limbic structures. Hence, mGlu2/3 receptors are an interesting target for the treatment of disorders like epilepsy and schizophrenia. A dysfunction in the glutamate system may be associated with alterations in mGlu2/3 receptor expression. In this review, we describe the localization of mGlu2/3 receptors in the healthy brain of mice, rats and humans. Secondly, changes in mGlu2/3 receptor density of the brain regions affected in epilepsy and schizophrenia are summarised. Increased mGlu2/3 receptor density might represent a compensatory mechanism of the brain to regulate elevated glutamate levels, while reduced mGlu2/3 receptor density in some brain regions may further contribute to the aberrant hyperexcitability. Further research considering the mGlu2/3 receptor can contribute significantly to the understanding of the etiological and therapeutic role of group II mGlu receptor in epilepsy, epilepsy with psychosis and schizophrenia.
Collapse
|
7
|
Li ML, Hu XQ, Li F, Gao WJ. Perspectives on the mGluR2/3 agonists as a therapeutic target for schizophrenia: Still promising or a dead end? Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:66-76. [PMID: 25724760 PMCID: PMC4426221 DOI: 10.1016/j.pnpbp.2015.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Group II metabotropic glutamate receptor (mGluR2/3) agonists once showed promise as non-dopaminergic antipsychotic drugs because of their efficacy in alleviating symptoms of schizophrenia (SZ) in both animal models and human patients. However, the recent failure of Phase III clinical trials dealt a huge blow to the scientific community and the aftershock of the setback in mGluR2/3 research can be felt everywhere from grant support and laboratory studies to paper publication. An immediate question raised is whether mGluR2/3 is still a promising therapeutic target for schizophrenia. Answering this question is not easy, but apparently a new strategy is needed. This article provides a focused review of literature on the study of mGluR2/3 agonists, especially on mGluR2/3 agonists' mechanism of action and efficacy in both normal conditions and animal models of SZ, as well as clinical studies in human patients with the disease. We argue that the cellular and molecular actions of mGluR2/3 agonists, the distinct roles between mGluR2 and mGluR3, as well as their effects on different stages of the disease and different subpopulations of patients, remain incompletely studied. Until the mechanisms associated with mGluR2/3 are clearly elucidated and all treatment options are tested, it would be a great mistake to terminate the study of mGluR2/3 as a therapeutic target for schizophrenia. This review will thus shed light on the comprehensive features of the translational potential mGluR2/3 agonists as well as the need for further research into the more selective activation of mGluR2.
Collapse
Affiliation(s)
- Meng-Lin Li
- Drexel University College of Medicine, Philadelphia, PA, USA,Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi-Quan Hu
- Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Li
- Department of Neurobiology and Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
9
|
Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Carlo G, Bevins RA. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol 2011; 7:113-39. [PMID: 21728034 PMCID: PMC3280383 DOI: 10.1007/s11481-011-9288-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH) is a frequent drug of abuse in U.S. populations and commonly associated with psychosis. This may be a factor in frequent criminal justice referrals and lengthy treatment required by METH users. Persecutory delusions and auditory hallucinations are the most consistent symptoms of METH-associated psychosis (MAP). MAP has largely been studied in Asian populations and risk factors have varied across studies. Duration, frequency and amount of use as well as sexual abuse, family history, other substance use, and co-occurring personality and mood disorders are risk factors for MAP. MAP may be unique with its long duration of psychosis and recurrence without relapse to METH. Seven candidate genes have been identified that may be associated with MAP. Six of these genes are also associated with susceptibility, symptoms, or treatment of schizophrenia and most are linked to glutamatergic neurotransmission. Animal studies of pre-pulse inhibition, attenuation of social interaction, and stereotypy and alterations in locomotion are used to study MAP in rodents. Employing various models, rodent studies have identified neuroanatomical and neurochemical changes associated with METH use. Throughout this review, we identify key gaps in our understanding of MAP and suggest potential directions for future research.
