1
|
Ganesan K, Ghorbanpour S, Kendall W, Broome ST, Gladding JM, Dhungana A, Abiero AR, Mahmoudi M, Castorina A, Kendig MD, Becchi S, Valova V, Cole L, Bradfield LA. Hippocampal neuroinflammation induced by lipopolysaccharide causes sex-specific disruptions in action selection, food approach memories, and neuronal activation. Brain Behav Immun 2025; 124:9-27. [PMID: 39547520 DOI: 10.1016/j.bbi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Hippocampal neuroinflammation is present in multiple diseases and disorders that impact motivated behaviour in a sex-specific manner, but whether neuroinflammation alone is sufficient to disrupt this behaviour is unknown. We investigated this question here using mice. First, the application of an endotoxin to primary cultures containing only hippocampal neurons did not affect their activation. However, when the same endotoxin was applied to mixed neuronal/glial cultures it did increase neuronal activation, providing initial indications of how it might be able to effect behavioural change. We next showed neuroinflammatory effects on behaviour directly, demonstrating that intra-hippocampal administration of the same endotoxin increased locomotor activity and accelerated goal-directed learning in both male and female mice. In contrast, lipopolysaccharide-induced hippocampal neuroinflammation caused sex-specific disruptions to the acquisition of instrumental actions and to Pavlovian food-approach memories. Finally, we showed that LPS-induced hippocampal neuroinflammation had a sexually dimorphic effect on neuronal activation: increasing it in females and decreasing it in males.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, BOKU University, Vienna, Austria
| | - William Kendall
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sarah Thomas Broome
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Joanne M Gladding
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Arvie Rodriguez Abiero
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Maedeh Mahmoudi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Michael D Kendig
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Serena Becchi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia; Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Veronika Valova
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Australia
| | - Louise Cole
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
2
|
Goh WS, Tan JHN, Luo Y, Ng SH, Sulaiman MSBM, Wong JCM, Loh VWK. Risk and protective factors associated with adolescent depression in Singapore: a systematic review. Singapore Med J 2025; 66:2-14. [PMID: 37171423 DOI: 10.4103/singaporemedj.smj-2021-192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/17/2021] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Adolescent depression is prevalent, and teen suicide rates are on the rise locally. A systemic review to understand associated risk and protective factors is important to strengthen measures for the prevention and early detection of adolescent depression and suicide in Singapore. This systematic review aims to identify the factors associated with adolescent depression in Singapore. METHODS A systematic search on the following databases was performed on 21 May 2020: PubMed, EMBASE and PsycINFO. Full texts were reviewed for eligibility, and the included studies were appraised for quality using the Newcastle Ottawa Scale. Narrative synthesis of the finalised articles was performed through thematic analysis. RESULTS In total, eight studies were included in this review. The four factors associated with adolescent depression identified were: (1) sociodemographic factors (gender, ethnicity); (2) psychological factors, including childhood maltreatment exposure and psychological constructs (hope, optimism); (3) coexisting chronic medical conditions (asthma); and (4) lifestyle factors (sleep inadequacy, excessive internet use and pathological gaming). CONCLUSION The identified factors were largely similar to those reported in the global literature, except for sleep inadequacy along with conspicuously absent factors such as academic stress and strict parenting, which should prompt further research in these areas. Further research should focus on current and prospective interventions to improve mental health literacy, targeting sleep duration, internet use and gaming, and mitigating the risk of depression in patients with chronic disease in the primary care and community setting.
Collapse
Affiliation(s)
- Wei Sheng Goh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun Hao Norman Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yang Luo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sok Hui Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - John Chee Meng Wong
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor Weng Keong Loh
- Division of Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
4
|
Su Z, Yang X, Hou J, Liu S, Wang Y, Chen Z. Gender differences in the co-occurrence of anxiety and depressive symptoms among early adolescents: A network approach. J Psychiatr Res 2024; 179:300-305. [PMID: 39353290 DOI: 10.1016/j.jpsychires.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Gender differences have been identified in the co-occurrence of anxiety and depressive symptoms. However, the underlying mechanisms that give rise to this gender difference remain unclear, and few studies have examined the issue at the symptom level. The current study employed the 7-item Generalized Anxiety Disorder scale (GAD-7) and the 9-item Patient Health Questionnaire (PHQ-9) to assess anxiety and depressive symptoms in a national sample of early adolescents (N = 15 391). A network approach was applied to investigate the gender differences in symptom interconnectivity. Gender differences were found in the co-occurrence of anxiety and depressive symptoms. The results indicated that girls with higher global strength (p < 0.01) exhibited stronger interconnectivity between symptoms. Central symptom PHQ2 (Sad mood) was significantly stronger in girls (p < 0.01), whereas PHQ6 (Guilt) was stronger in boys (p < 0.05). GAD7 (Feeling afraid) was identified as a prominent bridge symptom in girls, while PHQ6 (Guilt) was observed to play a similar role in boys. The directed acyclic graphs (DAGs) demonstrated that one symptom of anxiety triggered a series of emotional symptoms of anxiety and depression, ultimately resulting in a depressive somatic symptom in girls, whereas leading to both depressive somatic and anxiety symptoms in boys. These findings enhance our understanding and provide insights into potential intervention targets to prevent the co-occurrence of anxiety and depressive symptoms at an early stage.
Collapse
Affiliation(s)
- Zhongyan Su
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaoman Yang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jinqin Hou
- Department of Special Education and Psychology, China National Academy of Educational Sciences, Beijing, 100088, China.
| | - Shaoran Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaxin Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyan Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Peterson S, Maheras A, Wu B, Chavira J, Keiflin R. Sex differences in discrimination behavior and orbitofrontal engagement during context-gated reward prediction. eLife 2024; 12:RP93509. [PMID: 39046898 PMCID: PMC11268887 DOI: 10.7554/elife.93509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Animals, including humans, rely on contextual information to interpret ambiguous stimuli. Impaired context processing is a hallmark of several neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, post-traumatic stress disorder, and addiction. While sex differences in the prevalence and manifestations of these disorders are well established, potential sex differences in context processing remain uncertain. Here, we examined sex differences in the contextual control over cue-evoked reward seeking and its neural correlates, in rats. Male and female rats were trained in a bidirectional occasion-setting preparation in which the validity of two auditory reward-predictive cues was informed by the presence, or absence, of a visual contextual feature (LIGHT: X+/DARK: X-/LIGHT: Y-/DARK: Y+). Females were significantly slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behavior was more robust in female rats; it showed less within-session variability (less influence of prior reward) and greater resistance to acute stress. This superior contextual control achieved by females was accompanied by an increased activation of the orbitofrontal cortex (OFC) compared to males. Critically, these behavioral and neural sex differences were specific to the contextual modulation process and not observed in simple, context-independent, reward prediction tasks. These results indicate a sex-biased trade-off between the speed of acquisition and the robustness of performance in the contextual modulation of cued reward seeking. The different distribution of sexes along the fast learning ↔ steady performance continuum might reflect different levels of engagement of the OFC, and might have implications for our understanding of sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Amanda Maheras
- Department of Molecular, Cellular & Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Brenda Wu
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jose Chavira
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Ronald Keiflin
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
6
|
Cuttoli RDD, Issler O, Yakubov B, Jahan N, Abid A, Kasparov S, Granizo K, Ahmed S, Russo SJ, Nestler EJ, Sweis BM. Sex differences in change-of-mind neuroeconomic decision-making is modulated by LINC00473 in medial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592609. [PMID: 39005412 PMCID: PMC11244910 DOI: 10.1101/2024.05.08.592609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Changing one's mind is a complex cognitive phenomenon involving a continuous re-appraisal of the trade-off between past costs and future value. Recent work modeling this behavior across species has established associations between aspects of this choice process and their contributions to altered decision-making in psychopathology. Here, we investigated the actions in medial prefrontal cortex (mPFC) neurons of long intergenic non-coding RNA, LINC00473, known to induce stress resilience in a striking sex-dependent manner, but whose role in cognitive function is unknown. We characterized complex decision-making behavior in male and female mice longitudinally in our neuroeconomic foraging paradigm, Restaurant Row, following virus-mediated LINC00473 expression in mPFC neurons. On this task, mice foraged for their primary source of food among varying costs (delays) and subjective value (flavors) while on a limited time-budget during which decisions to accept and wait for rewards were separated into discrete stages of primary commitments and secondary re-evaluations. We discovered important differences in decision-making behavior between female and male mice. LINC00473 expression selectively influenced multiple features of re-evaluative choices, without affecting primary decisions, in female mice only. These behavioral effects included changing how mice (i) cached the value of the passage of time and (ii) weighed their history of economically disadvantageous choices. Both processes were uniquely linked to change-of-mind decisions and underlie the computational bases of distinct aspects of counterfactual thinking. These findings reveal a key bridge between a molecular driver of stress resilience and psychological mechanisms underlying sex-specific decision-making proclivities.
