1
|
Bai L, Wang X, Niu R, Zhao M, Zhao Z, Jia P, Sun S. Association between body mass index and tic disorders in school-age children. BMC Pediatr 2024; 24:261. [PMID: 38643075 PMCID: PMC11031855 DOI: 10.1186/s12887-024-04592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE To explore the relationship between body mass index (BMI ) and the severity of tic disorders (TDs) in children 6-14 years old. METHODS A total of 86 children diagnosed with TDs in a hospital between Jan. 2023 and Sept. 2023 were collected by convenient sampling method, and the general data and TD-specific data were collected and analyzed. RESULTS Univariate analysis showed that patients with different Yale Global Tic Severity Scale (YGTSS) grades had statistically significant differences in age, BMI, residence, snacking pattern, weekly physical exercise frequency, weekly physical exercise time, and proportion of cesarean birth. Multiple linear regression analysis showed that the YGTSS score grades were related to BMI, snacking pattern, and cesarean birth of the patients. Correlation analysis revealed a positive correlation between BMI grades and the YGTSS score grades, with a higher BMI indicating more severe TDs. Predictive value evaluation showed that BMI, snacking pattern, and cesarean birth had predictive values for TD severity, and the highest value was found in the combined prediction. CONCLUSION BMI, snacking pattern, and cesarean birth are of predictive values for the severity of TDs. In addition, BMI is positively correlated with the severity of TDs, and a higher BMI suggests more severe TDs.
Collapse
Affiliation(s)
- Lu Bai
- Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Xia Wang
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Ruijie Niu
- Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Mengchuan Zhao
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Ziwei Zhao
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Pengyu Jia
- Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China
| | - Suzhen Sun
- Hebei Medical University, Shijiazhuang, 050017, China.
- Department of Pediatric Neurology, Children's Hospital of Hebei Province, Hebei Medical University, No. 133 of Jianhuanan Street, YuhuaDistrict, Shijiazhuang, 050031, China.
| |
Collapse
|
2
|
Nikolaus S, Mamlins E, Antke C, Dabir M, Müller HW, Giesel FL. Boosted dopamine and blunted serotonin in Tourette syndrome - evidence from in vivo imaging studies. Rev Neurosci 2022; 33:859-876. [PMID: 35575756 DOI: 10.1515/revneuro-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
The precise cortical and subcortical mechanisms of Tourette syndrome (TS) are still not fully understood. In the present retrospective analysis, adolescent and adult medication-naïve patients showed increased DA transporter (DAT) binding in nucleus caudate (CAUD), putamen (PUT) and/or whole neostriatum (NSTR). D2 receptor (R) binding and DA release were not different from controls throughout the nigrostriatal and mesolimbocortical system. When patients were medication-free (either medication-naïve or under withdrawal), DAT was still increased in PUT, but not different from controls in CAUD, NSTR and ventral striatum (VSTR). SERT was unaltered in midbrain/pons (MP), but decreased in PUT, thalamus (THAL) and hypothalamus. D2R was unaltered throughout the nigrostriatal and mesolimbocortical system, while DA release was not different from controls in PUT, CAUD and NSTR, but elevated in VSTR. 5-HT2AR binding was unaltered in neocortex and cingulate. In acutely medicated adults, DAT was unaltered in PUT, but still increased in CAUD, whereas DA release remained unaltered throughout the nigrostriatal and mesolimbocortical system. When part of the patients was acutely medicated, vesicular monoamine transporter (VMAT2), DAT, SERT and DA synthesis were not different from controls in striatal regions, whereas D2R was decreased in NSTR, THAL, frontal cortex and limbic regions. Conversely, 5-HT2AR binding was unaltered in striatal regions and THAL, but increased in neocortical and limbic areas. It may be hypothesized that both the DA surplus and the 5-HT shortage in key regions of the nigrostriatal and mesolimbic system are relevant for the bouts of motor activity and the deficiencies in inpulse control.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Mardjan Dabir
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Xu L, Zhang C, Zhong M, Che F, Guan C, Zheng X, Liu S. Role of histidine decarboxylase gene in the pathogenesis of Tourette syndrome. Brain Behav 2022; 12:e2511. [PMID: 35114079 PMCID: PMC8933785 DOI: 10.1002/brb3.2511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Tourette syndrome (TS) is caused by complex genetic and environmental factors and is characterized by tics. Histidine decarboxylase (HDC) mutation is a rare genetic cause with high penetrance in patients with TS. HDC-knockout (KO) mice have similar behavioral and neurochemical abnormalities as patients with TS. Therefore, HDC-KO mice are considered a valuable TS pathophysiological model as it reveals the underlying pathological mechanisms that cannot be obtained from patients with TS, thus advancing the development of treatment strategies for TS and other tic disorders. This review summarizes some of the recent research hotspots and progress in HDC-KO mice, aiming to deepen our understanding of brain mechanisms relevant to TS. Furthermore, we encapsulate the possible brain nerve cell changes in HDC-KO mice and their potential roles in TS to provide multiple directions for the future research on tics.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Chengcheng Guan
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Current Understanding of the Genetics of Tourette Syndrome. Biomed J 2022; 45:271-279. [PMID: 35042017 PMCID: PMC9250083 DOI: 10.1016/j.bj.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Gilles de la Tourette syndrome (TS) is a common, childhood-onset psychiatric disorder characterized by persistent motor and vocal tics. It is a heterogeneous disorder in which the phenotypic expression may be affected by environmental factors, such as immune responses. Furthermore, several studies have shown that genetic factors play a vital role in the etiology of TS, as well as its comorbidity with other disorders, including attention deficit hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum disorder. TS has a complex inheritance pattern and, according to various genetic studies, several genes and loci have been correlated with TS. Genome-wide linkage studies have identified Slit and Trk-like 1 (SLITRK1) and histidine decarboxylase (HDC) genes, and candidate gene association studies have extensively investigated the dopamine and serotonin system genes, but there have been no consistent results. Moreover, genome-wide association studies have implicated several genetic loci; however, larger study cohorts are needed to confirm this. Copy number variations, which are polymorphisms in the number of gene copies due to chromosomal deletions or duplications, are considered another significant source of mutations in TS. In the last decade, whole genome/exome sequencing has identified several novel genetic mutations in patients with TS. In conclusion, more studies are needed to reveal the exact mechanisms of underlying TS, which may help to provide more information on the prognosis and therapeutic plans for TS.
Collapse
|
5
|
Levy AM, Paschou P, Tümer Z. Candidate Genes and Pathways Associated with Gilles de la Tourette Syndrome-Where Are We? Genes (Basel) 2021; 12:1321. [PMID: 34573303 PMCID: PMC8468358 DOI: 10.3390/genes12091321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a childhood-onset neurodevelopmental and -psychiatric tic-disorder of complex etiology which is often comorbid with obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD). Twin and family studies of GTS individuals have shown a high level of heritability suggesting, that genetic risk factors play an important role in disease etiology. However, the identification of major GTS susceptibility genes has been challenging, presumably due to the complex interplay between several genetic factors and environmental influences, low penetrance of each individual factor, genetic diversity in populations, and the presence of comorbid disorders. To understand the genetic components of GTS etiopathology, we conducted an extensive review of the literature, compiling the candidate susceptibility genes identified through various genetic approaches. Even though several strong candidate genes have hitherto been identified, none of these have turned out to be major susceptibility genes yet.