Collapse
Affiliation(s)
- Kathleen M Grant
- Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Krystal JH, Mathew SJ, D'Souza DC, Garakani A, Gunduz-Bruce H, Charney DS. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 2010; 24:669-93. [PMID: 20658799 DOI: 10.2165/11533230-000000000-00000] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drugs acting at metabotropic glutamate receptors (mGluRs) are among the most promising agents under development for the treatment of psychiatric disorders. The research in this area is at a relatively early stage, as there are no drugs acting at mGluRs that have been approved for the treatment of any psychiatric disorder. However, in the areas of schizophrenia, anxiety disorders and mood disorders, research conducted in animal models appears to translate well into efficacy in human laboratory-based models of psychopathology and in preliminary clinical trials. Further, the genes coding for mGluRs are implicated in the risk for a growing number of psychiatric disorders. This review highlights the best studied mGluR strategies for psychiatry, based on human molecular genetics, studies in animal models and preliminary clinical trials. It describes the potential value of mGluR2 and mGluR5 agonists and positive allosteric modulators for the treatment of schizophrenia. It also reviews evidence that group II mGluR agonists and positive allosteric modulators as well as group I mGluR antagonists might also treat anxiety disorders and some forms of depression, while mGluR2 and group I mGluR antagonists (particularly mGluR5 antagonists) might have antidepressant properties. This review also links growing insights into the role of glutamate in the pathophysiology of these disorders to hypothesized mGluR-related treatment mechanisms.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Tsunoka T, Kishi T, Kitajima T, Okochi T, Okumura T, Yamanouchi Y, Kinoshita Y, Kawashima K, Naitoh H, Inada T, Ujike H, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N. Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:639-44. [PMID: 20211215 DOI: 10.1016/j.pnpbp.2010.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/24/2010] [Accepted: 03/02/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormalities in glutaminergic neural transmission have been suggested to be involved in the pathogenesis of schizophrenia. A recent study reported that alterations in the 5-HT2A-mGluR2 complex may be involved in neural transmission in the schizophrenic cortex. In addition, methamphetamine-induced psychosis is thought to be similar to schizophrenia. Therefore, we conducted a case-control study with Japanese samples (738 schizophrenia patients, 196 methamphetamine-induced psychosis patients, and 802 controls) to evaluate the association and interaction between GRM2, HTR2A and schizophrenia. METHODS We selected three 'tagging SNPs' in GRM2, and two biologically functional SNPs in HTR2A (T102C and A1438G), for the association analysis. RESULTS We detected a significant association between methamphetamine-induced psychosis and GRM2 in a haplotype-wise analysis, but not HTR2A. We did not detect an association between GRM2 or HTR2A and schizophrenia. In addition, no interactions of GRM2 and HTR2A were found in methamphetamine-induced psychosis or schizophrenia. We did not detect any novel polymorphisms in GRM2 when we performed a mutation search using methamphetamine-induced psychosis samples. CONCLUSION Our results suggested that GRM2 may play a role in the pathophysiology of methamphetamine-induced psychosis but not schizophrenia in the Japanese population. A replication study using larger samples or samples of other populations will be required for conclusive results.
Collapse
Affiliation(s)
- Tomoko Tsunoka
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34:958-77. [PMID: 20060416 DOI: 10.1016/j.neubiorev.2010.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.
Collapse
Affiliation(s)
- Suat Ying Tan Cherlyn
- Institute of Mental Health/Woodbridge Hospital, 10 Buangkok View, Singapore 539747, Singapore
| | | | | | | | | | | |
Collapse
|
13
|
Moreno JL, Sealfon SC, González-Maeso J. Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci 2009; 66:3777-85. [PMID: 19707855 PMCID: PMC2792875 DOI: 10.1007/s00018-009-0130-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/10/2009] [Accepted: 08/11/2009] [Indexed: 12/18/2022]
Abstract
Schizophrenia is one of the most common mental illnesses, with hereditary and environmental factors important for its etiology. All antipsychotics have in common a high affinity for monoaminergic receptors. Whereas hallucinations and delusions usually respond to typical (haloperidol-like) and atypical (clozapine-like) monoaminergic antipsychotics, their efficacy in improving negative symptoms and cognitive deficits remains inadequate. In addition, devastating side effects are a common characteristic of monoaminergic antipsychotics. Recent biochemical, preclinical and clinical findings support group II metabotropic glutamate receptors (mGluR2 and mGluR3) as a new approach to treat schizophrenia. This paper reviews the status of general knowledge of mGluR2 and mGluR3 in the psychopharmacology, genetics and neuropathology of schizophrenia.