Collapse
|
7
|
Palpatzis E, Akinci M, Aguilar-Dominguez P, Garcia-Prat M, Blennow K, Zetterberg H, Carboni M, Kollmorgen G, Wild N, Fauria K, Falcon C, Gispert JD, Suárez-Calvet M, Grau-Rivera O, Sánchez-Benavides G, Arenaza-Urquijo EM. Lifetime Stressful Events Associated with Alzheimer's Pathologies, Neuroinflammation and Brain Structure in a Risk Enriched Cohort. Ann Neurol 2024; 95:1058-1068. [PMID: 38466157 DOI: 10.1002/ana.26881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Along with the known effects of stress on brain structure and inflammatory processes, increasing evidence suggest a role of chronic stress in the pathogenesis of Alzheimer's disease (AD). We investigated the association of accumulated stressful life events (SLEs) with AD pathologies, neuroinflammation, and gray matter (GM) volume among cognitively unimpaired (CU) individuals at heightened risk of AD. METHODS This cross-sectional cohort study included 1,290 CU participants (aged 48-77) from the ALFA cohort with SLE, lumbar puncture (n = 393), and/or structural magnetic resonance imaging (n = 1,234) assessments. Using multiple regression analyses, we examined the associations of total SLEs with cerebrospinal fluid (1) phosphorylated (p)-tau181 and Aβ1-42/1-40 ratio, (2) interleukin 6 (IL-6), and (3) GM volumes voxel-wise. Further, we performed stratified and interaction analyses with sex, history of psychiatric disease, and evaluated SLEs during specific life periods. RESULTS Within the whole sample, only childhood and midlife SLEs, but not total SLEs, were associated with AD pathophysiology and neuroinflammation. Among those with a history of psychiatric disease SLEs were associated with higher p-tau181 and IL-6. Participants with history of psychiatric disease and men, showed lower Aβ1-42/1-40 with higher SLEs. Participants with history of psychiatric disease and women showed reduced GM volumes in somatic regions and prefrontal and limbic regions, respectively. INTERPRETATION We did not find evidence supporting the association of total SLEs with AD, neuroinflammation, and atrophy pathways. Instead, the associations appear to be contingent on events occurring during early and midlife, sex and history of psychiatric disease. ANN NEUROL 2024;95:1058-1068.
Collapse
Affiliation(s)
- Eleni Palpatzis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Muge Akinci
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
| | - Marina Garcia-Prat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
8
|
Laine MA, Greiner EM, Shansky RM. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know? Neuropharmacology 2024; 248:109867. [PMID: 38387553 DOI: 10.1016/j.neuropharm.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The prefrontal cortex, particularly its medial subregions (mPFC), mediates critical functions such as executive control, behavioral inhibition, and memory formation, with relevance for everyday functioning and psychopathology. Despite broad characterization of the mPFC in multiple model organisms, the extent to which mPFC structure and function vary according to an individual's sex is unclear - a knowledge gap that can be attributed to a historical bias for male subjects in neuroscience research. Recent efforts to consider sex as a biological variable in basic science highlight the great need to close this gap. Here we review the knowns and unknowns about how rodents categorized as male or female compare in mPFC neuroanatomy, pharmacology, as well as in aversive, appetitive, and goal- or habit-directed behaviors that recruit the mPFC. We propose that long-standing dogmatic concepts of mPFC structure and function may not remain supported when we move beyond male-only studies, and that empirical challenges to these dogmas are warranted. Additionally, we note some common pitfalls in this work. Most preclinical studies operationalize sex as a binary categorization, and while this approach has furthered the inclusion of non-male rodents it is not as such generalizable to what we know of sex as a multidimensional, dynamic variable. Exploration of sex variability may uncover both sex differences and sex similarities, but care must be taken in their interpretation. Including females in preclinical research needs to go beyond the investigation of sex differences, improving our knowledge of how this brain region and its subregions mediate behavior and health. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- M A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - E M Greiner
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - R M Shansky
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Pan N, Yang C, Suo X, Shekara A, Hu S, Gong Q, Wang S. Sex differences in the relationship between brain gray matter volume and psychological resilience in late adolescence. Eur Child Adolesc Psychiatry 2024; 33:1057-1066. [PMID: 37212908 DOI: 10.1007/s00787-023-02231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Psychological resilience reflects an individual's ability to adapt and cope successfully in adverse environments and situations, making it a crucial trait in resisting stress-linked mental disorders and physical diseases. Although prior literature has consistently shown that males are more resilient than females, the sex-linked neuroanatomical correlates of psychological resilience are largely unknown. This study aims to explore the sex-specific relation between psychological resilience and brain gray matter volume (GMV) in adolescents via structural magnetic resonance imaging (s-MRI). A cohort of 231 healthy adolescents (121/110 females/males), aged 16 to 20 completed brain s-MRI scanning and Connor-Davidson Resilience Scale (CD-RISC) and other controlling behavioral tests. With s-MRI data, an optimized voxel-based morphometry method was used to estimate regional GMV, and a whole-brain condition-by-covariate interaction analysis was performed to identify the brain regions showing sex effects on the relation between psychological resilience and GMV. Male adolescents scored significantly higher than females on the CD-RISC. The association of psychological resilience with GMV differed between the two sex groups in the left ventrolateral prefrontal cortex extending to the adjacent anterior insula, with a positive correlation among males and a negative correlation among females. The sex-specific association between psychological resilience and GMV might be linked to sex differences in the hypothalamic-pituitary-adrenal axis and brain maturation during adolescence. This study may be novel in revealing the sex-linked neuroanatomical basis of psychological resilience, highlighting the need for a more thorough investigation of the role of sex in future studies of psychological resilience and stress-related illness.
Collapse
Affiliation(s)
- Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cheng Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Aniruddha Shekara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samantha Hu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
10
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. Role of estrogen in sex differences in memory, emotion and neuropsychiatric disorders. Mol Biol Rep 2024; 51:415. [PMID: 38472517 DOI: 10.1007/s11033-024-09374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Degroat TJ, Wiersielis K, Denney K, Kodali S, Daisey S, Tollkuhn J, Samuels BA, Roepke TA. Chronic stress and its effects on behavior, RNA expression of the bed nucleus of the stria terminalis, and the M-current of NPY neurons. Psychoneuroendocrinology 2024; 161:106920. [PMID: 38128260 PMCID: PMC10842864 DOI: 10.1016/j.psyneuen.2023.106920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.
Collapse
Affiliation(s)
- Thomas J Degroat
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Kimberly Wiersielis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Sowmya Kodali
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sierra Daisey
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Benjamin A Samuels
- Department of Psychology, Schools of Arts & Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Zhang J, Liu D, Ding L, Du G. Prevalence of depression in junior and senior adolescents. Front Psychiatry 2023; 14:1182024. [PMID: 38152357 PMCID: PMC10752610 DOI: 10.3389/fpsyt.2023.1182024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Background Depression affects the development of adolescents and makes it difficult for them to adapt to future life. The purpose of this study was to elucidate the population characteristics of adolescent depression. Methods This study measured depression based on the Patient Health Questionnaire-9 items and sociodemographic questionnaire. A total of 8,235 valid questionnaires were collected from six schools in Haikou and Qionghai, Hainan Province, covering the ages of 13 to 18. The questionnaires included high schools with multiple levels, including general high schools, key high schools, and vocational high schools. Latent category analysis (LCA) was used to identify potential categories of depressive symptoms among adolescents. Latent Class Analysis (LCA) was used for determining depressive symptom latent categories and their proportional distribution among adolescents. Results LCA analysis divided the data into 3 categories, namely no depression, low depression, and high depression groups. The percentage of the high depression group was 10.1%, and that of the low depression group was 48.4%. The Jorden index was greatest for a PHQ-9 score of 14.5. The 1st grade of junior middle school students entered the high and low depression groups 1.72 and 1.33 times more often than seniors. The number of the 1st grade of high school students included in the high and low depression groups was 1.55 and 1.42 times of the 3rd grade of high school students group. The detection rate of the high depression group of vocational school adolescents was 13.5%, which was significantly higher than that of key high schools (9.6%) and general high schools (9.0%). Conclusion This study found that 1st grade of junior middle school students and the 1st grade of high school students were more likely to fall into depressive conditions. Moreover, Adolescent girls require more attention than boys. Vocational school students need more psychological guidance.
Collapse
Affiliation(s)
- Jing Zhang
- Hainan Provincial Anning Hospital, Haikou, China
| | - Dehuan Liu
- Hainan Provincial Bureau of Human Resources Development, Haikou, China
| | - Linwei Ding
- Institute of Gut Microecology and Health, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Guankui Du
- Institute of Gut Microecology and Health, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- Biotechnology Laboratory, Hainan Medical University, Haikou, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Lipatova O, Campolattaro MM, Lockhart BK, Hammad MB. Differential effects of acute stress on spatial learning and memory in the open-field tower maze across the female estrous cycle. Neurobiol Learn Mem 2023; 206:107862. [PMID: 37944635 DOI: 10.1016/j.nlm.2023.107862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The purpose of the present investigation was to test how acute stress and levels of circulating estrogens together influence acquisition and retention of spatial learning, as well as explorative behaviors in female rats. We used the hippocampus-dependent Open-field Tower Maze (OFTM) task to assess acquisition followed by a retention test (reacquisition) that was given 48 h later. Immediately prior to acquisition, experimental rats were exposed to an acute restraint stress and were trained under bright lights. Female rats' estrous cycles were tracked throughout training and testing. Exposure to stress did not affect learning when levels of estrogens were low (i.e., during estrus and metestrus). However, acute stress exposure significantly lowered spatial acquisition of the female rats in the phases with rising levels of estrogens (i.e., during diestrus and proestrus). Furthermore, this stress-induced diminishment during acquisition was evident at the beginning of the retention without any presentation of stress. The present findings provide insight about the interactive relationship between stress and sex hormones on cognitive functions.