Collapse
Affiliation(s)
- Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Background:Tics, defined as quick, rapid, sudden, recurrent, non-rhythmic motor movements or vocalizations are required components of Tourette Syndrome (TS) - a complex disorder characterized by the presence of fluctuating, chronic motor and vocal tics, and the presence of co-existing neuropsychological problems. Despite many advances, the underlying pathophysiology of tics/TS remains unknown.Objective:To address a variety of controversies surrounding the pathophysiology of TS. More specifically: 1) the configuration of circuits likely involved; 2) the role of inhibitory influences on motor control; 3) the classification of tics as either goal-directed or habitual behaviors; 4) the potential anatomical site of origin, e.g. cortex, striatum, thalamus, cerebellum, or other(s); and 5) the role of specific neurotransmitters (dopamine, glutamate, GABA, and others) as possible mechanisms (Abstract figure).Methods:Existing evidence from current clinical, basic science, and animal model studies are reviewed to provide: 1) an expanded understanding of individual components and the complex integration of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit - the pathway involved with motor control; and 2) scientific data directly addressing each of the aforementioned controversies regarding pathways, inhibition, classification, anatomy, and neurotransmitters.Conclusion:Until a definitive pathophysiological mechanism is identified, one functional approach is to consider that a disruption anywhere within CBGTC circuitry, or a brain region inputting to the motor circuit, can lead to an aberrant message arriving at the primary motor cortex and enabling a tic. Pharmacologic modulation may be therapeutically beneficial, even though it might not be directed toward the primary abnormality.
Collapse
Affiliation(s)
- Harvey S. Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
7
|
Abstract
Tourette syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead, TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progress in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES), and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
|
8
|
Nespoli E, Rizzo F, Boeckers T, Schulze U, Hengerer B. Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats. PLoS One 2018; 13:e0196515. [PMID: 29698507 PMCID: PMC5919623 DOI: 10.1371/journal.pone.0196515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype.
Collapse
Affiliation(s)
- Ester Nespoli
- CNS Department, Boehringer Ingelheim Pharma GmbH& Co. KG, Biberach an der Riss, Germany
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
- * E-mail: (BH); (EN)
| | - Francesca Rizzo
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Ulrike Schulze
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
| | - Bastian Hengerer
- CNS Department, Boehringer Ingelheim Pharma GmbH& Co. KG, Biberach an der Riss, Germany
- * E-mail: (BH); (EN)
| |
Collapse
|
9
|
Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach. Eur Arch Psychiatry Clin Neurosci 2018; 268:301-316. [PMID: 28555406 PMCID: PMC5708161 DOI: 10.1007/s00406-017-0808-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes.
Collapse
|
10
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
11
|
Abstract
Tourette syndrome is a neuropsychiatric condition characterized by both motor and phonic tics over a period of at least 1 year with the onset in childhood or adolescence. Apart from the tics, most of the patients with Tourette syndrome have associated neuropsychiatric comorbidities consisting of attention deficit hyperactivity disorder, obsessive compulsive disorder, rage attacks, sleep issues, depression, and migraine. Patients may also have physical complications directly from violent motor tics which can rarely include cervical myelopathy, arterial dissection, and stroke. The purpose of this article is to review the associated neuropsychiatric comorbidities of Tourette syndrome with emphasis on recent research.
Collapse
|
12
|
Georgitsi M, Willsey AJ, Mathews CA, State M, Scharf JM, Paschou P. The Genetic Etiology of Tourette Syndrome: Large-Scale Collaborative Efforts on the Precipice of Discovery. Front Neurosci 2016; 10:351. [PMID: 27536211 PMCID: PMC4971013 DOI: 10.3389/fnins.2016.00351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder that is characterized by multiple motor and phonic tics. It has a complex etiology with multiple genes likely interacting with environmental factors to lead to the onset of symptoms. The genetic basis of the disorder remains elusive. However, multiple resources and large-scale projects are coming together, launching a new era in the field and bringing us on the verge of discovery. The large-scale efforts outlined in this report are complementary and represent a range of different approaches to the study of disorders with complex inheritance. The Tourette Syndrome Association International Consortium for Genetics (TSAICG) has focused on large families, parent-proband trios and cases for large case-control designs such as genomewide association studies (GWAS), copy number variation (CNV) scans, and exome/genome sequencing. TIC Genetics targets rare, large effect size mutations in simplex trios, and multigenerational families. The European Multicentre Tics in Children Study (EMTICS) seeks to elucidate gene-environment interactions including the involvement of infection and immune mechanisms in TS etiology. Finally, TS-EUROTRAIN, a Marie Curie Initial Training Network, aims to act as a platform to unify large-scale projects in the field and to educate the next generation of experts. Importantly, these complementary large-scale efforts are joining forces to uncover the full range of genetic variation and environmental risk factors for TS, holding great promise for identifying definitive TS susceptibility genes and shedding light into the complex pathophysiology of this disorder.
Collapse
Affiliation(s)
- Marianthi Georgitsi
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlexandroupoli, Greece; Department of Medicine, Aristotle University of ThessalonikiThessaloniki, Greece
| | - A Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco San Francisco, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, University of Florida School of Medicine Gainesville, FL, USA
| | - Matthew State
- Department of Psychiatry, University of California, San Francisco San Francisco, CA, USA
| | - Jeremiah M Scharf
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| |
Collapse
|
13
|
Karagiannidis I, Tsetsos F, Padmanabhuni SS, Alexander J, Georgitsi M, Paschou P. The Genetics of Gilles de la Tourette Syndrome: a Common Aetiological Basis with Comorbid Disorders? Curr Behav Neurosci Rep 2016. [DOI: 10.1007/s40473-016-0088-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
He F, Zheng Y, Huang HH, Cheng YH, Wang CY. Association between Tourette syndrome and the dopamine D3 receptor gene rs6280. Chin Med J (Engl) 2015; 128:654-8. [PMID: 25698199 PMCID: PMC4834778 DOI: 10.4103/0366-6999.151665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tourette syndrome (TS) is a complex, heterozygous genetic disorder. The number of molecular genetic studies have investigated several candidate genes, particularly those implicated in the dopamine system. The dopamine D3 receptor (DRD3) gene has been considered as a candidate gene in TS. There was not any report about the association study of TS and DRD3 gene in Han Chinese population. We combined a case-control genetic association analysis and nuclear pedigrees transmission disequilibrium test (TDT) analysis to investigate the association between DRD3 gene rs6280 single nucleotide polymorphisms (SNPs) and TS in a Han Chinese population. METHODS A total of 160 TS patients was diagnosed by the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. The DRD3 gene rs6280 SNPs were genotyped by TaqMan SNP genotyping assay technique in all subjects. We used a case-control genetic association analysis to compare the difference in genotype and allele frequencies between 160 TS patients and 90 healthy controls. At the same time, we used TDT analysis to identify the DRD3 gene rs6280 transmission disequilibrium among 101 nuclear pedigrees. RESULTS The genotype and allele frequency of DRD3 gene rs6280 SNPs had no statistical difference between control group (90) and TS group (160) (χ2 = 3.647, P = 0.161; χ2 = 0.643, P = 0.423) using Chi-squared test. At the basis of the 101 nuclear pedigrees, TDT analysis showed no transmission disequilibrium of DRD3 gene rs6280 SNPs (χ2 = 0; P = 1). CONCLUSIONS Our findings provide no evidence for an association between DRD3 gene rs6280 and TS in the Han Chinese population.