Collapse
Affiliation(s)
- José L. Moreno
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029 USA
- Division of Basic Neuroscience, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Stuart C. Sealfon
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029 USA
- Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Javier González-Maeso
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029 USA
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029 USA
- Division of Basic Neuroscience, Mount Sinai School of Medicine, New York, NY 10029 USA
| |
Collapse
|
14
|
Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res 2009; 167:88-96. [PMID: 19351574 DOI: 10.1016/j.psychres.2007.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/08/2007] [Accepted: 12/05/2007] [Indexed: 02/01/2023]
Abstract
Based on the hypothesis that a glutamatergic dysfunction is involved in the pathophysiology of schizophrenia, we have been conducting systematic studies on the association between glutamate receptor genes and schizophrenia. Here we report association studies of schizophrenia with polymorphisms in group III metabotropic glutamate receptor genes, GRM4 and GRM7. We selected 8 and 43 common SNPs distributed in the entire gene regions of GRM4 (>111 kb) and GRM7 (>900 kb), respectively. We scanned significant associations with schizophrenia using 100 case-control pairs of Japanese. We identified two neighboring SNPs (rs12491620 and rs1450099) in GRM7 showing highly significant haplotype association with schizophrenia surviving the FDR correction. We then performed additional typing of the two SNPs using the expanded sample set (404 cases and 420 controls) and confirmed the significant association with the disease. We conclude that at least one susceptibility locus for schizophrenia is located within or nearby GRM7, whereas GRM4 is unlikely to be a major susceptibility gene for schizophrenia in the Japanese population.
Collapse
|
15
|
Association analysis of the glutamic acid decarboxylase 2 and the glutamine synthetase genes (GAD2, GLUL) with schizophrenia. Psychiatr Genet 2009; 19:6-13. [DOI: 10.1097/ypg.0b013e328311875d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sodhi M, Wood KH, Meador-Woodruff J. Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert Rev Neurother 2008; 8:1389-406. [PMID: 18759551 DOI: 10.1586/14737175.8.9.1389] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a debilitating lifelong disorder affecting up to 1% of the population worldwide, producing significant financial and emotional hardship for patients and their families. As yet, the causes of schizophrenia and the mechanism of action of antipsychotic drugs are unknown, and many patients do not respond well to currently available medications. Attempts to find risk factors for the disorder using epidemiological methods have shown that schizophrenia is highly heritable, and path analyses predict that the disorder is caused by several genes in combination with nongenetic factors. Therefore, intensive research efforts have been made to identify genes creating vulnerability to schizophrenia and also genes predicting response to treatment. Interactions of the glutamatergic system with dopaminergic and serotonergic circuitry are crucial for normal brain function, and their disruption may be a mechanism by which the pathophysiology of schizophrenia is manifest. Genes within the glutamatergic system are therefore strong candidates for investigation, and these include the glutamate receptor genes in addition to genes encoding neuregulin, dysbindin, D-amino acid oxidase and G72/G30. These genetic studies could eventually reveal new targets for antipsychotic drug treatment, which currently focuses on inhibition of the dopaminergic system. However, a recent breakthrough indicates clinical efficacy of a drug stimulating the metabotropic glutamate receptor II, LY2140023, which has improved efficacy for negative and cognitive symptoms of schizophrenia. Studies of larger patient samples are required to consolidate these data. Further investigation of glutamatergic targets is likely to reinvigorate antipsychotic drug development.
Collapse
Affiliation(s)
- Monsheel Sodhi
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Avenue Sth, Rm 590C CIRC, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
17
|
Krivoy A, Fischel T, Weizman A. The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 2008; 18:395-405. [PMID: 18063347 DOI: 10.1016/j.euroneuro.2007.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/16/2007] [Accepted: 11/07/2007] [Indexed: 02/02/2023]
Abstract
Glutamate disruption is thought to have a major role in schizophrenia brain processes, possibly involving NMDA hypofunction. The metabotropic glutamate receptors are distributed in brain regions related to schizophrenia and seem to affect glutamate release in a moderate way. Compounds modulating these receptors are being investigated in animal models of schizophrenia, in an attempt to discover new antipsychotics. This article reviews the current research data regarding the role of these receptors in schizophrenia animal models. It was found that more research was done on Group I and II metabotropic receptors while investigation of group III receptors is still trailing behind. Accumulating evidence shows that mGluR5 antagonists by themselves do not necessarily disrupt pre-pulse inhibition (PPI), but can exacerbate disruption of PPI caused by MK-801 and PCP, while positive modulation of this receptor has beneficial effects on these models of psychosis. Group II agonists are also showing beneficial effects in animal models. It seems that metabotropic glutamate receptor modulators could be developed into a novel treatment of schizophrenia by altering glutamate release, thus overcoming the putative NMDA hypofunction. Although the implications from these pre-clinical studies to human schizophrenia patients are premature, the data obtained with some compounds point to promising results for drug development. More studies, with agents active at other mGluRs in animal models and schizophrenia patients as well as with human subjects are needed in order to clarify the role of the metabotropic glutamate receptors in the pathophysiology and pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Amir Krivoy
- Geha Mental Health Center, Petach-Tikva, Israel.