Collapse
Affiliation(s)
- Olga Lipatova
- Christopher Newport University, Newport News, VA, United States.
| | | | - Blakely K Lockhart
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mariam B Hammad
- Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Sambuco N, Bradley MM, Lang PJ. Dimensional distress and orbitofrontal thickness in anxiety patients. Psychiatry Res Neuroimaging 2023; 335:111708. [PMID: 37717542 DOI: 10.1016/j.pscychresns.2023.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
Thickness of the medial orbitofrontal cortex (mOFC) was assessed as it varied with reported symptoms of anxiety and depression in a large sample of anxiety patients. A principal component analysis identified a primary factor of transdiagnostic dimensional distress that predicted 24% of the mOFC variance. Severity of distress symptomology was associated with thinning of the mOFC in both hemispheres for both men and women, regardless of the primary DSM diagnosis. Taken together, the data indicate that mOFC thickness might be useful as an objective measure of disorder severity as well as to assess pharmacological or psychological treatment outcome.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America.
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
15
|
Louis CC, Jacobs E, D'Esposito M, Moser J. Estradiol and the Catechol-o-methyltransferase Gene Interact to Predict Working Memory Performance: A Replication and Extension. J Cogn Neurosci 2023; 35:1144-1153. [PMID: 37159230 PMCID: PMC10273222 DOI: 10.1162/jocn_a_02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Decades of evidence across taxa have established the importance of dopamine (DA) signaling in the pFC for successful working memory performance. Genetic and hormonal factors can shape individual differences in prefrontal DA tone. The catechol-o-methyltransferase (COMT) gene regulates basal prefrontal DA, and the sex hormone 17β-estradiol potentiates DA release. E. Jacobs and M. D'Esposito [Estrogen shapes dopamine-dependent cognitive processes: Implications for women's health. Journal of Neuroscience, 31, 5286-5293, 2011] investigated the moderating role of estradiol on cognition using the COMT gene and COMT enzymatic activity as a proxy for pFC DA tone. They found that increases in 17β-estradiol within women at two time points during the menstrual cycle influenced working memory performance in a COMT-dependent manner. Here, we aimed to replicate and extend the behavioral findings of Jacobs and D'Esposito by employing an intensive repeated-measures design across a full menstrual cycle. Our results replicated the original investigation. Within-person increases in estradiol were associated with improved performance on 2-back lure trials for participants with low basal levels of DA (Val/Val carriers). The association was in the opposite direction for participants with higher basal levels of DA (Met/Met carriers). Our findings support the role of estrogen in DA-related cognitive functions and further highlight the need to consider gonadal hormones in cognitive science research.
Collapse
|
16
|
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep 2023; 13:9181. [PMID: 37280307 DOI: 10.1038/s41598-023-35898-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.
Collapse
Affiliation(s)
- Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA.
| |
Collapse
|
17
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Smiley CE, Pate BS, Bouknight SJ, Francis MJ, Nowicki AV, Harrington EN, Wood SK. Estrogen receptor beta in the central amygdala regulates the deleterious behavioral and neuronal consequences of repeated social stress in female rats. Neurobiol Stress 2023; 23:100531. [PMID: 36879670 PMCID: PMC9984877 DOI: 10.1016/j.ynstr.2023.100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
While over 95% of the population has reported experiencing extreme stress or trauma, females of reproductive age develop stress-induced neuropsychiatric disorders at twice the rate of males. This suggests that ovarian hormones may facilitate neural processes that increase stress susceptibility and underlie the heightened rates of these disorders, like depression and anxiety, that result from stress exposure in females. However, there is contradicting evidence in the literature regarding estrogen's role in stress-related behavioral outcomes. Estrogen signaling through estrogen receptor beta (ERβ) has been traditionally thought of as anxiolytic, but recent studies suggest estrogen exhibits distinct effects in the context of stress. Furthermore, ERβ is found abundantly in many stress-sensitive brain loci, including the central amygdala (CeA), in which transcription of the vital stress hormone, corticotropin releasing factor (CRF), can be regulated by an estrogen response element. Therefore, these experiments sought to identify the role of CeA ERβ activity during stress on behavioral outcomes in naturally cycling, adult, female Sprague-Dawley rats. Rats were exposed to an ethological model of vicarious social stress, witness stress (WS), in which they experienced the sensory and psychological aspects of an aggressive social defeat encounter between two males. Following WS, rats exhibited stress-induced anxiety-like behaviors in the marble burying taskand brain analysis revealed increased ERβ and CRF specifically within the CeA following exposure to stress cues. Subsequent experiments were designed to target this receptor in the CeA using microinjections of the ERβ antagonist, PHTPP, prior to each stress session. During WS, estrogen signaling through ERβ was responsible for the behavioral sensitization to repeated social stress. Sucrose preference, acoustic startle, and marble burying tasks determined that blocking ERβ in the CeA during WS prevented the development of depressive-, anxiety-like, and hypervigilant behaviors. Additionally, brain analysis revealed a long-term decrease of intra-CeA CRF expression in PHTPP-treated rats. These experiments indicate that ERβ signaling in the CeA, likely through its effects on CRF, contributes to the development of negative valence behaviors that result from exposure to repeated social stress in female rats.
Collapse
Key Words
- ACTH, adrenocorticotropic hormone
- ASR, acoustic startle responding
- Anxiety
- BCA, bicinchoninic acid
- CON, control handing
- CORT, corticosterone
- CRF, corticotropin releasing factor
- CeA, central amygdala
- Central amygdala
- Corticotropin releasing factor
- EPM, elevated plus maze
- ERβ, estrogen receptor beta
- Estrogen receptor beta
- HPA, hypothalamic pituitary adrenal axis
- LC, locus coeruleus
- MB, marble burying
- PHTPP, 4-[2-Phenyl-5: 7-bis (trifluoromethyl) pyrazolo [1,5-a] pyrimidine-3- yl] phenol
- SPT, sucrose preference testing
- Social stress
- WS, witness stress
- dB, decibels
Collapse
Affiliation(s)
- Cora E. Smiley
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- Dorn VA Medical Center, Columbia, SC, USA
| | - Brittany S. Pate
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- University of South Carolina, Arnold School of Public Health, Department of Exercise Science, Columbia, SC, USA
| | - Samantha J. Bouknight
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Megan J. Francis
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Alexandria V. Nowicki
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Evelynn N. Harrington
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Susan K. Wood
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- Dorn VA Medical Center, Columbia, SC, USA
| |
Collapse
|
19
|
Hokenson RE, Alam YH, Short AK, Jung S, Jang C, Baram TZ. Sex-dependent effects of multiple acute concurrent stresses on memory: a role for hippocampal estrogens. Front Behav Neurosci 2022; 16:984494. [PMID: 36160685 PMCID: PMC9492881 DOI: 10.3389/fnbeh.2022.984494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Memory disruption commonly follows chronic stress, whereas acute stressors are generally benign. However, acute traumas such as mass shootings or natural disasters—lasting minutes to hours and consisting of simultaneous physical, social, and emotional stresses—are increasingly recognized as significant risk factors for memory problems and PTSD. Our prior work has revealed that these complex stresses (concurrent multiple acute stresses: MAS) disrupt hippocampus-dependent memory in male rodents. In females, the impacts of MAS are estrous cycle-dependent: MAS impairs memory during early proestrus (high estrogens phase), whereas the memory of female mice stressed during estrus (low estrogens phase) is protected. Female memory impairments limited to high estrogens phases suggest that higher levels of estrogens are necessary for MAS to disrupt memory, supported by evidence that males have higher hippocampal estradiol than estrous females. To test the role of estrogens in stress-induced memory deficits, we blocked estrogen production using aromatase inhibitors. A week of blockade protected male and female mice from MAS-induced memory disturbances, suggesting that high levels of estrogens are required for stress-provoked memory impairments in both males and females. To directly quantify 17β-estradiol in murine hippocampus we employed both ELISA and mass spectrometry and identified significant confounders in both procedures. Taken together, the cross-cycle and aromatase studies in males and females support the role for high hippocampal estrogens in mediating the effect of complex acute stress on memory. Future studies focus on the receptors involved, the longevity of these effects, and their relation to PTSD-like behaviors in experimental models.