Collapse
Affiliation(s)
| | | | | | | | - Chuan-Yue Wang
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University; Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China
| |
Collapse
|
15
|
Richer P, Fernandez TV. Tourette Syndrome: Bridging the Gap between Genetics and Biology. MOLECULAR NEUROPSYCHIATRY 2015; 1:156-164. [PMID: 26509143 DOI: 10.1159/000439085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tourette syndrome is a childhood neuropsychiatric disorder, which presents with disruptive motor and vocal tics. The disease also has a high comorbidity with obsessive-compulsive disorder and attention deficit hyperactivity disorder, which may further increase the distress experienced by patients. Current treatments act with varying efficacies in alleviating symptoms, as the underlying biology of the disease is not fully understood to provide precise therapeutic targets. Moreover, the genetic complexity of the disorder presents a substantial challenge to the identification of genetic alterations that contribute to the Tourette's phenotype. Nevertheless, genetic studies have suggested involvement of dopaminergic, serotonergic, glutamatergic, and histaminergic pathways in the pathophysiology of at least some cases. In addition, genetic overlaps with other neuropsychiatric disorders may point toward a shared biology. The findings that are emerging from genetic studies will allow researchers to piece together the underlying components of the disease, in the hopes that a deeper understanding of Tourette's can lead to improved treatments for those affected by it.
Collapse
Affiliation(s)
- Petra Richer
- Sewanee: The University of the South, 735 University Avenue Sewanee, TN 37383
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
16
|
Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. Eur Neuropsychopharmacol 2015; 25:1421-6. [PMID: 25224105 DOI: 10.1016/j.euroneuro.2014.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/01/2014] [Accepted: 08/10/2014] [Indexed: 11/23/2022]
Abstract
The SNP rs167771 of the dopamine-3-receptor gene (DRD3) has been associated with autism spectrum disorder (ASD) in samples from the United Kingdom, The Netherlands and Spain. The DRD3 polymorphisms of rs167771 are significantly associated with a specific type of repetitive and stereotyped behavior, called sameness. Repetitive and stereotyped behavior occurs in several neuropsychiatric disorders and the combined picture across these disorders strongly suggests the involvement of the basal ganglia - frontal lobe circuitry. In autism, abnormalities of the basal ganglia, in particular the caudate nucleus, are the best replicated findings in neuroimaging studies. Interestingly, the DRD3 gene is highly expressed in the basal ganglia, most notably the caudate nucleus. The rs167771 SNP was recently also found to be related to risperidone-induced extra-pyramidal side effects (EPS) in patients with autism, which is important since risperidone is approved for the treatment of aggression, irritability and rigid behavior in ASD. To conclude, striatum abnormalities in autism are associated with repetitive and stereotyped behavior in autism and may be related to DRD3 polymorphisms.
Collapse
|
17
|
Yuan A, Su L, Yu S, Li C, Yu T, Sun J. Association between DRD2/ANKK1 TaqIA Polymorphism and Susceptibility with Tourette Syndrome: A Meta-Analysis. PLoS One 2015; 10:e0131060. [PMID: 26110876 PMCID: PMC4482493 DOI: 10.1371/journal.pone.0131060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/29/2015] [Indexed: 11/18/2022] Open
Abstract
Background Genetic factors are important in the pathogenesis of Tourette syndrome (TS). Notably, Dopamine receptor D2 (DRD2) gene has been suggested as a possible candidate gene for this disorder. Several studies have demonstrated that DRD2/ANKK1 TaqIA polymorphism is associated with an increased risk of developing TS. However, past results remain conflicting. We addressed this controversy by performing a meta-analysis of the relationship between DRD2/ANKK1 TaqIA polymorphism and TS. Methods Literature was searched in multiple databases including PUBMED, COCHRANE and WEB OF SCIENCE up to July 2014. The number of the genotypes for DRD2/ANKK1 TaqIA in the TS and control subjects was extracted and statistical analysis was performed using Review Manager 5.0.16 and Stata 12.0 software. Summary odds ratios (ORs) and 95% confidence intervals (95%CIs) were utilized to calculate the risk of TS with DRD2/ANKK1 TaqIA. Stratified analysis based on ethnicity was also conducted. Results 523 patients with TS, 564 controls and 87 probands plus 152 relatives from five published studies were finally involved in this meta-analysis. Combined analysis revealed that the overall ORs for the DRD2/ANKK1 TaqIA A1 allele were 1.69 (95%CIs = 1.42-2.00) in the fixed-effect model and 1.66 (95%CIs = 1.33-2.08) in the random-effects model. Stratification by ethnicity indicated the TaqIA A1 allele was significantly associated with TS in Caucasians (fixed-effect model: OR=1.75, 95%CI = 1.43-2.16; random-effect model: OR=1.69, 95%CI = 1.25-2.28) and in Asians (OR=1.54, 95%CI = 1.12-2.10). Meta-analysis of the A1A1 vs. A2A2 (homozygous model), A1A2 vs. A2A2 (heterozygous model) and A1A1+A1A2 vs. A2A2 (dominant model) of this polymorphism revealed a significant association with TS in overall populations and Caucasians. Conclusions This meta-analysis suggested that the DRD2/ANKK1 TaqIA polymorphism might contribute to TS susceptibility, especially in Caucasian population. However, further investigation with a larger number of worldwide studies should be conducted to verify the association.
Collapse
Affiliation(s)
- Aihua Yuan
- Department of Genetics, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Liang Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Department of Genetics, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yu
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jinhua Sun
- Department of Medical Psychology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
El Malhany N, Gulisano M, Rizzo R, Curatolo P. Tourette syndrome and comorbid ADHD: causes and consequences. Eur J Pediatr 2015; 174:279-88. [PMID: 25224657 DOI: 10.1007/s00431-014-2417-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Attention deficit hyperactivity disorder (ADHD) is the most common comorbid condition in patients with Tourette syndrome (TS). The co-occurrence of ADHD and TS is in most cases associated with a higher social and psychopathological impairment. Comorbidity between Tourette and ADHD appears to have a complex and partially known pathogenesis in which genetic, environmental, and neurobiological factors can be implicated. Genetic studies have revealed an involvement of dopaminergic, catecholaminergic, and GABAergic genes that modulated the activity of neurotransmitters. Furthermore, there are a lot of networks implicated in the development of ADHD and TS, involving cortical and striatal areas and basal ganglia. Although a large number of studies tried to find a common pathogenesis, the complex pathways responsible are not clear. The genes implicated in both disorders are currently unidentified, but it is probable that epigenetic factors associated with neural modifications can represent a substrate for the development of the diseases. CONCLUSION In this paper, recent advances in neurobiology of ADHD and TS are reviewed, providing a basis for understanding the complex common pathogenesis underlying the frequent co-occurrence of the two conditions and the therapeutic choices.
Collapse
Affiliation(s)
- N El Malhany
- Section of Child Neuropsychiatry, Department of Neurosciences, Tor Vergata University, Viale Oxford 81, 00133, Rome, Italy,
| | | | | | | |
Collapse
|
19
|
Liu S, Wang X, Xu L, Zheng L, Ge Y, Ma X. Family-based association study between monoamine oxidase A (MAOA) gene promoter VNTR polymorphism and Tourette's syndrome in Chinese Han population. Neurocase 2015; 21:106-8. [PMID: 24422758 DOI: 10.1080/13554794.2013.873061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To clarify the association of monoamine oxidase A- variable number of tandem repeat (MAOA-pVNTR) with susceptibility to Tourette's syndrome (TS) in Chinese Han population we discuss the genetic contribution of MAOA-VNTR in 141 TS patients including all their parents in Chinese Han population using transmission disequilibrium test (TDT) design. Our results revealed that no significant association was found in the MAOA gene promoter VNTR polymorphism and TS in Chinese Han population (TDT = 1.515, df = 1, p > 0.05). The negative result may be mainly due to the small sample size, but we don't deny the role of gene coding serotonergic or monoaminergic structures in the etiology of TS.