| | | | | |
Collapse
|
18
|
Glutamatergic abnormalities of the thalamus in schizophrenia: a systematic review. J Neural Transm (Vienna) 2008; 115:493-511. [DOI: 10.1007/s00702-007-0859-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
|
19
|
The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology (Berl) 2008; 196:431-40. [PMID: 18057917 DOI: 10.1007/s00213-007-0974-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Group II metabotropic glutamate receptors (mGluRs) comprise the mGluR2 and mGluR3 subtypes, the activation and modulation of which has been suggested to be beneficial for treating schizophrenia. Genetic association studies suggest limited association between mGluR2 and schizophrenia but some association between mGluR3 and schizophrenia. Conversely, pre-clinical studies suggest that mGluR2 may be responsible for mediating the antipsychotic activity of mGluR2/3 agonists, although to date, the role of mGluR3 has not been specifically assessed. OBJECTIVES The aim of this study is to use recently generated mGluR3 and mGluR2 knockout mice to investigate which of the group II mGluRs mediates the actions of the mGluR2/3 agonist, LY379268, in two mouse models predictive of antipsychotic activity. MATERIALS AND METHODS LY379268 (0.3-10 mg/kg SC), phencyclidine (PCP; 1-5 mg/kg IP), and amphetamine 1-10 mg/kg IP) were assessed on locomotor activity and behaviour in C57Bl/6J and transgenic mice. LY379268 was then assessed on PCP (5 mg/kg IP)- and amphetamine (2.5 mg/kg IP)-induced hyperactivity and behaviour in C57Bl/6J and transgenic mice. RESULTS PCP (5 mg/kg)-evoked hyperactivity and behavioural alterations, i.e. circling, falling, stereotypy and ataxia, as well as amphetamine (2.5 mg/kg)-evoked hyperactivity, were dose-dependently attenuated by LY379268 (0.3-3 mg/kg) in C57Bl/6J mice. One milligram per kilogram of LY379268 reversed PCP-evoked hyperactivity and behavioural alterations in wild-type (WT) and mGluR3 knockout mice but not in mice lacking mGluR2. Similarly, 3 mg/kg LY379268 reversed amphetamine-evoked hyperactivity in WT and mGluR3 knockout mice but not in mice lacking mGluR2. CONCLUSION The mGlu2 but not the mGlu3 receptor subtype mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity.
Collapse
|
20
|
Shibata H, Aramaki T, Sakai M, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. Association study of polymorphisms in the GluR7, KA1 and KA2 kainate receptor genes (GRIK3, GRIK4, GRIK5) with schizophrenia. Psychiatry Res 2006; 141:39-51. [PMID: 16325263 DOI: 10.1016/j.psychres.2005.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 12/29/2004] [Accepted: 07/25/2005] [Indexed: 01/16/2023]
Abstract
On the basis of the glutamatergic dysfunction hypothesis of schizophrenia, we have been conducting a systematic study of the association of glutamate receptor genes with schizophrenia. Here we report association studies of schizophrenia with polymorphisms in three kainate receptor genes: GRIK3, GRIK4 and GRIK5. We selected 16, 24 and 5 common single nucleotide polymorphisms (SNPs) distributed in the entire gene regions of GRIK3 (>240 kb), GRIK4 (>430 kb) and GRIK5 (>90 kb), respectively. We tested associations of the polymorphisms with schizophrenia using 100 Japanese case-control pairs (the Kyushu set). We observed no significant "single marker" associations with the disease in any of the 45 SNPs tested except for one (rs3767092) in GRIK3 showing a nominal level of significance. The significant association, however, disappeared after the application of the Bonferroni correction. We also observed significant haplotype associations in seven SNP pairs in GRIK3 and in four SNP pairs in GRIK4. None, however, remained significant after Bonferroni correction. We also failed to replicate the nominally significant haplotype associations in a second sample set, the Aichi set (106 cases and 100 controls). We conclude that SNPs in the gene regions of GRIK3, GRIK4 or GRIK5 do not play a major role in schizophrenia pathogenesis in the Japanese population.