Collapse
Affiliation(s)
- Rachael E. Hokenson
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Rachael E. Hokenson
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Annabel K. Short
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Banks PJ, Bennett PJ, Sekuler AB, Gruber AJ. Cannabis use is associated with sexually dimorphic changes in executive control of visuospatial decision-making. Front Integr Neurosci 2022; 16:884080. [PMID: 36081608 PMCID: PMC9445243 DOI: 10.3389/fnint.2022.884080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
When the outcome of a choice is less favorable than expected, humans and animals typically shift to an alternate choice option on subsequent trials. Several lines of evidence indicate that this “lose-shift” responding is an innate sensorimotor response strategy that is normally suppressed by executive function. Therefore, the lose-shift response provides a covert gauge of cognitive control over choice mechanisms. We report here that the spatial position, rather than visual features, of choice targets drives the lose-shift effect. Furthermore, the ability to inhibit lose-shift responding to gain reward is different among male and female habitual cannabis users. Increased self-reported cannabis use was concordant with suppressed response flexibility and an increased tendency to lose-shift in women, which reduced performance in a choice task in which random responding is the optimal strategy. On the other hand, increased cannabis use in men was concordant with reduced reliance on spatial cues during decision-making, and had no impact on the number of correct responses. These data (63,600 trials from 106 participants) provide strong evidence that spatial-motor processing is an important component of economic decision-making, and that its governance by executive systems is different in men and women who use cannabis frequently.
Collapse
Affiliation(s)
- Parker J. Banks
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Patrick J. Bennett
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Allison B. Sekuler
- Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
- Rotman Research Institute, Baycrest Centre for Geriatric Care, North York, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Aaron J. Gruber
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- *Correspondence: Aaron J. Gruber
| |
Collapse
|
21
|
Williams ES, Mazei-Robison M, Robison AJ. Sex Differences in Major Depressive Disorder (MDD) and Preclinical Animal Models for the Study of Depression. Cold Spring Harb Perspect Biol 2022; 14:a039198. [PMID: 34404738 PMCID: PMC8886985 DOI: 10.1101/cshperspect.a039198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Depression and related mood disorders constitute an enormous burden on health, quality of life, and the global economy, and women have roughly twice the lifetime risk of men for experiencing depression. Here, we review sex differences in human brain physiology that may be connected to the increased susceptibility of women to major depressive disorder (MDD). Moreover, we summarize decades of preclinical research using animal models for the study of mood dysfunction that uncover some of the potential molecular, cellular, and circuit-level mechanisms that may underlie sex differences and disease etiology. We place particular emphasis on a series of recent studies demonstrating the central contribution of the circuit projecting from ventral hippocampus to nucleus accumbens and how inherent sex differences in the excitability of this circuit may predict and drive depression-related behaviors. The findings covered in this review underscore the continued need for studies using preclinical models and circuit-specific strategies for uncovering molecular and physiological mechanisms that could lead to potential sex-specific diagnosis, prognosis, prevention, and/or treatments for MDD and other mood disorders.
Collapse
Affiliation(s)
- Elizabeth S Williams
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
22
|
Zhang YX, Xing B, Li YC, Yan CX, Gao WJ. NMDA receptor-mediated synaptic transmission in prefrontal neurons underlies social memory retrieval in female mice. Neuropharmacology 2022; 204:108895. [PMID: 34813859 PMCID: PMC8688302 DOI: 10.1016/j.neuropharm.2021.108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Social memory is the ability to discriminate familiar conspecific from the unknown ones. Prefrontal neurons are essentially required for social memory, but the mechanism associated with this regulation remains unknown. It is also unclear to what extent the neuronal representations of social memory formation and retrieval events overlap in the prefrontal cortex (PFC) and which event drives social memory strength. Here we asked these questions by using a repeated social training paradigm for social recognition in FosTRAP mice. We found that after 4 days' repeated social training, female mice developed stable social memory. Specifically, repeated social training activated more cells that were labeled with tdTomato during memory retrieval compared with the first day of memory encoding. Besides, combining TRAP with c-Fos immunostaining, we found about 30% of the FosTRAPed cells were reactivated during retrieval. Moreover, the number of retrieval-induced but not first-day encoding-induced tdTomato neurons correlates with the social recognition ratio in the prelimbic but not other subregions. The activated cells during the retrieval session also showed increased NMDA receptor-mediated synaptic transmission compared with that in non-labeled pyramidal neurons. Blocking NMDA receptors by MK-801 impaired social memory but not sociability. Therefore, our results reveal that repetitive training elevates mPFC involvement in social memory retrieval via enhancing NMDA receptor-mediated synaptic transmission, thus rendering stable social memory.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA,College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
23
|
Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13:164. [PMID: 35013188 PMCID: PMC8748803 DOI: 10.1038/s41467-021-27604-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.
Collapse
|
24
|
Ellis SN, Honeycutt JA. Sex Differences in Affective Dysfunction and Alterations in Parvalbumin in Rodent Models of Early Life Adversity. Front Behav Neurosci 2021; 15:741454. [PMID: 34803622 PMCID: PMC8600234 DOI: 10.3389/fnbeh.2021.741454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
The early life environment markedly influences brain and behavioral development, with adverse experiences associated with increased risk of anxiety and depressive phenotypes, particularly in females. Indeed, early life adversity (ELA) in humans (i.e., caregiver deprivation, maltreatment) and rodents (i.e., maternal separation, resource scarcity) is associated with sex-specific emergence of anxious and depressive behaviors. Although these disorders show clear sex differences in humans, little attention has been paid toward evaluating sex as a biological variable in models of affective dysfunction; however, recent rodent work suggests sex-specific effects. Two widely used rodent models of ELA approximate caregiver deprivation (i.e., maternal separation) and resource scarcity (i.e., limited bedding). While these approaches model aspects of ELA experienced in humans, they span different portions of the pre-weaning developmental period and may therefore differentially contribute to underlying mechanistic risk. This is borne out in the literature, where evidence suggests differences in trajectories of behavior depending on the type of ELA and/or sex; however, the neural underpinning of these differences is not well understood. Because anxiety and depression are thought to involve dysregulation in the balance of excitatory and inhibitory signaling in ELA-vulnerable brain regions (e.g., prefrontal cortex, amygdala, hippocampus), outcomes are likely driven by alterations in local and/or circuit-specific inhibitory activity. The most abundant GABAergic subtypes in the brain, accounting for approximately 40% of inhibitory neurons, contain the calcium-binding protein Parvalbumin (PV). As PV-expressing neurons have perisomatic and proximal dendritic targets on pyramidal neurons, they are well-positioned to regulate excitatory/inhibitory balance. Recent evidence suggests that PV outcomes following ELA are sex, age, and region-specific and may be influenced by the type and timing of ELA. Here, we suggest the possibility of a combined role of PV and sex hormones driving differences in behavioral outcomes associated with affective dysfunction following ELA. This review evaluates the literature across models of ELA to characterize neural (PV) and behavioral (anxiety- and depressive-like) outcomes as a function of sex and age. Additionally, we detail a putative mechanistic role of PV on ELA-related outcomes and discuss evidence suggesting hormone influences on PV expression/function which may help to explain sex differences in ELA outcomes.
Collapse
Affiliation(s)
- Seneca N Ellis
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Jennifer A Honeycutt
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States.,Department of Psychology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
25
|
Endogenous Estrogen Influences Predator Odor-Induced Impairment of Cognitive and Social Behaviors in Aromatase Gene Deficiency Mice. Behav Neurol 2021; 2021:5346507. [PMID: 34594430 PMCID: PMC8478571 DOI: 10.1155/2021/5346507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have suggested that traumatic stress increases vulnerability to various mental disorders, such as dementia and psychiatric disorders. While women are more vulnerable than men to depression and anxiety, it is unclear whether endogenous estrogens are responsible for the underlying sex-specific mechanisms. In this study, the aromatase gene heterozygous (Ar+/-) mice were used as an endogenous estrogen deficiency model and age- and sex-matched wild type mice (WT) as controls to study the predator odor 2,3,5-trimethyl-3-thiazoline- (TMT-) induced short- and long-term cognitive and social behavior impairments. In addition, the changes in brain regional neurotransmitters and their associations with TMT-induced changes in behaviors were further investigated in these animals. Our results showed TMT induced immediate fear response in both Ar+/- and WT mice regardless of sexes. TMT induced an acute impairment of novel object recognition memory and long-term social behavior impairment in WT mice, particularly in females, while Ar+/- mice showed impaired novel object recognition in both sexes and TMT-elevated social behaviors, particularly in males. TMT failed to induce changes in the prepulse inhibition (PPI) test in both groups. TMT resulted in a slight increase of DOPAC/DA ratio in the cortex and a significant elevation of this ratio in the striatum of WT mice. In addition, the ratio of HIAA/5-HT was significantly elevated in the cortex of TMT-treated WT mice, which was not found in TMT-treated Ar+/- mice. Taken together, our results indicate that TMT exposure can cause cognitive and social behavior impairments as well as change catecholamine metabolism in WT mice, and endogenous estrogen deficiency might desensitize the behavioral and neurochemical responses to TMT in Ar+/- mice.
Collapse
|
26
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
27
|
Gloe LM, Kashy DA, Jacobs EG, Klump KL, Moser JS. Examining the role of ovarian hormones in the association between worry and working memory across the menstrual cycle. Psychoneuroendocrinology 2021; 131:105285. [PMID: 34090137 PMCID: PMC8405555 DOI: 10.1016/j.psyneuen.2021.105285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Previous research indicates that worry is associated with poorer working memory performance. Moreover, prior work demonstrates that estradiol relates to both worry and working memory performance. In the present study, we sought to further examine interrelations between worry, estradiol and working memory by testing whether estradiol moderates the association between worry and working memory in females. We hypothesized that worry would be associated with poorer working memory performance at higher levels of estradiol. We also conducted exploratory analyses to examine the role of progesterone as a moderator of the association between worry and working memory. Participants were 97 naturally-cycling females who attended four lab sessions across their menstrual cycles. Consistent with predictions, higher average levels of worry were associated with lower working memory accuracy on particularly difficult trials when average levels of estradiol were also high. The same association between higher worry and lower working memory accuracy emerged when average levels of progesterone were high. Findings highlight the importance of considering ovarian hormones in future studies and current theories of anxiety and cognition.