Collapse
Affiliation(s)
- Shiguo Liu
- a Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Medical College , Qingdao University , Qingdao 266003 , China
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
Liu S, Cui J, Zhang X, Wu W, Niu H, Ma X, Xu H, Yi M. Variable number tandem repeats in dopamine receptor D4 in Tourette's syndrome. Mov Disord 2014; 29:1687-91. [PMID: 25258183 DOI: 10.1002/mds.26027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shiguo Liu
- Genetic Laboratory; The Affiliated Hospital of Qingdao University; Qingdao 266003 China
- Prenatal Diagnosis Center; The Affiliated Hospital of Qingdao University; Qingdao 266003 China
| | - Jiajia Cui
- Department of Psychiatry, Medical College; Qingdao University; Qingdao 266021 China
| | - Xinhua Zhang
- Department of Psychiatry, Medical College; Qingdao University; Qingdao 266021 China
- Psychological Clinic; The Affiliated Hospital of Qingdao University; Qingdao 266003 China
| | - Weifeng Wu
- Department of Psychiatry, Medical College; Qingdao University; Qingdao 266021 China
| | - Haitao Niu
- The Affiliated Hospital of Qingdao University; Qingdao 266003 China
| | - Xu Ma
- National Research Institute for Family Planning; Beijing 100081 China
- World Health Organization Collaborating Centre for Research in Human Reproduction; Beijing China
| | - Hongmei Xu
- The Affiliated Hospital of Qingdao University; Qingdao 266003 China
| | - Mingji Yi
- Child Healthcare Department; The Affiliated Hospital of Qingdao University; Qingdao 266003 China
| |
Collapse
|
23
|
Godar SC, Mosher LJ, Di Giovanni G, Bortolato M. Animal models of tic disorders: a translational perspective. J Neurosci Methods 2014; 238:54-69. [PMID: 25244952 DOI: 10.1016/j.jneumeth.2014.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
24
|
Bortolato M, Frau R, Godar SC, Mosher LJ, Paba S, Marrosu F, Devoto P. The implication of neuroactive steroids in Tourette's syndrome pathogenesis: A role for 5α-reductase? J Neuroendocrinol 2013; 25:1196-208. [PMID: 23795653 PMCID: PMC3849218 DOI: 10.1111/jne.12066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/01/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023]
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterised by recurring motor and phonic tics. The pathogenesis of TS is considered to reflect dysregulations in the signalling of dopamine (DA) and other neurotransmitters, which lead to excitation/inhibition imbalances in cortico-striato-thalamocortical circuits. The causes of these deficits may reflect complex gene × environment × sex (G × E × S) interactions; indeed, the disorder is markedly predominant in males, with a male-to-female prevalence ratio of approximately 4 : 1. Converging lines of evidence point to neuroactive steroids as being likely molecular candidates to account for G × E × S interactions in TS. Building on these premises, our group has begun examining the possibility that alterations in the steroid biosynthetic process may be directly implicated in TS pathophysiology; in particular, our research has focused on 5α-reductase (5αR), the enzyme catalysing the key rate-limiting step in the synthesis of pregnane and androstane neurosteroids. In clinical and preclinical studies, we found that 5αR inhibitors exerted marked anti-DAergic and tic-suppressing properties, suggesting a central role for this enzyme in TS pathogenesis. Based on these data, we hypothesise that enhancements in 5αR activity in early developmental stages may lead to an inappropriate activation of the 'backdoor' pathway for androgen synthesis from adrenarche until the end of puberty. We predict that the ensuing imbalances in steroid homeostasis may impair the signalling of DA and other neurotransmitters, ultimately resulting in the facilitation of tics and other behavioural abnormalities in TS.
Collapse
Affiliation(s)
- Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence (KS), USA
| | - Roberto Frau
- Dept. of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| | - Sean C Godar
- Dept. of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence (KS), USA
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence (KS), USA
| | - Silvia Paba
- Dept. of Public Health, Clinical and Molecular Medicine, Section of Neurology, University of Cagliari, Monserrato (CA), Italy
| | - Francesco Marrosu
- Dept. of Public Health, Clinical and Molecular Medicine, Section of Neurology, University of Cagliari, Monserrato (CA), Italy
| | - Paola Devoto
- Dept. of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| |
Collapse
|
25
|
Paschou P. The genetic basis of Gilles de la Tourette Syndrome. Neurosci Biobehav Rev 2013; 37:1026-39. [DOI: 10.1016/j.neubiorev.2013.01.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
|
26
|
Ali F, Morrison KE, Cavanna AE. The complex genetics of Gilles de la Tourette syndrome: implications for clinical practice. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Paschou P, Fernandez TV, Sharp F, Heiman GA, Hoekstra PJ. Genetic susceptibility and neurotransmitters in Tourette syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:155-77. [PMID: 24295621 DOI: 10.1016/b978-0-12-411546-0.00006-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to more complex models including additive and multifactorial inheritance and likely interaction with genetic factors. While the exact cellular and molecular base of TS is as yet elusive, neuroanatomical and neurophysiological studies have pointed to the involvement of cortico-striato-thalamocortical circuits and abnormalities in dopamine, glutamate, gamma-aminobutyric acid, and serotonin neurotransmitter systems, with the most consistent evidence being available for involvement of dopamine-related abnormalities, that is, a reduction in tonic extracellular dopamine levels along with hyperresponsive spike-dependent dopamine release, following stimulation. Genetic and gene expression findings are very much supportive of involvement of these neurotransmitter systems. Moreover, intriguingly, genetic work on a two-generation pedigree has opened new research pointing to a role for histamine, a so far rather neglected neurotransmitter, with the potential of the development of new treatment options. Future studies should be aimed at directly linking neurotransmitter-related genetic and gene expression findings to imaging studies (imaging genetics), which enables a better understanding of the pathways and mechanisms through which the dynamic interplay of genes, brain, and environment shapes the TS phenotype.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | | | | | | | | |
Collapse
|
28
|
Macrì S, Onori MP, Roessner V, Laviola G. Animal models recapitulating the multifactorial origin of Tourette syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:211-37. [PMID: 24295623 DOI: 10.1016/b978-0-12-411546-0.00008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tourette Syndrome (TS) is a neurological disorder characterized by motor and phonic tics affecting approximately 1% of the pediatric population. Behavioral comorbidities often include obsessive-compulsive behavior and impaired attention. The neurobiological substrates associated with TS generally entail abnormalities in neurotransmitter circuitry regulating basal ganglia activity. The neurotransmitters most often associated with TS are dopamine, serotonin, and GABA. TS origin roots in genetic predisposing factors, and environmental variables favoring tic onset and exacerbation. Among the latter, repeated infections with group A beta-hemolytic Streptococcus and psychosocial stressors encountered during development have been proposed to constitute likely susceptibility factors. In this chapter, we describe how this clinical/epidemiological knowledge has been translated into animal models of TS. Specifically, we review several studies attempting to reproduce TS-like symptoms (tics and behavioral stereotypies) and comorbidities (impaired attention, increased locomotion, and perseverative responding) in laboratory rodents. Additionally, we discuss studies in which the genetic and environmental predisposing factors have been modeled in experimental subjects. Ultimately, we propose a unifying perspective recapitulating dependent and independent variables in the preclinical study of TS and discuss its potential theoretical and heuristic implications.