Collapse
Affiliation(s)
- Hiroki Shibata
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Genetic variation contributes to an individual’s sensitivity and response to a variety of drugs important to anesthetic practice. Early insights into the clinical impact of pharmacogenetics were provided by anesthesiology – investigations into prolonged apnea after succinylcholine administration, thiopental-induced porphyria and malignant hyperthermia contributed to the novel science of pharmacogenetics in the early 1960s. Genetic polymorphisms involved in pharmacokinetics (absorption, distribution, metabolism, and excretion of drugs) and pharmacodynamics (receptors, ion channels and enzymes) can affect an individual’s response to the drugs used in anesthetic practice. In addition, genetic variation in proteins directly unrelated to drug action or metabolism can influence responses to environmental changes that occur during anesthesia. This review will summarize the current knowledge of genetic variation in response to drugs relevant to anesthesia, and how this impacts upon clinical practice.
Collapse
Affiliation(s)
- Helen F Galley
- University of Aberdeen, Academic Unit of Anaesthesia & Intensive Care, School of Medicine,Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK.
| | | | | |
Collapse
|
22
|
Takaki H, Kikuta R, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 128B:6-14. [PMID: 15211621 DOI: 10.1002/ajmg.b.20108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The glutamatergic dysfunction has been implicated in pathophysiology of schizophrenia. The Group III metabotropic glutamate receptor 4 (mGluR4), 6, 7, and 8 are thought to modulate glutamatergic transmission in the brain by inhibiting glutamate release at the synapse. We tested association of schizophrenia with GRM8 using 22 single nucleofide polymorphisms (SNPs) with the average intervals of 40.3 kb in the GRM8 region in 100 case-control pairs for the SNPs. Although we observed significant associations of schizophrenia with two SNPs, SNP18 (rs2237748, allele: P = 0.0279; genotype: P = 0.0124) and SNP19 (rs2299472, allele: P = 0.0302; genotype: P = 0.0127), none of two SNPs showed significant association with disease after Bonferroni correction. Both SNP18 and SNP19 were included in a large region (>330 kb) in which SNPs are in linkage disequilibrium (LD) at the 3' region of GRM8. We also tested haplotype association of schizophrenia with constructed haplotypes of the SNPs in LD. Significant associations were detected for the combinations of SNP5-SNP6 (chi(2) = 18.12, df = 3, P = 0.0004, P corr = 0.0924 with Bonferroni correction), SNP4-SNP5-SNP6 (chi(2) = 27.50, df = 7, P = 0.0075, P corr = 0.015 with Bonferroni correction), and SNP5-SNP6-SNP7 (chi(2) = 23.92, df = 7, P = 0.0011, P corr = 0.0022 with Bonferroni correction). Thus, we conclude that at least one susceptibility locus for schizophrenia is located within the GRM8 region in Japanese.
Collapse
Affiliation(s)
- Hiromi Takaki
- Division of Disease Genes, Research Center For Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Brody SA, Geyer MA. Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice. Neurotox Res 2004; 6:79-90. [PMID: 15184109 DOI: 10.1007/bf03033300] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sensorimotor gating, measured by prepulse inhibition (PPI), is a fundamental form of information processing that is deficient in schizophrenia patients and mice lacking the gene for metabotropic glutamate receptor 5 (mGluR5). Both breeding strategies and mothering behaviors are capable of influencing the behavioral phenotype of knockout (KO) mice. Previous studies found a PPI deficit and increased startle magnitudes in mGluR5 KO mice derived from homozygous matings. Here we compared the PPI of mGluR5 wildtype (WT) and KO mice derived from heterozygous matings to that seen in mice derived from homozygous matings. Possible influences of postnatal mothering behaviors were examined using two different methods of cross-fostering. The potential developmental nature of the PPI deficit of the mGluR5 KO mice was also addressed via acute administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) to C57BL/6J mice. The mGluR5 KO mice exhibited reduced PPI independently of breeding strategy or postnatal mothering behavior. Startle magnitude, however, varied with breeding strategy. The PPI deficit seen in the mGluR5 KO mice is not mimicked by acute administration of an mGluR5 antagonist, and is therefore most likely due to compensatory alterations in neuronal circuitry occurring during development independent of maternal behaviors in the postnatal environment.