Collapse
|
28
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
29
|
Elton A, Faulkner ML, Robinson DL, Boettiger CA. Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias. Neuropsychopharmacology 2021; 46:1421-1431. [PMID: 33727642 PMCID: PMC8209208 DOI: 10.1038/s41386-021-00993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited. We hypothesized that depletion of central dopamine levels in adult alcohol drinkers would attenuate AB and that these effects would be mediated by altered function in frontolimbic circuitry. Thirty-four male participants (22-38 years, including both social and heavy drinkers) underwent a two-session, placebo-controlled, double-blind dopamine precursor depletion procedure. At each visit, participants consumed either a balanced amino acid (control) beverage or an amino acid beverage lacking dopamine precursors (order counterbalanced), underwent resting-state fMRI, and completed behavioral testing on three AB tasks: an alcohol dot-probe task, an alcohol attentional blink task, and a task measuring AB to a reward-conditioned cue. Dopamine depletion significantly diminished AB in each behavioral task, with larger effects among subjects reporting higher levels of binge drinking. The depletion procedure significantly decreased resting-state functional connectivity among ventral tegmental area, striatum, amygdala, and prefrontal regions. Beverage-related AB decreases were mediated by decreases in functional connectivity between the fronto-insular cortex and striatum and, for alcohol AB only, between anterior cingulate cortex and amygdala. The results support a substantial role for dopamine in AB, and suggest specific dopamine-modulated functional connections between frontal, limbic, striatal, and brainstem regions mediate general reward AB versus alcohol AB.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Monica L Faulkner
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Salviato BZ, Raymundi AM, Rodrigues da Silva T, Salemme BW, Batista Sohn JM, Araújo FS, Guimarães FS, Bertoglio LJ, Stern CA. Female but not male rats show biphasic effects of low doses of Δ 9-tetrahydrocannabinol on anxiety: can cannabidiol interfere with these effects? Neuropharmacology 2021; 196:108684. [PMID: 34181978 DOI: 10.1016/j.neuropharm.2021.108684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) is the main phytocannabinoid present in the Cannabis sativa. It can produce dose-dependent anxiolytic or anxiogenic effects in males. THC effects on anxiety have scarcely been studied in females, despite their higher prevalence of anxiety disorders. Cannabidiol, another phytocannabinoid, has been reported to attenuate anxiety and some THC-induced effects. The present study aimed to investigate the behavioral and neurochemical effects of THC administered alone or combined with CBD in naturally cycling female rats tested in the elevated plus-maze. Systemically administered THC produced biphasic effects in females, anxiolytic at low doses (0.075 or 0.1 mg/kg) and anxiogenic at a higher dose (1.0 mg/kg). No anxiety changes were observed in males treated with the same THC dose range. The anxiogenic effect of THC was prevented by co-administration of CBD (1.0 or 3.0 mg/kg). CBD (3.0 mg/kg) caused an anxiolytic effect. At a lower dose (1.0 mg/kg), it facilitated the anxiolytic effect of the low THC dose. The anxiogenic effect of THC was accompanied by increased dopamine levels in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). In contrast, its anxiolytic effect was associated with increased mPFC serotonin concentrations. The anxiolytic effect of CBD was accompanied by increased mPFC serotonin turnover. Together, these results indicate that female rats are susceptible to the biphasic effects of low THC doses on anxiety. These effects could depend on mPFC and NAc dopaminergic and serotoninergic neurotransmissions. CBD could minimize potential THC high-dose side effects whereas enhancing the anxiolytic action of its low doses in females.
Collapse
Affiliation(s)
| | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | | - Leandro José Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
31
|
Namgung E, Kim J, Jeong H, Ma J, Hong G, Kang I, Kim J, Joo Y, Kim RY, Lyoo IK. Changes in Prefrontal Gamma-Aminobutyric Acid and Perfusion After the Computerized Relaxation Training in Women With Psychological Distress: A Preliminary Report. Front Psychol 2021; 12:569113. [PMID: 33927662 PMCID: PMC8076529 DOI: 10.3389/fpsyg.2021.569113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Computerized relaxation training has been suggested as an effective and easily accessible intervention for individuals with psychological distress. To better elucidate the neural mechanism that underpins the effects of relaxation training, we investigated whether a 10-session computerized relaxation training program changed prefrontal gamma-aminobutyric acid (GABA) levels and cerebral blood flow (CBF) in women with psychological distress. We specifically focused on women since they were reported to be more vulnerable to develop stress-related disorders than men. Nineteen women with psychological distress but without a diagnosis of psychiatric disorders received the 10-day computerized relaxation training program that consisted of 30-min cognitive-relaxation training and 10-min breathing-relaxation training per day. At baseline and post-intervention, perceived stress levels, anxiety, fatigue, and sleep quality were assessed by self-report questionnaires. Brain magnetic resonance spectroscopy and arterial spin labeling scans were also performed before and after the intervention to evaluate GABA levels and relative CBF in the prefrontal region. Levels of perceived stress (t = 4.02, P < 0.001), anxiety (z = 2.33, P = 0.02), fatigue (t = 3.35, P = 0.004), and sleep quality (t = 4.14, P < 0.001) improved following 10 sessions of computerized relaxation training, resulting in a significant relief in composite scores of stress-related symptoms (t = -5.25, P < 0.001). The prefrontal GABA levels decreased (t = 2.53, P = 0.02), while relative CBF increased (t = -3.32, P = 0.004) after the intervention. In addition, a greater increase in relative prefrontal CBF was associated with better composite scores of stress-related symptoms following the intervention (t = 2.22, P = 0.04). The current findings suggest that computerized relaxation training may improve stress-related symptoms through modulating the prefrontal GABA levels and CBF in women with psychological distress.
Collapse
Affiliation(s)
- Eun Namgung
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jiyoung Ma
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Gahae Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
32
|
Woodburn SC, Bollinger JL, Wohleb ES. Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiol Stress 2021; 14:100312. [PMID: 33748354 PMCID: PMC7970222 DOI: 10.1016/j.ynstr.2021.100312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Emerging evidence indicates that males and females display different neurobiological responses to chronic stress which contribute to varied behavioral adaptations. In particular, pyramidal neurons undergo dendritic atrophy and synapse loss in the prefrontal cortex (PFC) of male, but not female, mice. Our recent work shows that chronic stress also provokes microglia-mediated neuronal remodeling, which contributes to synaptic deficits in the PFC and associated behavioral consequences in males. Separate studies indicate that chronic stress promotes astrocyte dystrophy in the PFC which is associated with behavioral despair. Notably, these prior reports focused primarily on stress effects in males. In the present studies, male and female mice were exposed to 14 or 28 days of chronic unpredictable stress (CUS) to assess molecular and cellular adaptations of microglia, astrocytes, and neurons in the medial PFC. Consistent with our recent work, male, but not female, mice displayed behavioral and cognitive deficits with corresponding perturbations of neuroimmune factors in the PFC after 14 days of CUS. Fluorescence-activated cell sorting and gene expression analyses revealed that CUS increased expression of select markers of phagocytosis in male PFC microglia. Confocal imaging in Thy1-GFP(M) mice showed that CUS reduced dendritic spine density, decreased GFAP immunolabeling, and increased microglia-mediated neuronal remodeling only in male mice. After 28 days of CUS, both male and female mice displayed behavioral and cognitive impairments. Interestingly, there were limited stress effects on neuroimmune factors and measures of microglial phagocytosis in the PFC of both sexes. Despite limited changes in neuroimmune function, reduced GFAP immunolabeling and dendritic spine deficits persisted in male mice. Further, GFAP immunolabeling and dendritic spine density remained unaltered in the PFC of females. These findings indicate that chronic stress causes sex-specific and temporally dynamic changes in microglial function which are associated with different neurobiological and behavioral adaptations. In all, these results suggest that microglia-mediated neuronal remodeling, astrocyte dystrophy, and synapse loss contribute to stress-induced PFC dysfunction and associated behavioral consequences in male mice.