Collapse
Affiliation(s)
- Simone Macrì
- Section of Behavioural Neuroscience, Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | |
Collapse
|
29
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
30
|
|
31
|
Lee TW, Yu YWY, Hong CJ, Tsai SJ, Wu HC, Chen TJ. The influence of dopamine receptor d4 polymorphism on resting EEG in healthy young females. Open Neuroimag J 2012; 6:19-25. [PMID: 22448208 PMCID: PMC3308261 DOI: 10.2174/1874440001206010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 01/15/2023] Open
Abstract
The polymorphism of variable number of tandem repeat (VNTR) in dopamine receptor D4 (DRD4) gene exon III has been linked to various neuro-psychiatric conditions with disinhibition/impulsivity as one of the core features. This study examined the modulatory effects of long-allele variant of DRD4 VNTR on the regional neural activity as well as inter-regional neural interactions in a young female population. Blood sample and resting state eyes-closed EEG signals were collected in 233 healthy females, stratified into two groups by polymerase chain reaction: long-allele carriers (>4- repeat) and non-carriers (<=4-repeat/<=4-repeat). The values of mean power of 18 electrodes and mutual information of 38 channel pairs across theta, alpha, and beta frequencies were analyzed. Our connectivity analysis was based on information theory, which combined Morlet wavelet transform and mutual information calculation. Between-group differences of regional power and connectivity strength were quantified by independent t-test, while between-group differences in global trends were examined by non-parametric analyses. We noticed that DRD4 VNTR long-allele was associated with decreased global connectivity strength (from non-parametric analysis), especially over bi-frontal, biparietal and right fronto-parietal and right fronto-temporal connections (from independent t-tests). The between-group differences in regional power were not robust. Our findings fit with the networks of response inhibition, providing evidence bridging DRD4 long-allele and disinhibition/impulsivity in neuropsychiatric disorders. We suggest future DRD4 studies of imaging genetics incorporate connectivity analysis to unveil its impact on cerebral network.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yuen EY, Yan Z. Cellular mechanisms for dopamine D4 receptor-induced homeostatic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. J Biol Chem 2011; 286:24957-65. [PMID: 21622557 DOI: 10.1074/jbc.m111.221416] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant dopamine D(4) receptor function has been implicated in mental illnesses, including schizophrenia and attention deficit-hyperactivity disorder. Recently we have found that D(4) receptor exerts an activity-dependent bi-directional regulation of AMPA receptor (AMPAR)-mediated synaptic currents in pyramidal neurons of prefrontal cortex (PFC) via the dual control of calcium/calmodulin kinase II (CaMKII) activity. In this study, we examined the signaling mechanisms downstream of CaMKII that govern the complex effects of D(4) on glutamatergic transmission. We found that in PFC neurons at high activity state, D(4) suppresses AMPAR responses by disrupting the kinesin motor-based transport of GluR2 along microtubules, which was accompanied by the D(4) reduction of microtubule stability via a mechanism dependent on CaMKII inhibition. On the other hand, in PFC neurons at the low activity state, D(4) potentiates AMPAR responses by facilitating synaptic targeting of GluR1 through the scaffold protein SAP97 via a mechanism dependent on CaMKII stimulation. Taken together, these results have identified distinct signaling mechanisms underlying the homeostatic regulation of glutamatergic transmission by D(4) receptors, which may be important for cognitive and emotional processes in which dopamine is involved.
Collapse
Affiliation(s)
- Eunice Y Yuen
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
33
|
Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev 2011; 35:1665-86. [PMID: 21527290 DOI: 10.1016/j.neubiorev.2011.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 02/01/2023]
Abstract
Dopamine hypotheses of several psychiatric disorders are based upon the clinical benefits of drugs affecting dopamine transporter or receptors, and have prompted intensive candidate gene research within the dopaminergic system during the last two decades. The aim of this review is to survey the most important findings concerning dopaminergic gene polymorphisms in attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), obsessive compulsive disorder, and substance abuse. Also, genetic findings of related phenotypes, such as inattention, impulsivity, aggressive behavior, and novelty seeking personality trait are presented, because recent studies have applied quantitative trait measures using questionnaires, symptom scales, or other objective endophenotypes. Unfortunately, genetic variants with minor effects are problematic to detect in these complex inheritance disorders, often leading to contradictory results. The most consistent association findings relate to ADHD and the dopamine transporter and the dopamine D4 receptor genes. Meta-analyses also support the association between substance abuse and the D2 receptor gene. The dopamine catabolizing enzyme genes, such as monoamine oxidase (MAO) A and catechol-O-methyltransferase (COMT) genes, have been linked to aggressive behaviors.
Collapse
|
34
|
Hartmann A, van Meerbeeck P, Deniau E, Béhar C, Czernecki V, Depienne C, Worbe Y. Tic e sindrome di Gilles de la Tourette. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Open-label study comparing the efficacy and tolerability of aripiprazole and haloperidol in the treatment of pediatric tic disorders. Eur Child Adolesc Psychiatry 2011; 20:127-35. [PMID: 21188439 PMCID: PMC3046348 DOI: 10.1007/s00787-010-0154-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 12/15/2010] [Indexed: 12/04/2022]
Abstract
Due to its unique pharmacodynamic properties of dopamine partial agonist activity, and its association with few and mild side effects, aripiprazole is a candidate atypical antipsychotic for patients with tic disorders. This open-label study compared the efficacy and tolerability of aripiprazole with haloperidol, a typical antipsychotic widely used to treat patients with tic disorders. Forty-eight children and adolescents with tic disorders were recruited from the outpatient clinic at South Korea and treated with aripiprazole (initial dose, 5.0 mg/d; maximum dose 20 mg/d) or haloperidol (initial dose, 0.75 mg/d; maximum dose, 4.5 mg/d) for 8 weeks. Treatment efficacy was measured using the yale global tic severity scale (YGTSS), and tolerability was measured using the extrapyramidal symptom rating scale (ESRS) and an adverse effects checklist. Total tic scores as measured by the YGTSS decreased over time in both groups (p < 0.001) without any significant differences between groups. ESRS scores were significantly higher in the haloperidol group during the 4 weeks after commencement of medication (p < 0.05). These results indicate that aripiprazole may be a promising drug in the treatment of children and adolescents with tic disorders. Further controlled studies are needed to determine the efficacy and tolerability of aripiprazole in these patients.