Collapse
Affiliation(s)
- Suzanne A Brody
- Departments of Psychiatry and Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA
| | | |
Collapse
|
24
|
Smith SK, Hoogendoorn B, Guy CA, Coleman SL, O'Donovan MC, Buckland PR. Lack of functional promoter polymorphisms in genes involved in glutamate neurotransmission. Psychiatr Genet 2003; 13:193-9. [PMID: 14639045 DOI: 10.1097/00041444-200312000-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The regulation of genes involved in glutamatergic function is thought to be a critical for many central nervous system processes including memory, learning, synaptic maintenance, and many pathological states. As part of a larger survey into the key regulatory elements in genes of neuro-psychiatric interest, we sought to identify the promoter regions of genes in this broad family, and to identify sequence variants that alter gene expression. METHODS Mutation analysis was carried out on the promoters of 20 genes encoding 13 glutamate receptor subunits, four transporters and three metabolizing enzymes using denaturing high performance liquid chromatography. Thirty-nine different promoter haplotypes were cloned into a luciferase reporter gene vector and tested for differences in their ability to drive transcription in both HEK293t and TE671 cell lines. RESULTS We have identified a total of 48 sequence variants in six glutamate receptor subunits, four glutamate transporters and two enzymes. Interestingly, seven promoter sequences gave three or more haplotypes from a single individual, indicating gene duplication. No differences in expression greater than 1.35-fold were found between haplotypes originating from the same or paralogous genes. CONCLUSION The lack of common functional polymorphisms in any of these promoters indicates that expression of glutamate receptors and transporters is unusually tightly controlled, and suggests the possibility that non-coding polymorphisms in these genes are rare and may be unlikely to contribute in a major way to neuro-psychiatric phenotypes. This study represents the world's largest survey of the any group of promoters yet performed for any gene system.
Collapse
Affiliation(s)
- S K Smith
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
25
|
Fukumaki Y, Shibata H. Glutamate receptor genes as candidates for schizophrenia susceptibility. Drug Dev Res 2003. [DOI: 10.1002/ddr.10293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Corti C, Clarkson RWE, Crepaldi L, Sala CF, Xuereb JH, Ferraguti F. Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J Biol Chem 2003; 278:33105-19. [PMID: 12783878 DOI: 10.1074/jbc.m212380200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) has a discrete tissue expression mainly limited to neural cells. Expression of mGluR5 is developmentally regulated and undergoes dramatic changes in association with neuropathological disorders. We report the complete genomic structure of the mGluR5 gene, which is composed of 11 exons and encompasses approximately 563 kbp. Three clusters of multiple transcription initiation sites located on three distinct exons (IA, IB, and II), which undergo alternative splicing, have been identified. The 5'-flanking regions of these exons were isolated and, using a luciferase reporter gene assay, shown to possess active promoter elements in SKN-MC neuroblastoma and U178-MG astroglioma cells. Promoter IA was characterized by a CpG island; promoter IB contained a TATA box, and promoter II possessed three active Oct-1-binding sites. Preferential luciferase activity was observed in SKN-MC concomitant with differential DNA binding activity to several responsive elements, including CREB, Oct-1, C/EBP, and Brn-2. Exposure to growth factors produced enhanced expression of promoters IB and II in astroglioma cells and activation of NF-kappa B. These results suggest that alternative 5'-splicing and usage of multiple promoters may contribute regulatory mechanisms for tissue- and context-specific expression of the mGluR5 gene.