Collapse
Affiliation(s)
- Samuel C. Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L. Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S. Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding author. Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA.
| |
Collapse
|
33
|
Pruitt A, Allsop AS. Understanding the Role of a Molecularly Defined Social Circuit. Biol Psychiatry 2021; 89:421-423. [PMID: 33541524 DOI: 10.1016/j.biopsych.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Affiliation(s)
- April Pruitt
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Neuroscience Research Training Program, Department of Psychiatry, Yale University, New Haven, Connecticut; Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Yale School of Medicine, New Haven, Connecticut
| | - Aza Stephen Allsop
- Neuroscience Research Training Program, Department of Psychiatry, Yale University, New Haven, Connecticut; Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
34
|
Drzewiecki CM, Willing J, Cortes LR, Juraska JM. Adolescent stress during, but not after, pubertal onset impairs indices of prepulse inhibition in adult rats. Dev Psychobiol 2021; 63:837-850. [PMID: 33629385 DOI: 10.1002/dev.22111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Exposure to stress during adolescence is a risk factor for developing several psychiatric disorders, many of which involve prefrontal cortex (PFC) dysfunction. The human PFC and analogous rodent medial prefrontal cortex (mPFC) continue to mature functionally and anatomically during adolescence, and some of these maturational events coincide with pubertal onset. As developing brain regions are more susceptible to the negative effects of stress, this may make puberty especially vulnerable. To test this, we exposed male and female rats to isolation and restraint stress during the onset of puberty or during the post-pubertal period of adolescence. In young adulthood, both stressed groups and an unstressed control group underwent testing on a battery of tasks to assess emotional and cognitive behaviors, and the volume of the mPFC was quantified postmortem. Factor analysis revealed only subjects stressed peri-pubertally showed a long-term deficiency compared to controls in prepulse inhibition. Additionally, both sexes showed volumetric mPFC decreases following adolescent stress, and these losses were most pronounced in females. Our findings suggest that pubertal onset may be a vulnerable window wherein adolescents are most susceptible to the negative consequences of stress exposure. Furthermore, it highlights the importance of accounting for pubertal status when studying adolescents.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jari Willing
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, Bowling Green State University, 822 E Merry Ave, Bowling Green, OH, 43403, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
35
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
36
|
Williams RG, Li KH, Phillips PEM. The Influence of Stress on Decision-Making: Effects of CRF and Dopamine Antagonism in the Nucleus Accumbens. Front Psychiatry 2021; 12:814218. [PMID: 35145440 PMCID: PMC8821535 DOI: 10.3389/fpsyt.2021.814218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The actions of corticotropin-releasing factor (CRF) in the core of the nucleus accumbens including increasing dopamine release and inducing conditioned place preference in stress-naïve animals. However, following two-day, repeated forced swim stress (rFSS), neither of these effects are present, indicating a stress-sensitive interaction between CRF and dopamine. To ascertain the degree to which this mechanism influences integrated, reward-based decision making, we used an operant concurrent-choice task where mice could choose between two liquid receptacles containing a sucrose solution or water delivery. Following initial training, either a CRF or dopamine antagonist, α-helical CRF (9-41) and flupenthixol, respectively, or vehicle was administered intracranially to the nucleus accumbens core. Next, the animals underwent rFSS, were reintroduced to the task, and were retested. Prior to stress, mice exhibited a significant preference for sucrose over water and made more total nose pokes into the sucrose receptacle than the water receptacle throughout the session. There were no observed sex differences. Stress did not robustly affect preference metrics but did increase the number of trial omissions compared to their stress-naïve, time-matched counterparts. Interestingly, flupenthixol administration did not affect sucrose choice but increased their nosepoke preference during the inter-trial interval, increased trial omissions, and decreased the total nosepokes during the ITI. In contrast, microinjections of α-helical CRF (9-41) did not affect omissions or ITI nosepokes but produced interactions with stress on choice metrics. These data indicate that dopamine and CRF both interact with stress to impact performance in the task but influence different behavioral aspects.
Collapse
Affiliation(s)
- Rapheal G Williams
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kevin H Li
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
37
|
Drzewiecki CM, Juraska JM. The structural reorganization of the prefrontal cortex during adolescence as a framework for vulnerability to the environment. Pharmacol Biochem Behav 2020; 199:173044. [DOI: 10.1016/j.pbb.2020.173044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 11/26/2022]
|
38
|
Arnsten AFT. Guanfacine's mechanism of action in treating prefrontal cortical disorders: Successful translation across species. Neurobiol Learn Mem 2020; 176:107327. [PMID: 33075480 PMCID: PMC7567669 DOI: 10.1016/j.nlm.2020.107327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023]
Abstract
The selective norepinephrine (NE) α2A-adrenoceptor (α2A-AR) agonist, guanfacine (Intuniv™), is FDA-approved for treating Attention Deficit Hyperactivity Disorder (ADHD) based on research in animals, a translational success story. Guanfacine is also widely used off-label in additional mental disorders that involve impaired functioning of the prefrontal cortex (PFC), including stress-related disorders such as substance abuse, schizotypic cognitive deficits, and traumatic brain injury. The PFC subserves high order cognitive and executive functions including working memory, abstract reasoning, insight and judgment, and top-down control of attention, action and emotion. These abilities arise from PFC microcircuits with extensive recurrent excitation through NMDAR synapses. There is powerful modulation of these synapses, where cAMP-PKA opening of nearby potassium (K+) channels can rapidly and dynamically alter synaptic strength to coordinate arousal state with cognitive state, e.g. to take PFC "offline" during uncontrollable stress. A variety of evidence shows that guanfacine acts within the PFC via post-synaptic α2A-AR on dendritic spines to inhibit cAMP-PKA-K+ channel signaling, thus strengthening network connectivity, enhancing PFC neuronal firing, and improving PFC cognitive functions. Although guanfacine's beneficial effects are present in rodent, they are especially evident in primates, where the PFC greatly expands and differentiates. In addition to therapeutic actions in PFC, stress-related disorders may also benefit from additional α2-AR actions, such as weakening plasticity in the amygdala, reducing NE release, and anti-inflammatory actions by deactivating microglia. Altogether, these NE α2-AR actions optimize top-down control by PFC networks, which may explain guanfacine's benefits in a variety of mental disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Dept. Neuroscience, Yale Medical School, 333 Cedar St., New Haven, CT 06510, USA.
| |
Collapse
|
39
|
Tan GCY, Chu C, Lee YT, Tan CCK, Ashburner J, Wood NW, Frackowiak RS. The influence of microsatellite polymorphisms in sex steroid receptor genes ESR1, ESR2 and AR on sex differences in brain structure. Neuroimage 2020; 221:117087. [PMID: 32593802 PMCID: PMC8960998 DOI: 10.1016/j.neuroimage.2020.117087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 12/04/2022] Open
Abstract
The androgen receptor (AR), oestrogen receptor alpha (ESR1) and oestrogen receptor beta (ESR2) play essential roles in mediating the effect of sex hormones on sex differences in the brain. Using Voxel-based morphometry (VBM) and gene sizing in two independent samples (discovery n = 173, replication = 61), we determine the common and unique influences on brain sex differences in grey (GM) and white matter (WM) volume between repeat lengths (n) of microsatellite polymorphisms AR(CAG)n, ESR1(TA)n and ESR2(CA)n. In the hypothalamus, temporal lobes, anterior cingulate cortex, posterior insula and prefrontal cortex, we find increased GM volume with increasing AR(CAG)n across sexes, decreasing ESR1(TA)n across sexes and decreasing ESR2(CA)n in females. Uniquely, AR(CAG)n was positively associated with dorsolateral prefrontal and orbitofrontal GM volume and the anterior corona radiata, left superior fronto-occipital fasciculus, thalamus and internal capsule WM volume. ESR1(TA)n was negatively associated with the left superior corona radiata, left cingulum and left inferior longitudinal fasciculus WM volume uniquely. ESR2(CA)n was negatively associated with right fusiform and posterior cingulate cortex uniquely. We thus describe the neuroanatomical correlates of three microsatellite polymorphisms of steroid hormone receptors and their relationship to sex differences. Microsatellite polymorphisms in sex hormone receptor genes influence volume in regions of brain sex difference AR(CAG)n repeat length is positively associated with grey and white matter volume across males and females ESR1(TA)n repeat length is negatively associated with grey and white matter volume across males and females ESR2(CA)n repeat length is negatively associated with grey matter volume in females but not in males Repeat length was associated with volume in the hypothalamus, insula, temporal cortices, prefrontal cortices, inferior and superior longitudinal fasciculi in the three genes. These regions were largely replicated in an independent cohort acquired on a separate scanner.
Collapse
Affiliation(s)
- Geoffrey Chern-Yee Tan
- Institute of Mental Health, National Healthcare Group, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore.
| | - Carlton Chu
- DeepMind Technologies Limited, United Kingdom, UK
| | - Yu Teng Lee
- University of Sydney, Sydney, NSW, Australia
| | | | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London (UCL), United Kingdom, UK
| | | | | |
Collapse
|
40
|
Use of an Animal Model to Evaluate Anxiolytic Effects of Dietary Supplementation with Tilia tomentosa Moench Bud Extracts. Nutrients 2020; 12:nu12113328. [PMID: 33138077 PMCID: PMC7693450 DOI: 10.3390/nu12113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Anxiety disorders are common and complex psychiatric syndromes affecting a broad spectrum of patients. On top of that, we know that aging produces an increase in anxiety vulnerability and sedative consumption. Moreover, stress disorders frequently show a clear gender susceptibility. Currently, the approved pharmacological strategies have severe side effects such as hallucinations, addiction, suicide, insomnia, and loss of motor coordination. Dietary integration with supplements represents an intriguing strategy for improving the efficacy and the safety of synthetic anxiolytics. Accordingly, a recent article demonstrated that glyceric bud extracts from Tilia tomentosa Moench (TTBEs) exert effects that are consistent with anxiolytic activity. However, the effects of these compounds in vivo are unknown. To examine this question, we conducted behavioral analysis in mice. A total of 21 days of oral supplements (vehicle and TTBEs) were assessed by Light Dark and Hole Board tests in male and female mice (young, 3 months; old, 24 months). Interestingly, the principal component analysis revealed gender and age-specific behavioral modulations. Moreover, the diet integration with the botanicals did not modify the body weight gain and the daily intake of water. Our results support the use of TTBEs as dietary supplements for anxiolytic purposes and unveil age and gender-dependent responses.