Collapse
|
36
|
Bos-Veneman NGP, Minderaa RB, Hoekstra PJ. The DRD4 gene and severity of tics and comorbid symptoms: main effects and interactions with delivery complications. Mov Disord 2010; 25:1470-6. [PMID: 20629147 DOI: 10.1002/mds.23122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the role of the dopamine receptor D4 (DRD4) 48-base pairs (bp) variable number of tandem repeats (VNTR) and perinatal adversities regarding severity of tics and comorbid symptoms in children with tic disorders. We genotyped 110 children with tics with regard to the 48-bp VNTR and assessed presence of prenatal smoking exposure, and pregnancy and delivery complications by parent questionnaires. We examined associations between 2, 3, 4, and 7 repeat (R) alleles and severity of tics and comorbid obsessive-compulsive, depressive, anxious, and autistic symptoms. Through linear regressions, we investigated whether perinatal adversities and the 2R, 3R, 4R, and 7R alleles would interact with severity ratings of tics or comorbid symptoms as outcome. Presence of a 2R allele was related to more severe obsessive-compulsive symptoms, and presence of a 3R allele to increased severity of autistic features. Pregnancy complications were associated with decreased obsessive-compulsive symptom severity, and prenatal smoking exposure to more severe depressive and autistic symptoms. In children without a 3R allele delivery complications were associated with more severe tics, but in children with a 3R variant an inverse relation between delivery complications and tic severity was found. Moreover, the relation between delivery complications and internalizing symptom severity appeared to be most pronounced in children with a 2R allele. In conclusion, this study provides evidence for a role of the 48-bp VNTR in the etiology of tic and associated disorders, and for interactions with delivery complications regarding severity of tics and co-occurring internalizing symptoms.
Collapse
Affiliation(s)
- Netty G P Bos-Veneman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Gadow KD, DeVincent CJ, Pisarevskaya V, Olvet DM, Xu W, Mendell N, Finch SJ, Hatchwell E. Parent-child DRD4 genotype as a potential biomarker for oppositional, anxiety, and repetitive behaviors in children with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1208-14. [PMID: 20600463 PMCID: PMC2939241 DOI: 10.1016/j.pnpbp.2010.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 01/26/2023]
Abstract
The primary objective of the present study was to examine whether a combination of parent-child DRD4 genotypes results in more informative biomarkers of oppositional, separation anxiety, and repetitive behaviors in children with autism spectrum disorder (ASD). Based on prior research indicating the 7-repeat allele as a potential risk variant, participants were sorted into one of four combinations of parent-child genotypes. Owing to the possibility of parent-of-origin effects, analyses were conducted separately for mother-child (MC) and father-child (FC) dyads. Mothers completed a validated DSM-IV-referenced rating scale. Partial eta-squared (ηp(2)) was used to determine the magnitude of group differences: 0.01-0.06=small, 0.06-0.14=moderate, and >0.14=large. Analyses indicated that children in MC dyads with matched genotypes had the least (7-/7-) and most (7+/7+) severe mother-rated oppositional-defiant (ηp(2)=0.11) and separation anxiety (ηp(2)=0.19) symptoms. Conversely, youths in FC dyads with matched genotypes had the least (7-/7-) and most (7+/7+) severe obsessive-compulsive behaviors (ηp(2)=0.19) and tics (ηp(2)=0.18). Youths whose parents were both noncarriers had less severe tics than peers with at least one parental carrier, and the effect size was large (ηp(2)=0.16). There was little evidence that noncarrier children were rated more severely by mothers who were carriers versus noncarriers. Transmission Disequilibrium Test analyses provided preliminary evidence for undertransmission of the 2-repeat allele in youths with more severe tics (p=0.02). Parent genotype may be helpful in constructing prognostic biomarkers for behavioral disturbances in ASD; however, findings are tentative pending replication with larger, independent samples.
Collapse
Affiliation(s)
- Kenneth D. Gadow
- Correspondence: Kenneth D. Gadow, Ph.D., Department of Psychiatry, Putnam Hall, South Campus State University of New York, Stony Brook, NY 11794-8790, Phone: (631) 632-8858, FAX: (631) 632-8953
| | - Carla J. DeVincent
- Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY 11794-8788, Phone: (631) 632-3042, FAX: (631) 632-3021,
| | | | - Doreen M. Olvet
- Zucker Hillside Hospital, Psychiatry Research, North Shore – Long Island Jewish Health System, Glen Oaks, NY 11004,
| | - Wenjie Xu
- Department of Applied mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Nancy Mendell
- Department of Applied mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Stephen J. Finch
- Department of Applied mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Eli Hatchwell
- Department of Pathology, Director of the Genomics Core Facility and Associate Professor, HSC-T8, Room 053, Stony Brook University, Stony Brook, NY 11794-8088, Phone: 631-444-1206, FAX: 631-444-3129,
| |
Collapse
|
38
|
Du JC, Chiu TF, Lee KM, Wu HL, Yang YC, Hsu SY, Sun CS, Hwang B, Leckman JF. Tourette syndrome in children: an updated review. Pediatr Neonatol 2010; 51:255-64. [PMID: 20951354 DOI: 10.1016/s1875-9572(10)60050-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/01/2010] [Accepted: 04/21/2010] [Indexed: 10/18/2022] Open
Abstract
Tourette syndrome (TS) is a common neuropsychiatric disorder in children characterized by multiple motor and vocal tics that fluctuate in severity and lasting for at least 1 year. Boys are more commonly affected than girls. Symptoms usually begin with simple motor or vocal tics which then evolve into more complex motor and vocal tics over time. Premonitory sensory urges are common in children over the age of 8 years, and these urges help distinguish tics from symptoms of other movement disorders. Common comorbidities of TS include attention deficit hyperactivity disorder, obsessive-compulsive disorder and learning difficulties. Several genes have been assessed as candidate genes for TS; environmental factors such as stress and streptococcal infections might also contribute to its etiology. The pathophysiology of TS mainly involves dysfunction of basal ganglia-related circuits and hyperactive dopaminergic innervations. A thorough history assessment and neurological examination are important for the correct diagnosis and differentiation from other movement disorders. Treatment for TS should focus on improving the patient's social functioning, minimizing the impairment from cormobid disorders, and controlling tics, if they are severe. Commonly used medications for TS include a2-adrenergic agonists and atypical neuroleptics. Habit reversal therapy is an effective option for TS, and repetitive transcranial magnetic stimulation may be a promising approach for severe cases.
Collapse
Affiliation(s)
- Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, and National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gadow KD, DeVincent CJ, Olvet DM, Pisarevskaya V, Hatchwell E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci 2010; 32:1058-65. [DOI: 10.1111/j.1460-9568.2010.07382.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Association of DRD2 variants and Gilles de la Tourette syndrome in a family-based sample from a South American population isolate. Psychiatr Genet 2010; 20:179-83. [DOI: 10.1097/ypg.0b013e32833a215a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome. Psychiatr Genet 2010; 20:35-8. [DOI: 10.1097/ypg.0b013e32833511ce] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
O’Rourke JA, Scharf JM, Yu D, Pauls DL. The genetics of Tourette syndrome: a review. J Psychosom Res 2009; 67:533-45. [PMID: 19913658 PMCID: PMC2778609 DOI: 10.1016/j.jpsychores.2009.06.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This article summarizes and evaluates recent advances in the genetics of Gilles de la Tourette syndrome (GTS). METHODS This is a review of recent literature focusing on (1) the genetic etiology of GTS; (2) common genetic components of GTS, attention deficit hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD); (3) recent linkage studies of GTS; (4) chromosomal translocations in GTS; and (5) candidate gene studies. RESULTS Family, twin, and segregation studies provide strong evidence for the genetic nature of GTS. GTS is a heterogeneous disorder with complex inheritance patterns and phenotypic manifestations. Family studies of GTS and OCD indicate that an early-onset form of OCD is likely to share common genetic factors with GTS. While there apparently is an etiological relationship between GTS and ADHD, it appears that the common form of ADHD does not share genetic factors with GTS. The largest genome wide linkage study to date observed evidence for linkage on chromosome 2p23.2 (P=3.8x10(-5)). No causative candidate genes have been identified, and recent studies suggest that the newly identified candidate gene SLITRK1 is not a significant risk gene for the majority of individuals with GTS. CONCLUSION The genetics of GTS are complex and not well understood. The Genome Wide Association Study (GWAS) design can hopefully overcome the limitations of linkage and candidate gene studies. However, large-scale collaborations are needed to provide enough power to utilize the GWAS design for discovery of causative mutations. Knowledge of susceptibility mutations and biological pathways involved should eventually lead to new treatment paradigms for GTS.