Collapse
MESH Headings
- 5' Untranslated Regions
- Alternative Splicing
- Animals
- Astrocytoma/metabolism
- Base Sequence
- Binding Sites
- Blotting, Northern
- Brain/metabolism
- CHO Cells
- CpG Islands
- Cricetinae
- DNA/metabolism
- DNA, Complementary/metabolism
- Databases as Topic
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Luciferases/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- NF-kappa B/metabolism
- Neuroblastoma/metabolism
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Corrado Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Level 3 Laboratory Block Addenbrooke's Hospital, Hills Road, CB2 2QQ Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13:71-6. [PMID: 12782962 DOI: 10.1097/01.ypg.0000056682.82896.b0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Glutamatergic dysfunction is one of the major hypotheses of schizophrenia pathophysiology. We have been conducting systematic studies on the association between glutamate receptors and schizophrenia. We focused on the metabotropic glutamate receptor type 3 gene (GRM3) as a candidate for schizophrenia susceptibility. METHODS We genotyped Japanese schizophrenics (n=100) and controls (n=100) for six single nucleotide polymorphisms (SNPs) located in the GRM3 region at intervals of approximately 50 kb. Statistical differences in genotype, allele and haplotype frequencies between cases and controls were evaluated by the chi2 test and Fisher's exact probability test at a significance level of 0.05. Haplotype frequencies were estimated by the EM algorithm. RESULTS A case-control association study identified a significant difference in allele frequency distribution of a SNP, rs1468412, between schizophrenics and controls (P=0.011). We also observed significant differences in haplotype frequencies estimated from SNP frequencies between schizophrenics and controls. The haplotype constructed from three SNPs, including rs1468412, showed a significant association with schizophrenia (P=8.30 x 10-4). CONCLUSIONS Our data indicate that at least one susceptibility locus for schizophrenia is situated within or very close to the GRM3 region in the Japanese patients.
Collapse
Affiliation(s)
- Yo Fujii
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97:153-79. [PMID: 12559388 PMCID: PMC4203361 DOI: 10.1016/s0163-7258(02)00328-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The glutamate system is involved in many aspects of neuronal synaptic strength and function during development and throughout life. Synapse formation in early brain development, synapse maintenance, and synaptic plasticity are all influenced by the glutamate system. The number of neurons and the number of their connections are determined by the activity of the glutamate system and its receptors. Malfunctions of the glutamate system affect neuroplasticity and can cause neuronal toxicity. In schizophrenia, many glutamate-regulated processes seem to be perturbed. Abnormal neuronal development, abnormal synaptic plasticity, and neurodegeneration have been proposed to be causal or contributing factors in schizophrenia. Interestingly, it seems that the glutamate system is dysregulated and that N-methyl-D-aspartate receptors operate at reduced activity. Here we discuss how the molecular aspects of glutamate malfunction can explain some of the neuropathology observed in schizophrenia, and how the available treatment intervenes through the glutamate system.
Collapse
Affiliation(s)
- Christine Konradi
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, Ninomiya H, Tashiro N, Shibata H, Fukumaki Y. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am J Med Genet B Neuropsychiatr Genet 2003; 116B:17-22. [PMID: 12497607 DOI: 10.1002/ajmg.b.10041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glutamatergic dysfunction hypothesis suggests that genes involved in the glutamate neurotransmitter system are candidates for schizophrenia-susceptibility genes. We have been conducting systematic studies of the association between glutamate receptors and schizophrenia. We report on a positive association of some haplotypes of the AMPA receptor subunit GluR4 gene (GRIA4) with schizophrenia. We genotyped 100 Japanese schizophrenics and 100 controls for six single nucleotide polymorphism (SNP) markers distributed at intervals of about 50 kb in the GRIA4 region, and estimated the degree of linkage disequilibrium (LD) between the SNPs. We constructed haplotypes of the SNPs in LD using the EM algorithm to test their association with schizophrenia. Significant associations were detected for the combination of SNP4-5 (chi(2) = 12.54, df = 3, P = 0.0057, P = 0.029 with Bonferroni correction) and for the combination of SNP3-4-5 (chi(2) = 18.9, df = 7, P = 0.0085, P = 0.043 with Bonferroni correction). These results suggest that at least one susceptibility locus for schizophrenia is located within or very close to the GRIA4 region in Japanese.