Collapse
|
41
|
Flores RJ, Cruz B, Uribe KP, Correa VL, Arreguin MC, Carcoba LM, Mendez IA, O'Dell LE. Estradiol promotes and progesterone reduces anxiety-like behavior produced by nicotine withdrawal in female rats. Psychoneuroendocrinology 2020; 119:104694. [PMID: 32540678 PMCID: PMC7423767 DOI: 10.1016/j.psyneuen.2020.104694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/17/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
This study assessed sex differences and the role of ovarian hormones in nicotine withdrawal. Study 1 compared physical signs, anxiety-like behavior, and corticosterone levels in male, intact female, and ovariectomized (OVX) female rats during nicotine withdrawal. Estradiol (E2) and progesterone levels were also assessed in intact females that were tested during different phases of the 4-day estrous cycle. Study 2 assessed the role of ovarian hormones in withdrawal by comparing the same measures in OVX rats that received vehicle, E2, or E2+progesterone prior to testing. Briefly, rats received a sham surgery or an ovariectomy procedure. Fifteen days later, rats were prepared with a pump that delivered nicotine for 14 days. On the test day, rats received saline or the nicotinic receptor antagonist, mecamylamine to precipitate withdrawal. Physical signs and anxiety-like behavior were assessed on the elevated plus maze (EPM) and light-dark transfer (LDT) tests. During withdrawal, intact females displayed greater anxiety-like behavior and increases in corticosterone levels as compared to male and OVX rats. Females tested in the estrus phase (when E2 is relatively low) displayed less anxiety-like behavior and had lower corticosterone levels versus all other phases. Anxiety-like behavior and corticosterone levels were positively correlated with E2 and negatively correlated with progesterone levels. Intact females displaying high E2/low progesterone showed greater anxiety-like behavior and corticosterone levels as compared to females displaying low E2/high progesterone. Lastly, OVX-E2 rats displayed greater anxiety-like behavior than OVX-E2+progesterone rats. These data suggest that E2 promotes and progesterone reduces anxiety-like behavior produced by nicotine withdrawal.
Collapse
Affiliation(s)
- Rodolfo J Flores
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Kevin P Uribe
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Victor L Correa
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Montserrat C Arreguin
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Ian A Mendez
- School of Pharmacy, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA.
| |
Collapse
|
42
|
Martinez-Muniz GA, Wood SK. Sex Differences in the Inflammatory Consequences of Stress: Implications for Pharmacotherapy. J Pharmacol Exp Ther 2020; 375:161-174. [PMID: 32759370 DOI: 10.1124/jpet.120.266205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Women are at significantly greater risk of developing stress-related disorders such as depression. The increased risk begins during puberty and continues throughout life until menopause, suggesting a role for ovarian hormones in this increased susceptibility. Importantly, inflammation has been gaining momentum in its role in the pathogenesis of depression. Herein, clinical and preclinical studies have been reviewed to better understand how sex differences within the immune system may contribute to exaggerated risk of depression in females. First, studies that investigate the ability of psychologic stress episodes to engage the inflammatory systems both in the brain and periphery are reviewed with a special focus on sex-specific effects. Moreover, studies are discussed that identify whether imbalanced inflammatory milieu contributes to the development of depression in males versus females and whether these effects are regulated by estradiol. Importantly, we propose a locus coeruleus-norepinephrine-cytokine circuit as a conduit through which stress could increase stress susceptibly in females. Finally, the anti-inflammatory capacity of traditional and nontraditional antidepressants is investigated, with the goal of providing a better understanding of pharmacotherapeutics to enhance strategies to personalize antidepressant treatments between the sexes. The studies reviewed herein strongly support the need for further studies to elucidate whether females are especially sensitive to anti-inflammatory compounds as adjuvants to traditional therapies. SIGNIFICANCE STATEMENT: Women have hve an increased risk of developing stress-related disorders such as depression. In this review, literature from clinical and preclinical studies are integrated to define sex differences in stress-induced inflammatory responses as a potential source for the etiology of sex differences in depressive disorders. Moreover, the anti-inflammatory capacity of traditional and nontraditional antidepressants is reviewed to inform on potential pharmacotherapeutic strategies to personalize antidepressant therapy in a sex-dependent manner.
Collapse
Affiliation(s)
- Gustavo A Martinez-Muniz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina and Dorn Veterans Administration Medical Center, Columbia, South Carolina
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina and Dorn Veterans Administration Medical Center, Columbia, South Carolina
| |
Collapse
|
43
|
Borgus JR, Puthongkham P, Venton BJ. Complex sex and estrous cycle differences in spontaneous transient adenosine. J Neurochem 2020; 153:216-229. [PMID: 32040198 DOI: 10.1111/jnc.14981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023]
Abstract
Adenosine is a ubiquitous neuromodulator that plays a role in sleep, vasodilation, and immune response and manipulating the adenosine system could be therapeutic for Parkinson's disease or ischemic stroke. Spontaneous transient adenosine release provides rapid neuromodulation; however, little is known about the effect of sex as a biological variable on adenosine signaling and this is vital information for designing therapeutics. Here, we investigate sex differences in spontaneous, transient adenosine release using fast-scan cyclic voltammetry to measure adenosine in vivo in the hippocampus CA1, basolateral amygdala, and prefrontal cortex. The frequency and concentration of transient adenosine release were compared by sex and brain region, and in females, the stage of estrous. Females had larger concentration transients in the hippocampus (0.161 ± 0.003 µM) and the amygdala (0.182 ± 0.006 µM) than males (hippocampus: 0.134 ± 0.003, amygdala: 0.115 ± 0.002 µM), but the males had a higher frequency of events. In the prefrontal cortex, the trends were reversed. Males had higher concentrations (0.189 ± 0.003 µM) than females (0.170 ± 0.002 µM), but females had higher frequencies. Examining stages of the estrous cycle, in the hippocampus, adenosine transients are higher concentration during proestrus and diestrus. In the cortex, adenosine transients were higher in concentration during proestrus, but were lower during all other stages. Thus, sex and estrous cycle differences in spontaneous adenosine are complex, and not completely consistent from region to region. Understanding these complex differences in spontaneous adenosine between the sexes and during different stages of estrous is important for designing effective treatments manipulating adenosine as a neuromodulator.
Collapse
Affiliation(s)
- Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
44
|
Cognitive Abilities of Dogs with Mucopolysaccharidosis I: Learning and Memory. Animals (Basel) 2020; 10:ani10030397. [PMID: 32121123 PMCID: PMC7143070 DOI: 10.3390/ani10030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Mucopolysaccharidosis I (MPS I) results from a deficiency of a lysosomal enzyme, alpha-L-iduronidase (IDUA). IDUA deficiency leads to glycosaminoglycan (GAG) accumulation resulting in cellular degeneration and multi-organ dysfunction. The primary aims of this pilot study were to determine the feasibility of cognitive testing MPS I affected dogs and to determine their non-social cognitive abilities with and without gene therapy. Fourteen dogs were tested: 5 MPS I untreated, 5 MPS I treated, and 4 clinically normal. The treated group received intrathecal gene therapy as neonates to replace the IDUA gene. Cognitive tests included delayed non-match to position (DNMP), two-object visual discrimination (VD), reversal learning (RL), attention oddity (AO), and two-scent discrimination (SD). Responses were recorded as correct, incorrect, or no response, and analyzed using mixed effect logistic regression analysis. Significant differences were not observed among the three groups for DNMP, VD, RL, or AO. The MPS I untreated dogs were excluded from AO testing due to failing to pass acquisition of the task, potentially representing a learning or executive function deficit. The MPS I affected group (treated and untreated) was significantly more likely to discriminate between scents than the normal group, which may be due to an age effect. The normal group was comprised of the oldest dogs, and a mixed effect logistic model indicated that older dogs were more likely to respond incorrectly on scent discrimination. Overall, this study found that cognition testing of MPS I affected dogs to be feasible. This work provides a framework to refine future cognition studies of dogs affected with diseases, including MPS I, in order to assess therapies in a more comprehensive manner.