Collapse
|
43
|
Kebir O, Grizenko N, Sengupta S, Joober R. Verbal but not performance IQ is highly correlated to externalizing behavior in boys with ADHD carrying both DRD4 and DAT1 risk genotypes. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:939-44. [PMID: 19409950 DOI: 10.1016/j.pnpbp.2009.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/12/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is often associated with reduced IQ and high levels of externalizing behavior (EB). This study tested if DRD4 7-repeat allele and DAT1 10-repeat allele homozygosity interact in modulating correlations between IQ and EB in affected boys. METHODS Boys (n=130) between 6 and 12 years of age diagnosed with ADHD were included in the study. IQ and EB were assessed by WISC-III and Child Behavioral Checklist, respectively. The 40 bp variable number tandem repeat (VNTR) of the DAT1 gene and the 48 bp VNTR of the DRD4 gene polymorphisms were genotyped and 4 subgroups were defined by the presence/absence of the DRD4 7-repeat allele and by the presence/absence of the DAT1 10/10 genotype. Correlation coefficients were compared using the Fisher's Z transformation and regression lines by a Potthoff analysis. RESULTS In the total sample, all correlation coefficients between EB score and IQ were non significant. Also, no differences in IQ were observed between the 4 genotype groups. However, different pattern of correlations between IQ and EB score appeared. In boys carrying no or only one genetic risk, IQ and EB score were uncorrelated while in children carrying both risk factors, negative and significant correlations emerged. Notably, correlation of EB to verbal IQ was strong (r=-0.71) and highly significant (P<0.01) in boys carrying both risk alleles. All pair-wise comparisons of correlation coefficients were significant for EB-verbal IQ correlation. Test of coincidence of regression lines did not show significant differences. CONCLUSIONS A specific domain of IQ, namely the verbal quotient is highly correlated to the level of EB in boys with ADHD carrying both dopaminergic risk genotypes. Further investigations are required to replicate these results and determine specificity to ADHD.
Collapse
Affiliation(s)
- Oussama Kebir
- Centre of Psychiatry and Neurosciences, INSERM 894, University Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
44
|
Williams J, Taylor E. The evolution of hyperactivity, impulsivity and cognitive diversity. J R Soc Interface 2009; 3:399-413. [PMID: 16849269 PMCID: PMC1578754 DOI: 10.1098/rsif.2005.0102] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionary status of attention deficit/hyperactivity disorder (ADHD) is central to assessments of whether modern society has created it, either physically or socially; and is potentially useful in understanding its neurobiological basis and treatment. The high prevalence of ADHD (5-10%) and its association with the seven-repeat allele of DRD4, which is positively selected in evolution, raise the possibility that ADHD increases the reproductive fitness of the individual, and/or the group. However, previous suggestions of evolutionary roles for ADHD have not accounted for its confinement to a substantial minority. Because one of the key features of ADHD is its diversity, and many benefits of population diversity are well recognized (as in immunity), we study the impact of groups' behavioural diversity on their fitness. Diversity occurs along many dimensions, and for simplicity we choose unpredictability (or variability), excess of which is a well-established characteristic of ADHD.Simulations of the Changing Food group task show that unpredictable behaviour by a minority optimizes results for the group. Characteristics of such group exploration tasks are risk-taking, in which costs are borne mainly by the individual; and information-sharing, in which benefits accrue to the entire group. Hence, this work is closely linked to previous studies of evolved altruism.We conclude that even individually impairing combinations of genes, such as ADHD, can carry specific benefits for society, which can be selected for at that level, rather than being merely genetic coincidences with effects confined to the individual. The social benefits conferred by diversity occur both inside and outside the 'normal' range, and these may be distinct. This view has the additional merit of offering explanations for the prevalence, sex and age distribution, severity distribution and heterogeneity of ADHD.
Collapse
MESH Headings
- Adaptation, Biological
- Alleles
- Attention Deficit Disorder with Hyperactivity/epidemiology
- Attention Deficit Disorder with Hyperactivity/genetics
- Attention Deficit Disorder with Hyperactivity/physiopathology
- Biological Evolution
- Cognition/physiology
- Disruptive, Impulse Control, and Conduct Disorders/epidemiology
- Disruptive, Impulse Control, and Conduct Disorders/genetics
- Disruptive, Impulse Control, and Conduct Disorders/physiopathology
- Humans
- Male
- Models, Theoretical
- Prevalence
- Receptors, Dopamine D4/genetics
- Selection, Genetic
Collapse
|
45
|
Tarnok Z, Ronai Z, Gervai J, Kereszturi E, Gadoros J, Sasvari-Szekely M, Nemoda Z. Dopaminergic candidate genes in Tourette syndrome: association between tic severity and 3' UTR polymorphism of the dopamine transporter gene. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:900-5. [PMID: 17508355 DOI: 10.1002/ajmg.b.30517] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple evidence suggests an involvement of the dopamine neurotransmitter system in Tourette syndrome (TS). Therefore, dopaminergic candidate genes are in the center of genetic association analyses of TS. In this study, 103 TS patients and their parents have been characterized for different dopamine-related polymorphisms including the 48 bp variable number of tandem repeats (VNTR) of the dopamine D4 receptor (DRD4) gene, the 40 bp VNTR of the dopamine transporter (DAT1, SLC6A3) gene and the Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene. In addition, the 120 bp duplication and three single nucleotide polymorphisms (SNPs) were assessed in the promoter region of the DRD4 gene. The -616G allele and the 2-G-A-C haplotype (i.e., the 2-repeat form of the 120 bp sequence approximately -616G approximately -615A approximately -521C combination) were preferentially transmitted, however, these results did not remain significant after correction for multiple testing. Case-control analyses have also been carried out, resulting in negative findings. On the other hand, using a dimensional approach, the DAT1 40 bp VNTR showed an association with the peak tic-severity as measured by the Yale Global Tic Severity Scale. Patients with at least one copy of the 9-repeat allele had significantly more severe symptoms than individuals with the homozygous 10/10 genotype (P = 0.002). In summary, allele frequencies did not differ between cases and controls, but DAT1 genotype accounted for variations of tic severity within the TS group.