Collapse
Affiliation(s)
- Chieko Makino
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shibata H, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. Association study of polymorphisms in the GluR6 kainate receptor gene (GRIK2) with schizophrenia. Psychiatry Res 2002; 113:59-67. [PMID: 12467946 DOI: 10.1016/s0165-1781(02)00231-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutamatergic dysfunction hypothesis of schizophrenia suggests genes involved in glutamatergic transmission as candidates for schizophrenia-susceptibility genes. The GluR6 kainate receptor gene GRIK2 is located on chromosome 6q16.3-q21, a schizophrenia susceptibility region, as suggested by multiple linkage studies. We examined 15 SNPs evenly distributed in the entire GRIK2 region (>700 kb) in Japanese patients with schizophrenia (n=100) and controls (n=100). Neither genotype nor allele frequency showed a significant association with the disorder. We constructed 2-SNP haplotypes from the 15 SNPs. Although we observed three long linkage disequilibrium blocks (>150 kb) within the GRIK2 region, none of the pairwise haplotypes showed a significant association with the disorder. Therefore, we conclude that GRIK2 does not play a major role in the pathogenesis of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Hiroki Shibata
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
33
|
Tani A, Kikuta R, Itoh K, Joo A, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. Polymorphism analysis of the upstream region of the human N-methyl-D-aspartate receptor subunit NR1 gene (GRIN1): implications for schizophrenia. Schizophr Res 2002; 58:83-6. [PMID: 12363394 DOI: 10.1016/s0920-9964(02)00161-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dysfunction of the gene for the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor (GRIN1) has been implicated in the pathogenesis of schizophrenia. In support of this hypothesis are behavioral abnormalities reminiscent of schizophrenia in mice with an attenuated expression of the NR1 subunit receptor and the reduced level of NR1 mRNA in postmortem brains of patients with schizophrenia. We screened single nucleotide polymorphisms (SNPs) in the upstream region between +51 and -941 from the translation initiation codon of GRIN1 and identified 17 SNPs, 10 of which were located within the region containing the Sp1 motif and the GSG motifs. As genotyping of 191-196 Japanese patients with schizophrenia and 202-216 controls revealed no significant association between schizophrenia and the SNPs in the upstream region of GRIN1, these SNPs apparently do not play a critical role in the pathogenesis of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Ayako Tani
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shibata H, Joo A, Fujii Y, Tani A, Makino C, Hirata N, Kikuta R, Ninomiya H, Tashiro N, Fukumaki Y. Association study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia. Psychiatr Genet 2001; 11:139-44. [PMID: 11702055 DOI: 10.1097/00041444-200109000-00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The glutamatergic dysfunction hypothesis suggests genes involved in glutamatergic transmission as candidates for schizophrenia susceptibility genes. We screened single nucleotide polymorphisms (SNPs) in the entire coding sequence of the GluR5 kainate receptor gene, GRIK1, by polymerase chain reaction-single strand conformation polymorphism and direct sequencing. We identified six SNPs including three known ones, 522A/C (174T, synonymous), 1173C/T (391D, synonymous), and 2705C/T (902L/S), as well as three novel ones, 995C/T (332A/V), 2400C/T (800L, synonymous), and 2585A/G (862R/Q). We genotyped Japanese samples of schizophrenia (n = 193-203) and healthy controls (n = 199-215) for three SNPs those were commonly observed in our samples, 522A/C, 1173C/T, and 2705C/T. We observed no significant associations of the SNPs and their haplotypes with schizophrenia. Therefore, we conclude that GRIK1 does not play a major role in schizophrenia pathogenesis in the Japanese population.
Collapse
Affiliation(s)
- H Shibata
- Research Centre for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ohtsuki T, Toru M, Arinami T. Mutation screening of the metabotropic glutamate receptor mGluR4 (GRM4) gene in patients with schizophrenia. Psychiatr Genet 2001; 11:79-83. [PMID: 11525421 DOI: 10.1097/00041444-200106000-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disturbances in glutamate function have been implicated in the pathophysiology of schizophrenia. We searched for mutations in the exons of the metabotropic glutamate receptor mGluR4 (GRM4) gene on human chromosome 6p21.3 and evaluated associations between these polymorphisms with schizophrenia in Japanese patients. Nine nuclear variants of 450G > T, 1455T > C, 2202A > G, 2389G > A (Val797 > Ile797), 2890A > G, 3601C > T, 3639C > T, IVS4-36G > A, and IVS5 + 29(CCGGG)1-2, were found. The Val797Ile variant, although found in both the patient and control groups, was rare and the only variant that causes a non-synonymous amino acid change. There was no statistically significant association between any mGluR4 gene polymorphism and schizophrenia. Thus, this study did not provide evidence for the contribution of the mGluR4 gene to schizophrenia in the Japanese.
Collapse
Affiliation(s)
- T Ohtsuki
- Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|