Collapse
|
45
|
Arnsten AFT, Datta D, Leslie S, Yang ST, Wang M, Nairn AC. Alzheimer's-like pathology in aging rhesus macaques: Unique opportunity to study the etiology and treatment of Alzheimer's disease. Proc Natl Acad Sci U S A 2019; 116:26230-26238. [PMID: 31871209 PMCID: PMC6936707 DOI: 10.1073/pnas.1903671116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although mouse models of Alzheimer's disease (AD) have provided tremendous breakthroughs, the etiology of later onset AD remains unknown. In particular, tau pathology in the association cortex is poorly replicated in mouse models. Aging rhesus monkeys naturally develop cognitive deficits, amyloid plaques, and the same qualitative pattern and sequence of tau pathology as humans, with tangles in the oldest animals. Thus, aging rhesus monkeys can play a key role in AD research. For example, aging monkeys can help reveal how synapses in the prefrontal association cortex are uniquely regulated compared to the primary sensory cortex in ways that render them vulnerable to calcium dysregulation and tau phosphorylation, resulting in the selective localization of tau pathology observed in AD. The ability to assay early tau phosphorylation states and perform high-quality immunoelectron microscopy in monkeys is a great advantage, as one can capture early-stage degeneration as it naturally occurs in situ. Our immunoelectron microscopy studies show that phosphorylated tau can induce an "endosomal traffic jam" that drives amyloid precursor protein cleavage to amyloid-β in endosomes. As amyloid-β increases tau phosphorylation, this creates a vicious cycle where varied precipitating factors all lead to a similar phenotype. These data may help explain why circuits with aggressive tau pathology (e.g., entorhinal cortex) may degenerate prior to producing significant amyloid pathology. Aging monkeys therefore can play an important role in identifying and testing potential therapeutics to protect the association cortex, including preventive therapies that are challenging to test in humans.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Shannon Leslie
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
46
|
Yang Y, Qi Y, Cui Y, Li B, Zhang Z, Zhou Y, Chen X, Zhu D, He F, Zheng Y. Emotional and behavioral problems, social competence and risk factors in 6-16-year-old students in Beijing, China. PLoS One 2019; 14:e0223970. [PMID: 31647827 PMCID: PMC6812843 DOI: 10.1371/journal.pone.0223970] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction Child emotional or behavioral problems and insufficient social development has been a heavy burden on family and society. However, currently large-scale studies on emotional and behavioral problems as well as social competence among school children in China are still lacking. This cross-sectional study analyzed the current status and risk factors of behavioral problems and social competences in Beijing students. Method A total of 9,295 students, with ages ranging from 6 to 16 years old, were enrolled in the study. The Child Behavior Checklist (CBCL) was used to screen emotional and behavioral problems, social competences of students. We then assessed significant predictors factors associated with children behavioral problems and social competences. Results The total detection rate of behavioral problems of this cohort was 16.7%. All kinds of social competence scores of boys were lower than girls (P <0.05). The scores of social and learning ability in children with behavioral problems were significantly lower than those without behavior problems (P <0.05). Gender, developmental delay, recent life events, negative relationships and negative child-rearing styles were the shared influencing factors for behavioral problems and social competence. In addition, age, macrosomia, threatened abortion, hospitalization for physical illness, physical illness, poor sleep were independent risk factors for children's emotional and behavioral problems, and non-breastfeeding was an independent risk factor for abnormal social competence. Conclusion The social competence, emotional and behavioral problems are serious among students in Beijing. More attention should be paid to mental health and effective intervention measures should be provided.
Collapse
Affiliation(s)
- Yang Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanjie Qi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yonghua Cui
- National Center for Children’s Health, Beijing, China
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Bin Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhixia Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuming Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dandi Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fan He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
47
|
Nuamah JK, Mantooth W, Karthikeyan R, Mehta RK, Ryu SC. Neural Efficiency of Human-Robotic Feedback Modalities Under Stress Differs With Gender. Front Hum Neurosci 2019; 13:287. [PMID: 31543765 PMCID: PMC6729110 DOI: 10.3389/fnhum.2019.00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023] Open
Abstract
Sensory feedback, which can be presented in different modalities - single and combined, aids task performance in human-robotic interaction (HRI). However, combining feedback modalities does not always lead to optimal performance. Indeed, it is not known how feedback modalities affect operator performance under stress. Furthermore, there is limited information on how feedback affects neural processes differently for males and females and under stress. This is a critical gap in the literature, particularly in the domain of surgical robotics, where surgeons are under challenging socio-technical environments that burden them physiologically. In the present study, we posited operator performance as the summation of task performance and neurophysiological cost of maintaining that performance. In a within-subject design, we used functional near-infrared spectroscopy to assess cerebral activations of 12 participants who underwent a 3D manipulation task within a virtual environment with concurrent feedback (visual and visual + haptic) in the presence and absence of a cognitive stressor. Cognitive stress was induced with the serial-7 subtraction test. We found that while task performance was higher with visual than visual + haptic feedback, it degraded under stress. The two feedback modalities were found to be associated with varying neural activities and neural efficiencies, and these were stress- and gender-dependent. Our findings engender further investigation into effectiveness of feedback modalities on males and females under stressful conditions in HRI.
Collapse
Affiliation(s)
- Joseph K. Nuamah
- NeuroErgonomics Laboratory, Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Whitney Mantooth
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
| | - Rohith Karthikeyan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Ranjana K. Mehta
- NeuroErgonomics Laboratory, Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Seok Chang Ryu
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Datta D, Arnsten AFT. Loss of Prefrontal Cortical Higher Cognition with Uncontrollable Stress: Molecular Mechanisms, Changes with Age, and Relevance to Treatment. Brain Sci 2019; 9:brainsci9050113. [PMID: 31108855 PMCID: PMC6562841 DOI: 10.3390/brainsci9050113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/11/2023] Open
Abstract
The newly evolved prefrontal cortex (PFC) generates goals for "top-down" control of behavior, thought, and emotion. However, these circuits are especially vulnerable to uncontrollable stress, with powerful, intracellular mechanisms that rapidly take the PFC "off-line." High levels of norepinephrine and dopamine released during stress engage α1-AR and D1R, which activate feedforward calcium-cAMP signaling pathways that open nearby potassium channels to weaken connectivity and reduce PFC cell firing. Sustained weakening with chronic stress leads to atrophy of dendrites and spines. Understanding these signaling events helps to explain the increased susceptibility of the PFC to stress pathology during adolescence, when dopamine expression is increased in the PFC, and with advanced age, when the molecular "brakes" on stress signaling are diminished by loss of phosphodiesterases. These mechanisms have also led to pharmacological treatments for stress-related disorders, including guanfacine treatment of childhood trauma, and prazosin treatment of veterans and civilians with post-traumatic stress disorder.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department Neuroscience, Yale Medical School, New Haven, CT 06510, USA.
| | - Amy F T Arnsten
- Department Neuroscience, Yale Medical School, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Peltier MR, Verplaetse TL, Mineur YS, Petrakis IL, Cosgrove KP, Picciotto MR, McKee SA. Sex differences in stress-related alcohol use. Neurobiol Stress 2019; 10:100149. [PMID: 30949562 PMCID: PMC6430711 DOI: 10.1016/j.ynstr.2019.100149] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023] Open
Abstract
Rates of alcohol use disorder (AUD) have increased in women by 84% over the past ten years relative to a 35% increase in men. This substantive increase in female drinking is alarming given that women experience greater alcohol-related health consequences compared to men. Stress is strongly associated with all phases of alcohol addiction, including drinking initiation, maintenance, and relapse for both women and men, but plays an especially critical role for women. The purpose of the present narrative review is to highlight what is known about sex differences in the relationship between stress and drinking. The critical role stress reactivity and negative affect play in initiating and maintaining alcohol use in women is addressed, and the available evidence for sex differences in drinking for negative reinforcement as it relates to brain stress systems is presented. This review discusses the critical structures and neurotransmitters that may underlie sex differences in stress-related alcohol use (e.g., prefrontal cortex, amygdala, norepinephrine, corticotropin releasing factor, and dynorphin), the involvement of sex and stress in alcohol-induced neurodegeneration, and the role of ovarian hormones in stress-related drinking. Finally, the potential avenues for the development of sex-appropriate pharmacological and behavioral treatments for AUD are identified. Overall, women are generally more likely to drink to regulate negative affect and stress reactivity. Sex differences in the onset and maintenance of alcohol use begin to develop during adolescence, coinciding with exposure to early life stress. These factors continue to affect alcohol use into adulthood, when reduced responsivity to stress, increased affect-related psychiatric comorbidities and alcohol-induced neurodegeneration contribute to chronic and problematic alcohol use, particularly for women. However, current research is limited regarding the examination of sex in the initiation and maintenance of alcohol use. Probing brain stress systems and associated brain regions is an important future direction for developing sex-appropriate treatments to address the role of stress in AUD.
Collapse
Affiliation(s)
| | | | - Yann S. Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ismene L. Petrakis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Sherry A. McKee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
50
|
Enhancing effects of acute exposure to cannabis smoke on working memory performance. Neurobiol Learn Mem 2018; 157:151-162. [PMID: 30521850 DOI: 10.1016/j.nlm.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model. Adult male (n = 15) and female (n = 16) Long-Evans rats were trained in a food-motivated delayed response working memory task. Prior to test sessions, rats were exposed to smoke generated by burning different numbers of cannabis or placebo cigarettes, using a within-subjects design. Exposure to cannabis smoke had no effect on male rats' performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory. Follow-up experiments showed that acute administration of either Δ9-tetrahydrocannabinol (0.0, 0.3, 1.0, 3.0 mg/kg) or the cannabinoid receptor type 1 antagonist rimonabant (0.0, 0.2, 0.6, 2.0 mg/kg) impaired working memory performance. These results indicate that differences in the route, timing, or dose of cannabinoid administration can yield distinct cognitive outcomes, and highlight the need for further investigation of this topic.
Collapse
|