Collapse
Affiliation(s)
- Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Clinic, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Robertson MM, Cavanna AE. The Gilles de la Tourette syndrome: a principal component factor analytic study of a large pedigree. Psychiatr Genet 2007; 17:143-52. [PMID: 17417057 DOI: 10.1097/ypg.0b013e328015b937] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The genetics and phenotypes of Gilles de la Tourette syndrome are complicated. Once indicated to be inherited as a single major autosomal dominant condition, several areas of interest on many chromosomes and one gene have been identified for Gilles de la Tourette syndrome, but no results have been replicated. Factor analytic studies suggest that there are more than one Gilles de la Tourette syndrome phenotype and it is not a unitary condition. OBJECTIVE To characterize Gilles de la Tourette syndrome phenotypes in a group of individuals who underwent a complete genome scan. METHODS We studied 85 members of a multiply affected multigenerational kindred, of whom 69 displayed Gilles de la Tourette syndrome-related symptoms (tics, obsessive-compulsive behaviours, obsessive-compulsive symptoms, attention deficit hyperactivity symptoms), using first a hierarchical cluster analysis followed by a principal component factor analysis. RESULTS Three significant factors resulted from our analysis, accounting for approximately 42% of the symptomatic variance: Factor 1 (predominantly 'pure tics'), Factor 2 (predominantly 'attention deficit hyperactivity disorder and aggressive behaviours') and Factor 3 (predominantly 'depression-anxiety-obsessional symptoms and self-injurious behaviours'). Different kinds of tics occurred in all three factors. Only frowning/raising eyebrows and sniffing/smelling loaded significantly on both Factors 1 and 3. CONCLUSION Our results give further evidence that the genetics of Gilles de la Tourette syndrome is complex and suggest that Gilles de la Tourette syndrome is not a unitary condition, thus confirming the results of earlier studies which have described several Gilles de la Tourette syndrome phenotypes. Although a genome scan on the pedigree reported three areas of interest and the present study found three factors, further studies would have to be undertaken to elucidate whether the three factors 'mapped' with the genetic data. Possible reasons for our findings and suggestions for future research are discussed.
Collapse
Affiliation(s)
- Mary M Robertson
- Department of Mental Health Sciences, University College London, UK.
| | | |
Collapse
|
47
|
Liu X, Wang Y, Li D, Ju X. Transplantation of rat neural stem cells reduces stereotypic behaviors in rats after intrastriatal microinfusion of Tourette syndrome sera. Behav Brain Res 2007; 186:84-90. [PMID: 17850895 DOI: 10.1016/j.bbr.2007.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Tourette syndrome (TS) is a heterogenous neuropsychiatric disorder. In most cases, tics are self-limited or can be treated by behavioral or pharmacological therapy. However, for some individuals, tics can cause lifelong impairment and life-threatening symptoms, which are intractable to traditional treatment. Neural stem cell (NSC) is a potential tool to treat certain neurological diseases. In this study, we proposed to use neural stem cell transplantation as a novel therapy to treat TS and discussed its efficacy. Wistar rats were microinfused with TS sera into the striatum followed by the transplantation of NSCs or vehicle at the infusion site. The sera of the TS patients were identified to have enriched antineural antibodies. Prior to grafting, rat embryonic NSCs were co-cultured with 5-bromodeoxyuridine (Brdu) for 24 h. Stereotypic behaviors were counted at 1, 7, 14 and 21 days after transplantation of NSCs. Morphological analyses revealed that NSCs survived and differentiated into neurons and astrocytes in the striatum 3 weeks after grafting. To sum it up, rat embryonic neural stem cell grafts survived and differentiated in the striatum of TS rat may help relieve stereotypic behaviors of the host. Our results suggest that transplantation of NSCs intrastriatum may have therapeutic potential for TS.
Collapse
Affiliation(s)
- Xiumei Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | | | | | | |
Collapse
|
48
|
Swain JE, Scahill L, Lombroso PJ, King RA, Leckman JF. Tourette syndrome and tic disorders: a decade of progress. J Am Acad Child Adolesc Psychiatry 2007; 46:947-968. [PMID: 17667475 DOI: 10.1097/chi.0b013e318068fbcc] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This is a review of progress made in the understanding of Tourette syndrome (TS) during the past decade including models of pathogenesis, state-of-the-art assessment techniques, and treatment. METHOD Computerized literature searches were conducted under the key words "Tourette syndrome," "Tourette disorder," and "tics." Only references from 1996-2006 were included. RESULTS Studies have documented the natural history of TS and the finding that tics usually improve by the end of the second decade of life. It has also become clear that TS frequently co-occurs with attention-deficit/hyperactivity disorder), obsessive-compulsive disorder, and a range of other mood and anxiety disorders. These comorbid conditions are often the major source of impairment for the affected child. Advances have also been made in understanding the underlying neurobiology of TS using in vivo neuroimaging and neurophysiology techniques. Progress on the genetic front has been less rapid. Proper diagnosis and education (involving the affected child and his or her parents, teachers, and peers) are essential prerequisites to the successful management of children with TS. When necessary, modestly effective antitic medications are available, although intervening to treat the comorbid attention-deficit/hyperactivity disorder and/or obsessive-compulsive disorder is usually the place to start. CONCLUSIONS Prospective longitudinal studies and randomized clinical trials have led to the refinement of several models of pathogenesis and advanced our evidence base regarding treatment options. However, fully explanatory models are needed that would allow for more accurate prognosis and the development of targeted and efficacious treatments.
Collapse
Affiliation(s)
- James E Swain
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University..
| | - Lawrence Scahill
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - Paul J Lombroso
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - Robert A King
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - James F Leckman
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| |
Collapse
|
49
|
Deng H, Le WD, Xie WJ, Jankovic J. Examination of the SLITRK1 gene in Caucasian patients with Tourette syndrome. Acta Neurol Scand 2006; 114:400-2. [PMID: 17083340 DOI: 10.1111/j.1600-0404.2006.00706.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether variants in the Slit and Trk-like 1 gene (SLITRK1) are present in American Caucasian population of patients with Tourette syndrome (TS). METHODS We sequenced the 3'-untranslated region for var321 and the whole coding region in the SLITRK1 gene in 82 Caucasian patients with TS from North America. RESULTS None of the 82 samples from patients with TS showed the non-coding sequence variant (var321). Only one patient with familial TS was heterozygous for a novel 708C > T (Ile236Ile) nucleotide variant. CONCLUSIONS The var321 and mutation(s) in the coding region of the SLITRK1 gene probably are a rare cause of TS in a Caucasian population; therefore, genetic heterogeneity of TS should be considered. Tests designed to detect variant(s) in the SLITRK1 gene probably will not have a diagnostic utility in clinical practice.
Collapse
Affiliation(s)
- H Deng
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Roessner V, Becker A, Banaschewski T, Rothenberger A. Tic disorders and obsessive compulsive disorder: where is the link? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:69-99. [PMID: 16355604 DOI: 10.1007/3-211-31222-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the last years evidence on the overlap between tic-disorders (TD) and obsessive compulsive behavior/disorder (OCB/OCD) has increased. The main focus of research have been the phenomenological and epidemiological similarities and differences in samples of different age, primary diagnosis (TD vs. OCD) including the co-occurrence of both. Unfortunately, only a minority of studies included all three groups (TD, TD + OCD, OCD). Nevertheless, new insight concerning possible subtypes for both TD and OCD has been gained. While some authors concentrated on OCD with/without tics we will summarize the field of TD and OCB/OCD from the viewpoint of tics, since OCB plays an important role in patients with TD. Thereby we will not only sharpen the clinicans' awareness of known differences in phenomenology, epidemiology, genetics and neurobiology, aimed to improve their diagnoses and treatment but also highlight the gaps of knowledge and discuss possibilities for further research in this field.
Collapse
Affiliation(s)
- V Roessner
- Department of Child and Adolescent Psychiatry, University of Göttingen, Germany.
| | | | | | | |
Collapse
|